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Introduction
Face recognition and 3D face reconstruction seem to contradict each other. On one hand, face recognition
prefers identity-sensitive features, but not every detail on faces; on the other hand, 3D reconstruction
attempts to recover as much facial detail as possible, regardless whether the detail benefits or distracts
facial identity recognition.

Figure: Comparison between the learning process of (a) existing methods and (b) our proposed method. GT denotes Ground
Truth. (d) and (e) are 3D face shapes and disentangled identity shapes reconstructed by our method for the images in (c) from
LFW.

•We propose a method which for the first time explicitly optimizes face recognition and 3D face
reconstruction simultaneously. The method achieves state-of-the-art 3D face reconstruction accuracy via
joint discriminative feature learning and 3D face reconstruction.

•We devise an effective training process for the proposed network that can disentangle identity and non-
identity features in reconstructed 3D face shapes. The network, while being pre-trained by 3DMM-
generated data, can surmount the limited 3D shape space determined by the 3DMM bases, in the sense
that it better captures identity-sensitive and identity-irrelevant features in 3D face shapes.

•We leverage the effectiveness of disentangled identity features in reconstructed 3D face shapes for
improving face recognition accuracy, as being demonstrated by our experimental results. This further
expands the application scope of 3D face reconstruction.

Proposed Method
Based on the assumption that 3D face shapes are composed by identity-sensitive and identity-irrelevant
parts, the 3D face shape s of a subject is represented as

s = s̄ + ∆sId + ∆sRes, (1)

where s̄ is the mean 3D face shape (computed across all training samples with neutral expression), ∆sId
is the identity-sensitive difference between s and s̄, and ∆sRes denotes the residual difference. A variety of
sources could lead to the residual difference, for example, expression-induced deformations and temporary
detail.

We further assume that ∆sId and ∆sRes can be described by latent representations, cId and cRes, respectively.
This is formulated by

∆sId = fId(cId; θId), ∆sRes = fRes(cRes; θRes). (2)
Here, fId (fRes) is the mapping function that generates the corresponding shape component ∆sId (∆sRes) from the

latent representation, with parameters θId (θRes).
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Figure: Overview of the proposed encoder-decoder based joint learning pipeline for face recognition and 3D shape reconstruction.

Figure: (a) Encoder in the proposed method is implemented based on SphereFace. It converts the input 2D image to latent identity and
residual shape feature representations. (b) Decoders in the proposed method are implemented as a fully connected (FC) layer. They
convert the latent representations to corresponding shape components.

Implementation Detail

•Loss Functions. The overall loss to the proposed encoder-decoder network is defined by

L = λRLR + LC , (3)
where λR is the Euclidean-based weight for the reconstruction loss LR, LC is the softmax loss.

•Training Data. To construct training data we develop a method for fitting 3D morphable model (3DMM) to multiple
2D images of a subject, and apply it to CASIA-WebFace database, resulting in 488,848 images / 3D faces of
10,575 subjects.

•Training Process. We train our encoder-decoder network in three phases. In Phase I, we train the encoder by
setting the target latent representations as 3DMM coefficients and using Euclidean loss. In Phase II, we train
the decoder for the identity and residual components separately. In Phase III, the end-to-end joint training is
conducted based on the pre-trained encoder and decoder.

Experimental Results
Two sets of experiments have been done to evaluate the effectiveness of the proposed method in 3D face
reconstruction and face recognition. The MICC and BU3DFE databases are used for experiments of 3D face
reconstruction, and the LFW, YTF and IJB-A databases are used in face recognition experiments.
•3D Shape Reconstruction Accuracy.

Table: 3D face reconstruction accuracy on the MICC database.
Method VRN 3DDFA 3DMM-CNN 3DSR Proposed
RMSE 5.34 2.73 2.20 2.07 2.00

Table: 3D face reconstruction accuracy (RMSE) under different
yaw angles on the BU3DFE database.

Method ±90◦ ±80◦ ±70◦ ±60◦ ±50◦ ±40◦ ±30◦ ±20◦ ±10◦ 0◦ Avg.
VRN 6.96 6.20 6.14 6.01 5.91 5.50 4.93 3.86 3.70 3.66 5.29
3DDFA 2.90 2.88 2.81 2.82 2.77 2.79 2.76 2.73 2.55 2.48 2.75
3DMM-CNN - - - - 2.30 2.26 2.23 2.22 2.19 2.17 2.23
3DSR 2.11 2.11 2.12 2.13 2.16 2.14 2.12 2.10 2.10 2.09 2.12
Proposed 2.09 2.04 2.03 2.03 2.00 1.99 2.03 2.01 1.97 1.93 2.01

•Face Recognition Accuracy.
Table: Face recognition accuracy on the LFW and YTF databases.

Method Shape Texture Accuracy 100%-EER AUC TAR-10% TAR-1%
Labeled Faces in the Wild (LFW)

3DMM

√
× 66.13± 2.79 65.70± 2.81 72.24± 2.75 35.90± 3.74 12.37± 4.81

×
√ 74.93± 1.14 74.50± 1.21 82.94± 1.14 60.40± 3.15 28.73± 7.17√ √ 75.25± 2.12 74.73± 2.56 83.21± 1.93 59.40± 4.64 29.67± 4.73

3DDFA √
× 66.98± 2.56 67.13± 1.90 73.30± 2.49 36.76± 6.27 10.00± 3.22

3DMM-CNN

√
× 90.53± 1.34 90.63± 1.61 96.60± 0.79 91.13± 2.62 58.20± 12.14

×
√ 90.60± 1.07 90.70± 1.17 96.75± 0.59 91.23± 2.42 52.60± 8.14√ √ 92.35± 1.29 92.33± 1.33 97.71± 0.64 94.20± 2.00 65.57± 6.93

Proposed √
× 94.43± 1.47 94.40± 1.52 98.12± 0.90 95.07± 2.39 74.54± 4.33

YouTube Faces (YTF)

3DMM

√
× 73.26± 2.51 73.08± 2.65 80.41± 2.60 51.36± 5.11 24.04± 4.56

×
√ 77.34± 2.54 76.96± 2.64 85.32± 2.63 63.16± 5.07 31.36± 5.21√ √ 79.56± 2.08 79.20± 2.07 87.35± 1.92 69.08± 5.00 34.56± 6.89

3DDFA √
× 68.10± 2.93 67.96± 3.12 74.95± 3.04 40.52± 3.65 12.20± 2.67

3DMM-CNN

√
× 88.28± 1.84 88.32± 2.16 95.95± 1.38 86.60± 3.95 51.12± 8.86

×
√ 87.56± 2.56 87.68± 2.25 94.44± 1.38 84.80± 4.89 40.92± 8.26√ √ 88.80± 2.21 88.84± 2.40 95.37± 1.43 87.92± 4.18 46.56± 6.20

Proposed √
× 88.74± 1.03 88.70± 1.15 96.28± 0.63 89.00± 2.40 53.44± 4.51

Table: Face verification and identification performance on the IJB-A database.
Method Shape Texture TAR-10% TAR-1% Rank-1 Rank-5
DRGAN ×

√
− 75.5± 2.8 84.3± 1.3 93.2± 0.8

Proposed √
× 89.6± 1.2 58.8± 4.9 75.7± 1.9 88.2± 1.1

DRGAN+Proposed √ √
− 76.5± 4.2 85.4± 1.8 93.9± 0.9

•Ablation Study.
Table: Reconstruction and recognition accuracy on different test data sets when identity disentangling and identification loss are used
or not used. Refer to the paper for test data set details.

Training Phase Identity Disentangling Identification Loss
Reconstruction RMSE on Recognition Accuracy on

MICC BU3DFE (pose) BU3DFE (exp.) LFW YTF
– × × 2.51± 0.57 2.54± 0.67 2.62± 0.73 – –
II √

× 2.23± 0.48 2.31± 0.55 2.45± 0.62 68.00± 2.21 69.19± 1.91
III √ √ 2.00± 0.32 2.01± 0.49 2.19± 0.54 94.43± 1.47 88.74± 1.03

Reconstruction errors are further reduced after incorporating identification loss in Phase III. Recognition
accuracy is significantly improved from Phase II to Phase III. This reveals the limited discrimination power of
3DMM representations and the importance of CNN-based joint learning in expanding the representation and
discrimination capacity of 3DMM-like bases.

•Computational Efficiency. We run the methods on a PC (with an Intel Core i7-5930K @ 3.5GHz, 32GB RAM and
an GeForce GTX 1080) for 700 images, and calculate the average runtime per image.

Table: Efficiency comparison of different methods.
Method VRN 3DDFA 3DMM-CNN 3DSR Proposed
Time (ms) 55.68 39.17 30.12 29.80 4.79

[2] VRN: Jackson et al. Large pose 3D face reconstruction from a single image via direct volumetric CNN regression, ICCV 2017.
[4] 3DMM-CNN: Tran et al. Regressing robust and discriminative 3D morphable models with a very deep neural network, CVPR 2017.
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