

Dense 3D Correspondence for Man-made Objects

Definition:

Given two shapes S_A and S_B belonging in the same category, for an *arbitrary* point $p \in \mathbf{S}_A$, we are seeking its **semantically** equivalent point q on \mathbf{S}_B .

Challenge:

- Man-made objects often differ not only by geometric deformations, but also by *part constitutions*;
- Prior methods have proven to be effective on organic shapes, e,g,. Human bodies and mammals, they become *less suitable* for generic object;
- Existing method for man-made object either performance fuzzy correspondence or predict a constant number of semantic points;
- The lack of annotations on dense correspondence often leaves **unsupervised** learning the only option.

Contributions:

- We propose a novel paradigm leveraging implicit functions for categoryspecific unsupervised dense 3D correspondence, which is suitable for topology-varying objects;
- We estimate a *confidence score* measuring if the predicted correspondence is valid or not;
- We demonstrate the superiority of our method in shape segmentation and 3D semantic correspondence.

Learning Implicit Functions for Topology-Varying Dense 3D Shape Correspondence

Xiaoming Liu

Department of Computer Science and Engineering, Michigan State University

Proposed Method

Feng Liu

- We assume a semantic embedding function (SEF) $f: \mathbb{R}^3 \times \mathbb{R}^d \to \mathbb{R}^k$, the correspondence should satisfy: $\left(\min_{q\in\mathbf{S}_B}||f(p,\mathbf{z}_A) - f(q,\mathbf{z}_B)||_2\right) < \tau, \quad \forall p\in\mathbf{S}_A$ shape latent code If the distance is too large ($\geq \tau$), there is no
- corresponding point in S_B for p; If SEF could be learned, then $q = f^{-1}(f(p, \mathbf{z}_A), \mathbf{z}_B)$ inverse function

Solution:

- A branched implicit function f serves as the semantic embedding function (SEF).
- Design an inverse function g mapping from the embedding space to 3D space: $q: \mathbb{R}^k imes \mathbb{R}^d o \mathbb{R}^3$, so that the learning objectives can be defined in 3D space.

• Loss functions: $\mathcal{L}^{all} = \mathcal{L}^{occ} + \mathcal{L}^{SR} + \mathcal{L}^{CR}$ Occupancy loss Self-Reconstruction loss Cross-Reconstruction loss

* Cross-Reconstruction loss enforces part embedding consistency across all shapes.

Inference:

Experimental Results:

3D semantic Correspondence on BHCP

Unsupervised Shape Segmentation on ShapeNet

Shape (#parts)	plane (3)	bag (2)	cap (2)	chair (3)	chair * (4)	mug (2)	skateboard (2)	table (2)	Aver
Segmented	body,tail,	body,	panel,	back+seat,	back, seat,	body,	deck,	top,	Avei.
parts	wing+engine	handle	peak	leg, arm	leg, arm	handle	wheel+bar	leg+support	
BAE-Net [9]	80.4	82.5	87.3	86.6	83.7	93.4	88.1	87.0	86.1
Proposed	81.0	85.4	87.9	88.2	86.2	94.7	91.6	88.3	88.0

Part embedding visualization (t-SNE)

Training stage				-		
	Network	Loss		- 10 Y	4 💭 🔊	1 (M
ge 1	E, f	\mathcal{L}^{occ}				4746
ge 2	E, f, g	\mathcal{L}^{occ} and \mathcal{L}^{SR}			s (
ge 3	E, f, g	\mathcal{L}^{all}	Feature points	Stage 1	Stage 2	Stage 3

References

[1] Kaick et al. A Survey on Shape Correspondence. In Computer Graphics Forum, 2011.

[2] Huang et al. Functional Map Networks for Analyzing and Exploring Large Shape Collections. TOG, 2014.

[3] Chen et al. BAE-NET: Branched Autoencoder for Shape Co-Segmentation. In ICCV, 2019.

[4] Chen et al. Unsupervised Learning of Intrinsic Structural Representation Points. In CVPR, 2020.