

Overview

Problem:

Forecast semantic segmentation masks for arbitrary future frames, using predicted motion of RGB sequence frames.

Motivation:

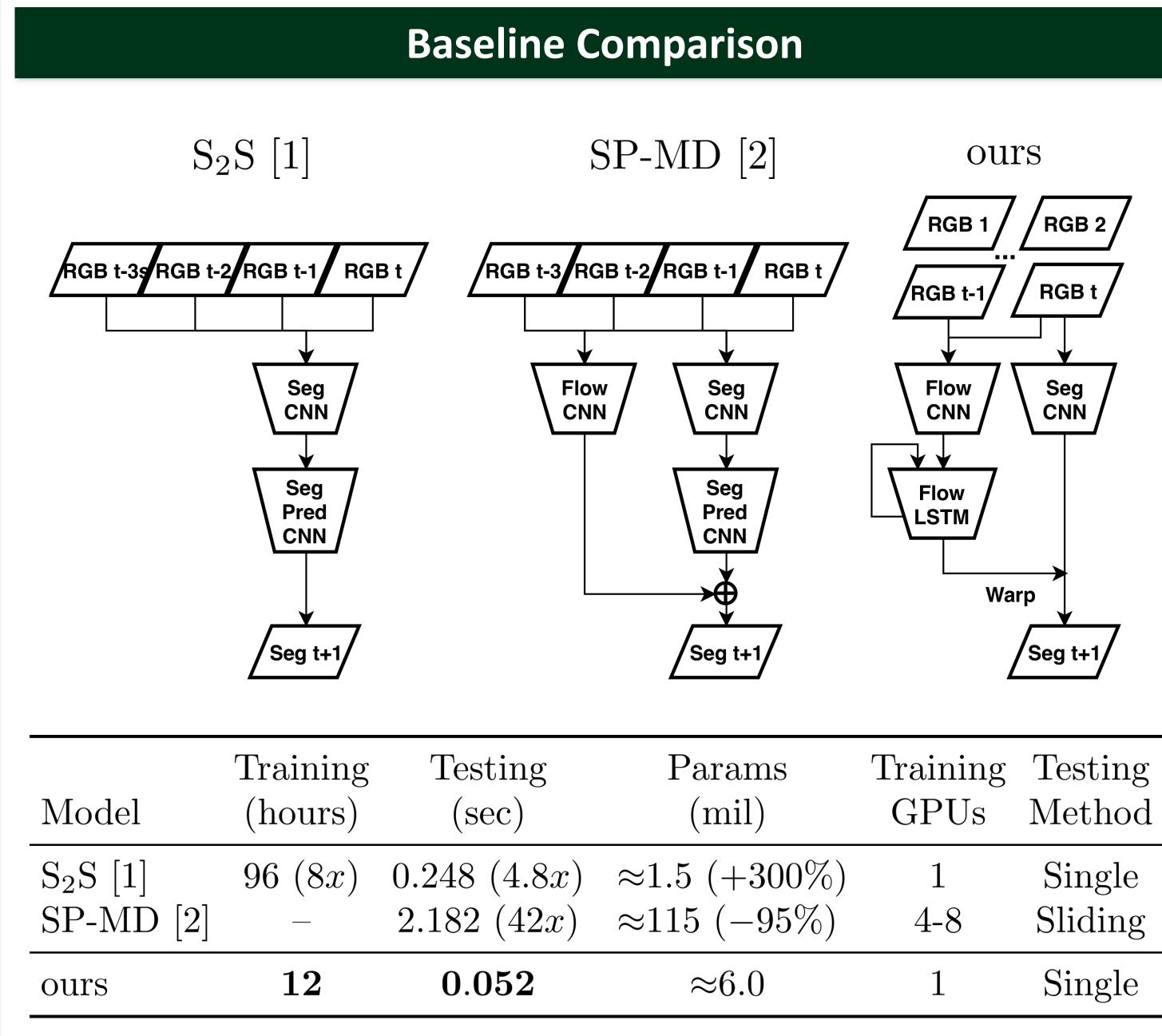
Reasoning about the future is a crucial component to the deployment of robust and proactive real-world computer vision systems.

Background:

Extensive prior work in directly modeling future RGB frames and current-frame semantic segmentation, while conversely future frame segmentation is relatively unexplored.

Contributions:

- learnable warp layer directly applied to segmentation features
- convolutional LSTM to aggregate optical flow features and estimate future optical flow
- collectively, an effective, efficient, and low overhead network.

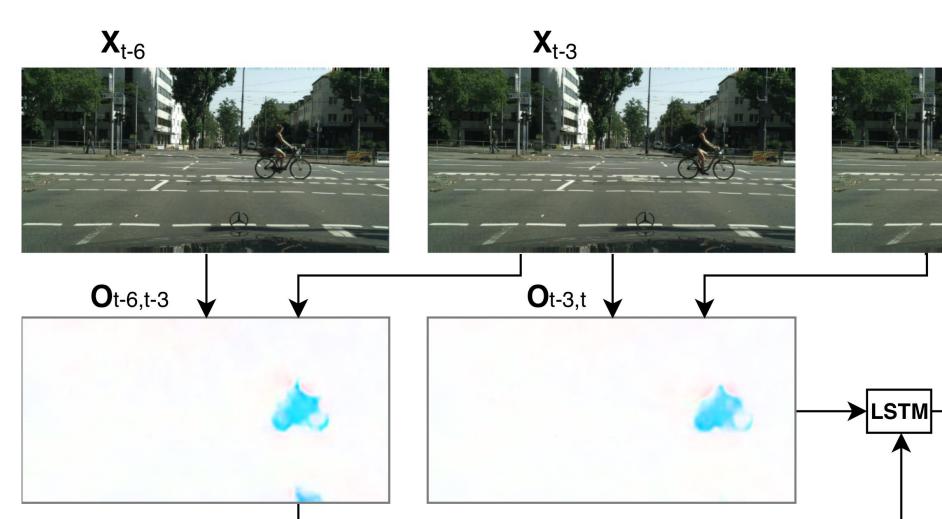


[1]. Luc, P., Neverova, N., Couprie, C., Verbeek, J.J., LeCun, Y.: Predicting deeper into the future of semantic segmentation. ICCV 2017. [2]. Jin, X., Xiao, H., Shen, X., Yang, J., Lin, Z., Chen, Y., Jie, Z., Feng, J., Yan, S.: Predicting scene parsing and motion dynamics in the future. NIPS 2017.

Recurrent Flow-Guided Semantic Forecasting

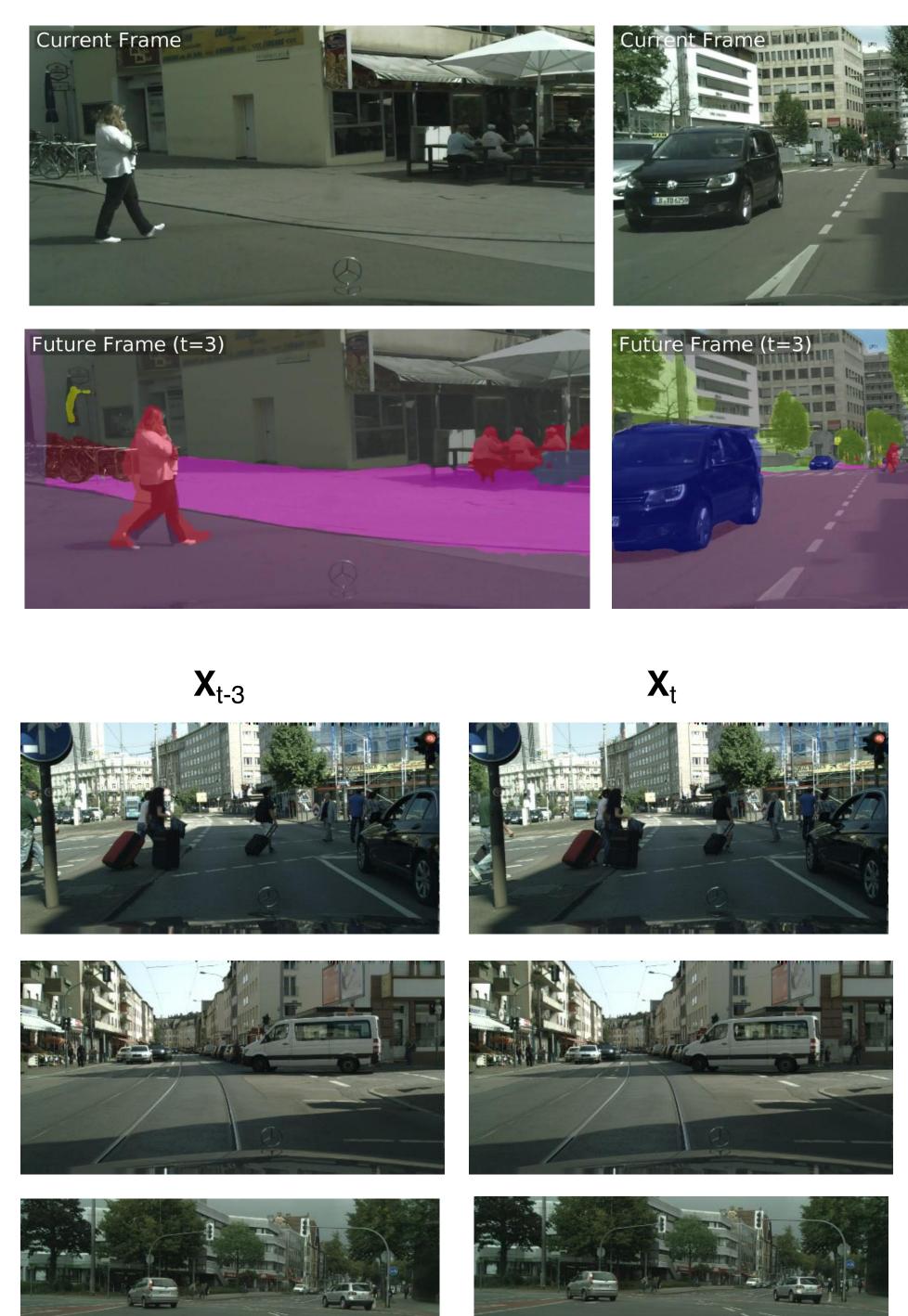
Adam M. Terwilliger, Garrick Brazil, and Xiaoming Liu Department of Computer Science and Engineering, Michigan State University {adamtwig, brazilga, liuxm}@msu.edu

Method Single Sliding Single



segmentation, hence resulting in a highly flexible and modular design.

Methodology Experiments IoU IoU-MO IoU-MO IoU (t=3) (t=3) (t=9) (t=9)Model Copy last input 49.426.843.436.9Warp last input 59.054.444.337.0 S_2S **O**t,t+3 59.455.347.840.867.151.546.365.1ours IoU (t=1)IoU (t = 10)Model The semantic forecasting framework takes as input a pair of RGB frames, estimates the optical Copy last input 59.741.3flow, aggregates the flow temporally via a convolutional LSTM, and finally warps current frame Warp last input 61.342.0 $SP-MD^{\dagger}$ 52.6_____ 53.9 $\operatorname{SP-MD}$ 66.1 **Qualitative Results** ours $(c)^{\dagger}$ 73.051.8ours (C)52.573.2† - indicates model contained no recurrent fine-tuning. **Ablation Studies** S_{t+3} _ (S₂S) **S**_{t+3} _ (ours)



Configuration		IoU $(t=3)$	IoU $(t = 10)$
Auto-regressive		64.4	48.7
Single-step		66 .0	50.0
Configuration		IoU $(t=3)$	IoU $(t = 10)$
No FlowLSTM		62.3	46.0
FlowLSTM		66.0	50.0
	Step Size	Frames	IoU $(t = 3)$
		7 16	
	9	7,16	62.6
	3	7, 10, 13, 16	66.0
	1	7, 8,, 16	67.1
	Time	Frames	IoU $(t=3)$
	2	15, 16	62.4
	4	13, 14, 15, 16	67.0
	8	7, 8,, 16	67.1

For details on methodology and ablation experiments please visit the fulllength paper using the QR code (left) or https://arxiv.org/abs/1809.08318