UGLLI Face Alignment: Estimating Uncertainty with Gaussian Log Likelihood Loss
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Why uncertainty? e [1] uses a non-parametric mixture density network to learn the distribution as a mixture of a large Experiment Setup:
| | number of Gaussians (a small symmetric Gaussian at each heatmap pixel). Solit 1: Train = 3148 i £200-W: Test = 689 i £200-W
- Most of the current state-of-the-art face alignment methods predict landmark e Our results show that the resolution of the heatmaps is not sufficient to accurately model uncertainty. ¢ oplit 1 lrain = HIA5ES O -V lest = HIAEES O )
locations but do not model the uncertainty associated with the prediction. e Split 2: Train = 3837 images of 300-W; Test = 600 images of 300-W (Indoor/Outdoor) or 6679 frontal images of Menpo
- Knowing how uncertain the predictions are can be critical for downstream tasks. HEEEEEREEE ER Flgu.re: e Metrics: Normalized Mean Error (NME); Area Under Curve (AUC) of fraction correct vs. error threshold
BEEEEREEEE G I e Histogram of square-root of smallest
Ground Truth EFNEEEEEN . eigenvalue of X (semi-minor axis of Evaluation of Landmark Prediction:
Sredicted Location RN E l Gaussian ellipse [black line at left]). : ﬁ 7 ﬁ
Predicted Gaussian ========= 50 l e Gaussian is usually less than 1 Common Challenge  Full NME, (%) (.2) AUC’, (%) (L)
Uncertainty . heatmap pixel wide.
5 0.5 SAN [3 3.34 6.60 3.98 - i
!!!!!!!!! 5 ..I e Key reason heatmaps not suitable for 5] 300-W Menpo 300-W Menpo
Prgs;iﬁZ?dGoar? f;‘:t‘lmf;cgﬁillgty g 1 23 A accurate uncertainty estimation. DAN [4] 3.19 5.24 3.59 2D-FAN [5] 2C6 237 66.90 67 40
DU-Net [2] 2.97 5.53 3.47 KDN-Gaussian [1]  2.49 2.26 67.30 68.40
(public code)
Figure: Difference between previous methods and our proposed method. UGLLI (Ours) 2.87 5.08 3.23 UGLLI (Ours) 2.24 2.20 68.27 69.85

Table: NME. on 300-W (Split 1) Table: NME and AUC on Split 2
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1. Training: Use proxy ground truth heatmap

e Predict heatmap and use L, loss between predicted heatmap and a proxy W ) Evaluation of Uncertamty Prediction:
ground truth heatmap: i
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Prediction  d . e Joint estimation of landmark location and uncertainty using UGLLI not only provides state-of-the-art uncertainty measures
L; j = log ‘Ezﬂ = 8 (Pj s Uij)TEz'_j (Pj . Mz’j) but also yields state-of-the-art estimates for the facial landmark locations.
. Figure: An overview of UGLLI Face Alignment with DU-Net [2] as the backbone. e Future work includes application of this framework to other landmark regression problems, such as human body 2D pose
.Srocl;‘n? '(Ij'rtljth t' P, Hij We jointly estimate the location and uncertainty associated with the landmarks. estimation, and using estimated uncertainties to selectively improve the predictions.
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1. Uncertainty estimated by Cholesky Estimator Network (CEN). References:

Figure: An example of stacked U-nets (stacked hourglass networks): DU-Net [2].

DU-Net also has dense connections among the hourglasses (not shown). e Output Cholesky coetfficients Lij, used to compute the covariance matrix.

2. Landmark location estimated by spatial mean of the ReLUed heatmap (Hl.].)
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2. Prediction: Take arg max of the heatmap as the location estimate

e Accurate only up to one pixel. No sub-pixel accuracy.

e Training not end-to-end differentiable. 3. Joint estimation of location and uncertainty using Gaussian Log Likelihood Loss




