Recently, Convolutional Neural Network (CNN) based models have achieved great success in Single Image SuperResolution (SISR). Owing to the strength of deep networks, these CNN models learn an effective nonlinear mapping from the low-resolution input image to the high-resolution target image, at the cost of requiring enormous parameters. This paper proposes a very deep CNN model (up to 52 convolutional layers) named Deep Recursive Residual Network (DRRN) that strives for deep yet concise networks. Specifically, residual learning is adopted, both in global and local manners, to mitigate the difficulty of training very deep networks; recursive learning is used to control the model parameters while increasing the depth. Extensive benchmark evaluation shows that DRRN significantly outperforms state of the art in SISR, while utilizing far fewer parameters.
Results
Scale factor x2
Scale factor x3
Scale factor x4
DRRN implementation may be downloaded here.
-
FSRNet: End-to-End Learning Face Super-Resolution with Facial Priors
Yu Chen*, Ying Tai*, Xiaoming Liu, Chunhua Shen, Jian Yang
In Proceeding of IEEE Computer Vision and Pattern Recognition (CVPR 2018), Salt Lake City, UT, Jun. 2018
(Spotlight)
Bibtex
| PDF
| arXiv
| Code
@inproceedings{ fsrnet-end-to-end-learning-face-super-resolution-with-facial-priors,
author = { Yu Chen* and Ying Tai* and Xiaoming Liu and Chunhua Shen and Jian Yang },
title = { FSRNet: End-to-End Learning Face Super-Resolution with Facial Priors },
booktitle = { In Proceeding of IEEE Computer Vision and Pattern Recognition },
address = { Salt Lake City, UT },
month = { June },
year = { 2018 },
}
-
MemNet: A Persistent Memory Network for Image Restoration
Ying Tai, Jian Yang, Xiaoming Liu, Chunyan Xu
In Proceeding of International Conference on Computer Vision (ICCV 2017), Venice, Italy, Oct. 2017
Bibtex
| PDF
| Code
@inproceedings{ memnet-a-persistent-memory-network-for-image-restoration,
author = { Ying Tai and Jian Yang and Xiaoming Liu and Chunyan Xu },
title = { MemNet: A Persistent Memory Network for Image Restoration },
booktitle = { In Proceeding of International Conference on Computer Vision },
address = { Venice, Italy },
month = { October },
year = { 2017 },
}
-
Image Super-Resolution via Deep Recursive Residual Network
Ying Tai, Jian Yang, Xiaoming Liu
In Proceeding of IEEE Computer Vision and Pattern Recognition (CVPR 2017), Honolulu, HI, Jul. 2017
Bibtex
| PDF
| Code
@inproceedings{ image-super-resolution-via-deep-recursive-residual-network,
author = { Ying Tai and Jian Yang and Xiaoming Liu },
title = { Image Super-Resolution via Deep Recursive Residual Network },
booktitle = { In Proceeding of IEEE Computer Vision and Pattern Recognition },
address = { Honolulu, HI },
month = { July },
year = { 2017 },
}