Problem \& Contributions

- Conflicting learning objective in 3DMM (strong regularization for a global shape vs. weak regularization for capturing higher level details).
- We solve the problem by learning shape, albedo proxies with a novel pairing scheme \& proper regularization.
- The global-local-based network offers more balance between robustness and flexibility.
- Our model allows high-fidelity 3D face reconstruction by solely optimizing latent representations

Related Works

- Linear 3DMM
- Linear: PCA models
- Learned with small number of 3D scans
- Nonlinear 3DMM
- In-the-wild texture Booth et al.
- Deep Boltzmann Machines: Duong et al.
- MLP, CNN: Tran an Liu, Tewari et al.
- Global/local-based facial parameterization
- Region-based PCA: Blanz and Vetter, Tena et al.
- Localized multilinear model: Brunton et al.
- Residual learning
- Face-alignment: Zhou et al., Jourabloo et al
- Super-resolution: Kim et al.

Nonlinear 3DMM Learning

- Nonlinear 3DMM with Proxy and Residual

$\mathcal{L}_{\text {reg }}=\mathcal{L}_{\text {sym }}(\mathbf{A})+\mathcal{L}_{\text {con }}(\mathbf{A})+\mathcal{L}_{\text {smo }}(\mathbf{S})$
5
$\mathcal{L}_{\text {reg }}^{*}=\mathcal{L}_{\text {sym }}(\tilde{\mathrm{A}})+\mathcal{L}_{\text {con }}(\tilde{\mathrm{A}})+\mathcal{L}_{\text {smo }}(\tilde{\mathbf{S}})$
$+\|\mathbf{A}-\tilde{\mathbf{A}}\|_{1}+\|\mathbf{S}-\tilde{\mathbf{S}}\|_{1}$

- Global-Local-Based Network Architecture

- Identity Preserving

- 3D Reconstruction

Conclusions

- Present a novel approach to improve the nonlinear 3DMM modeling in both learning objective and network architecture.
- A step toward building high-fidelity model, through which 3D face reconstruction can be achieved solely by doing model fitting

