

MITSUBISHI ELECTRIC RESEARCH LABORATORIES, INC

1. Overview

Why uncertainty?

- Most of the current state-of-the-art face alignment methods predict landmark locations but do not model the uncertainty associated with the prediction.
- Knowing how uncertain the predictions are can be critical for downstream tasks.

Ground Truth Predicted Location Predicted Gaussian Uncertainty

Figure: Difference between previous methods and our proposed method.

2. Issues with Previous Methods

1. Training: Use proxy ground truth heatmap

- Predict heatmap and use L₂ loss between predicted heatmap and a proxy ground truth heatmap:
- Each proxy ground truth heatmap generated by placing a fixed symmetric Gaussian at the ground truth landmark location.
- Heatmaps are not probabilities.

Figure: An example of stacked U-nets (stacked hourglass networks): DU-Net [2]. DU-Net also has dense connections among the hourglasses (not shown).

2. Prediction: Take arg max of the heatmap as the location estimate

- Accurate only up to one pixel. No sub-pixel accuracy.
- Training not end-to-end differentiable.

UGLLI Face Alignment: Estimating Uncertainty with Gaussian Log Likelihood Loss

¹Mitsubishi Electric Research Labs (MERL); ²University of Utah; ³University of Manchester; ⁴New York University; ⁵Michigan State University *Denotes equal contributions

3. Why Not use Heatmaps to Model Probability Distributions?

- [1] uses a non-parametric mixture density network to learn the distribution as a mixture of a large number of Gaussians (a small symmetric Gaussian at each heatmap pixel).
- Our results show that the resolution of the heatmaps is not sufficient to accurately model uncertainty.

Predicted Gaussian uncertainty

overlaid on heatmap pixels

Figure:

- heatmap pixel wide.

4. Proposed Method: UGLLI Face Alignment

Figure: An overview of UGLLI Face Alignment with DU-Net [2] as the backbone. We jointly estimate the location and uncertainty associated with the landmarks.

- **1. Uncertainty estimated by Cholesky Estimator Network (CEN).**
- Output Cholesky coefficients L_{ii} , used to compute the covariance matrix.
- 2. Landmark location estimated by spatial mean of the ReLUed heatmap (H_{ii})
- Take ReLU over the heatmap to select the positive entries, then take the spatial mean.
- **3. Joint estimation of location and uncertainty using Gaussian Log Likelihood Loss**

Abhinav Kumar^{*1, 2}, Tim K. Marks^{*1}, Wenxuan Mou^{*1, 3}, Chen Feng⁴, Xiaoming Liu⁵

• Histogram of square-root of smallest eigenvalue of $\Sigma_{_{ii}}$ (semi-minor axis of Gaussian ellipse [black line at left]). • Gaussian is usually less than 1

• Key reason heatmaps not suitable for accurate uncertainty estimation.

5. Experiments and Results on 300-W and Menpo

Experiment Setup:

- Split 1: Train = 3148 images of 300-W; Test = 689 images of 300-W

Evaluation of Landmark Prediction:

	Common	Challenge	Full		NME _{box} (%) (AUC ⁷ box (%) (1)	
SAN [3]	3.34	6.60	3.98		300-W	Menpo	300-W	Menpo
DAN [4]	3.19	5.24	3.59	2D-FAN [5]	2.56	2.32	66.90	67.40
DU-Net [2] (public code)	2.97	5.53	3.47	KDN-Gaussian [1]	2.49	2.26	67.30	68.40
UGLLI (Ours)	2.87	5.08	3.23	UGLLI (Ours)	2.24	2.20	68.27	69.85

Table: NME_{interocular} on 300-W (Split 1)

Evaluation of Uncertainty Prediction:

6. Conclusion and Future Work

- but also yields state-of-the-art estimates for the facial landmark locations.
- estimation, and using estimated uncertainties to selectively improve the predictions.

References:

- [3] Dong et al, Style aggregated network for facial landmark detection, CVPR 2018

• Split 2: Train = 3837 images of 300-W; Test = 600 images of 300-W (Indoor/Outdoor) or 6679 frontal images of Menpo • Metrics: Normalized Mean Error (NME); Area Under Curve (AUC) of fraction correct vs. error threshold

Table: NME and AUC on Split 2

• Joint estimation of landmark location and uncertainty using UGLLI not only provides state-of-the-art uncertainty measures

• Future work includes application of this framework to other landmark regression problems, such as human body 2D pose

[1] Chen et al, Kernel density network for quantifying regression uncertainty in face alignment, NeurIPS Workshops 2018 [2] Tang et al, Towards Efficient U-Nets: A Coupled and Quantized Approach, ECCV 2018, TPAMI 2019 [4] Kowalski et al, A convolutional neural network for robust face alignment. In CVPR Workshops, 2017 [5] Boulat et al, How far are we from solving the 2D & 3D face alignment problem?, ICCV 2017

KDN-Gaussian (Chen et al), Correlation= 0.39 UGLLI (Ours), Correlation= 0.57 0.20 0.10 Normalized Error for each landmark