Abstract

Goal

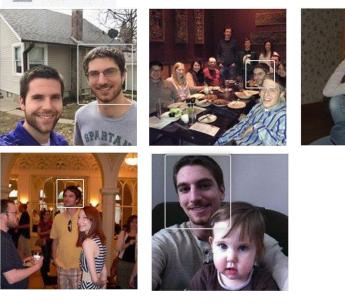
Given an unconstrained 2D photo collection of an individual with pose, expression, and illumination variations, we propose a method for reconstructing a detailed, watertight 3D surface model of the face.

Input

A photo collection may be gather in a variety of methods.

Facebook Tagged Photos

Photos



Personal Vacation Photos

Internet Image Search

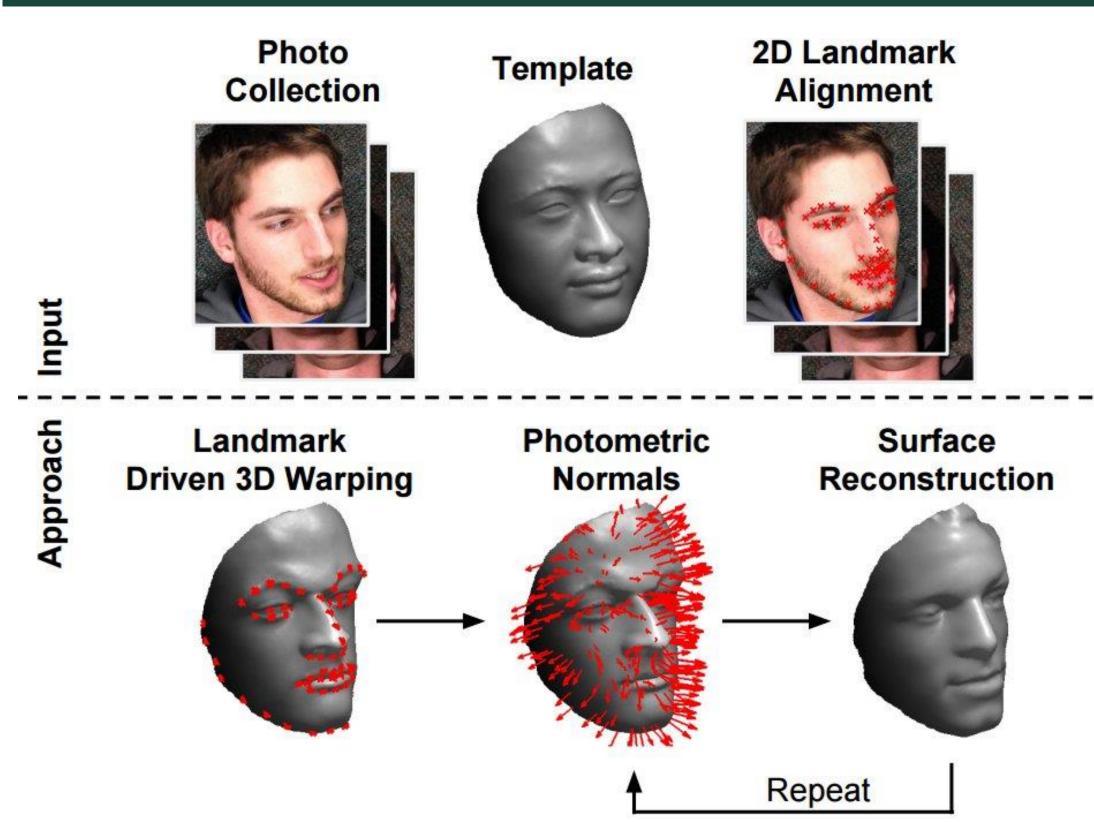
Output

• 3D triangulated mesh.

Applications

- 3D-assisted face recognition (Blanz & Vetter '03, Hu et al. '04).
- Facial animation (Cao *et al.* '14).
- 3D expression recognition (Wang *et al.* '06).
- Consumer entertainment, e.g., personalized bobbleheads.

Overview



Unconstrained 3D Face Reconstruction

Joseph Roth, Yiying Tong, and Xiaoming Liu (Michigan State University)

(b)

Approach

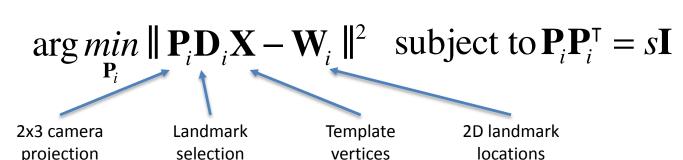
Landmark Driven 3D Warping Deform the generic template to match the *overall* structure of the subject.

Takes advantage of profile images.

Which projection (red) best fits the true landmarks (green)? Image (c), but this is not the template, but a subject specific deformation.

Template Projection

Project 3D template landmarks to best fit the visible 2D landmarks



vertices

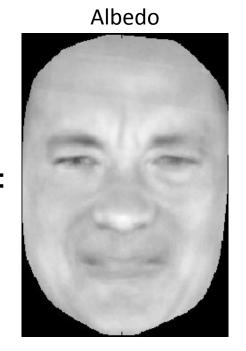
(a)

Photometric Normals

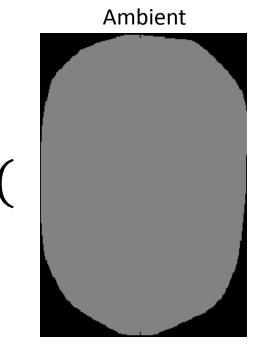
projection

Lambertian reflectance model. Intensity in image is a linear combination of the surface normals weighted by the lighting.



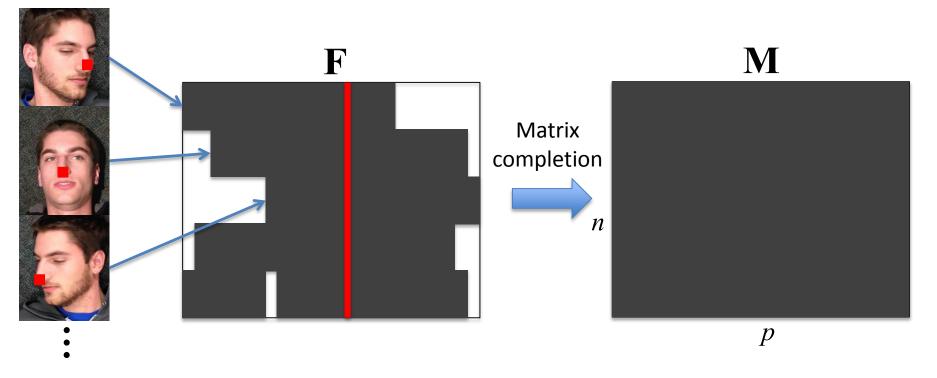


selection



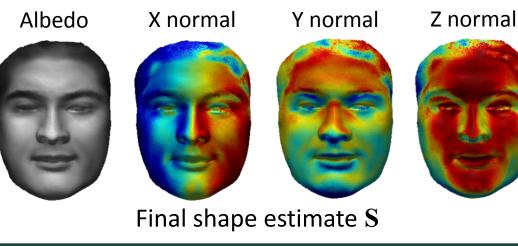
Illumination Correspondence Matrix

Project template onto each face to find vertex correspondence across all images. Some parts of the face may be obscured in a given image.



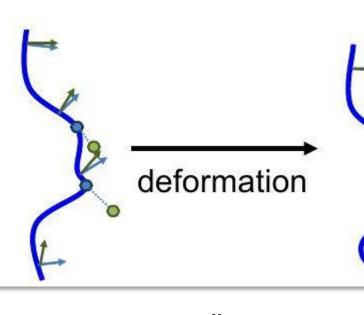
Decompose Lighting and Shape

- M is rank-4 under Lambertian assumption.
- SVD to find light L and shape S.
- Resolve ambiguity with template.
- Refine estimate based on a subset of images which agree locally.

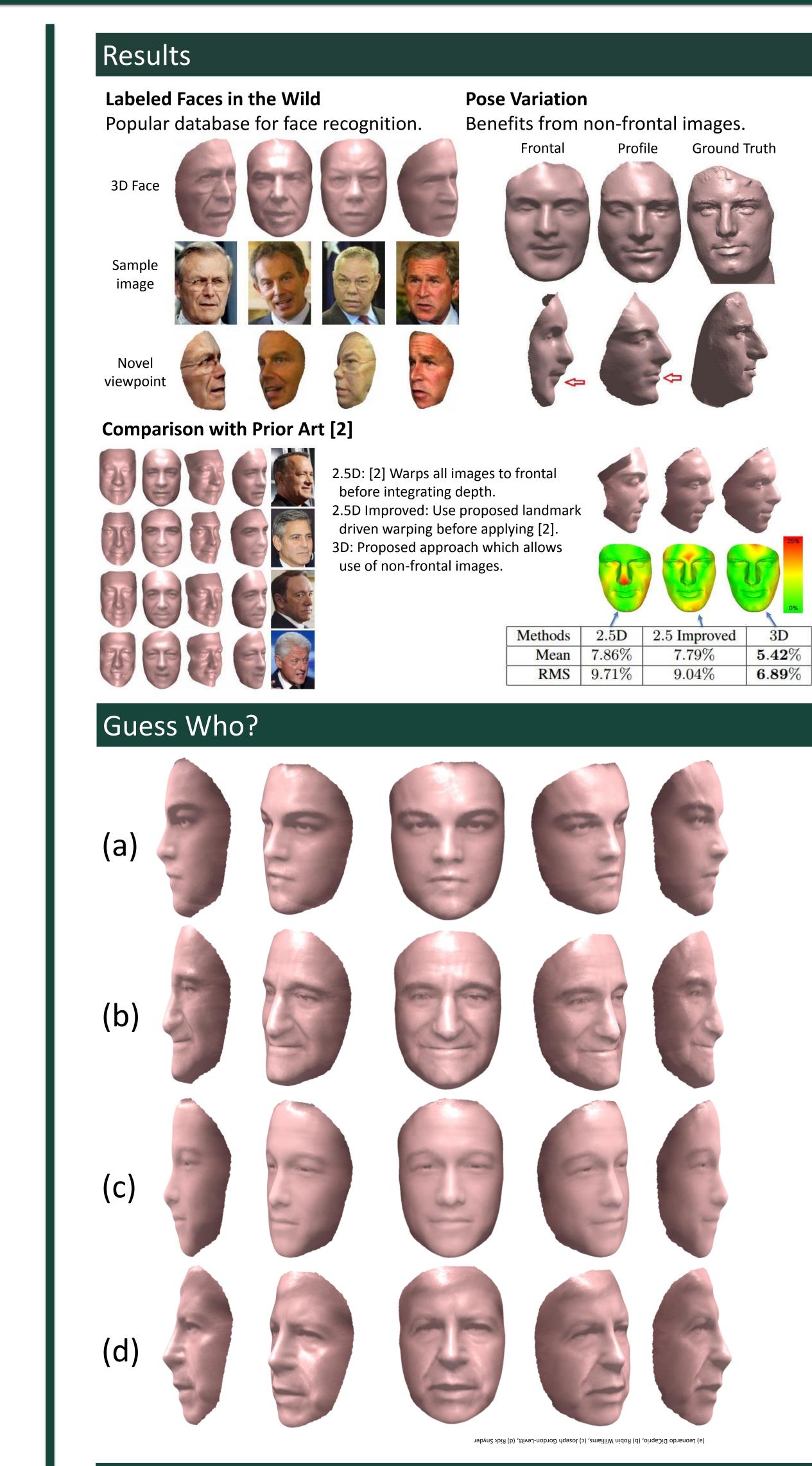


Surface Reconstruction

- Deform the surface to better match the landmark constraints and the surface normal constraints.
- Additional boundary constraint to maintain consistency.



 $X^{k+1} = \arg\min_{\mathbf{X}} \lambda_l \sum_i \| \mathbf{P}_i^k \mathbf{D}_i^k \mathbf{X} - \mathbf{W}_i \|^2 + \| \mathcal{L}\mathbf{X} - H^k \mathbf{n}^k \|^2 + \lambda_b \| \mathcal{L}_b \mathbf{X} - \mathcal{L}_b \mathbf{X}^k \|^2$ Landmarks Surface Normals Boundary



Conclusions

- Presented a method for 3D face reconstruction from an unconstrained p collection.
- Deformation of a true 3D surface rather than a simple height field.
- Leverages faces from all possible poses
- Combination of 2D landmark driven constrain and a photometric stereo normal field.

[1] Joseph Roth, Yiying Tong, Xiaoming Liu, "Unconstrained 3D Face Reconstruction," in Pr of IEEE Computer Vision and Pattern Recognition (CVPR 2015), Boston MA, June 7-12 2015. [2] I. Kemelmacher-Schlizerman and S. M. Seitz. "Face Reconstruction in the Wild," in ICCV, 2011.

photo
based
roceedings 15.