
• A branched implicit function     serves as the semantic embedding function (SEF).

• Design an inverse function     mapping from the embedding space to 3D space:

, so that the learning objectives can be defined in 3D space.             

• Loss functions:

shape latent code

Learning Implicit Functions for 

Topology-Varying Dense 3D Shape Correspondence

Dense 3D Correspondence for Man-made 

Objects

Given two shapes        and        belonging in the same category, for an arbitrary

point             , we are seeking its semantically equivalent point     on      .  

• Man-made objects often differ not only by geometric deformations, but also

by part constitutions;

• Prior methods have proven to be effective on organic shapes, e,g,. Human

bodies and mammals, they become less suitable for generic object;

• Existing method for man-made object either performance fuzzy

correspondence or predict a constant number of semantic points;

• The lack of annotations on dense correspondence often leaves

unsupervised learning the only option.
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Definition:

Challenge:

Contributions:

• We propose a novel paradigm leveraging implicit functions for category-

specific unsupervised dense 3D correspondence, which is suitable for

topology-varying objects;

• We estimate a confidence score measuring if the predicted

correspondence is valid or not;

• We demonstrate the superiority of our method in shape segmentation and

3D semantic correspondence.

Proposed Method

Formulation:

Semantic 

embedding space

• We assume a semantic embedding function 

(SEF)                                     , the 

correspondence should satisfy:

• If the distance is too large (        ), there is no 

corresponding point in       for     ;

• If SEF could be learned, then   

inverse function
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Inference:

Experimental Results:

Cross-Reconstruction

nearest neighbor search the same index refers to the correspondence

3D semantic Correspondence on BHCP

Unsupervised Shape Segmentation on ShapeNet

Part embedding visualization (t-SNE)
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* Cross-Reconstruction loss enforces part embedding consistency across all shapes.


