Illuminating Pedestrians via Simultaneous Detection and Segmentation

Problem & Contributions

Problem: Pedestrian detection from a single image

Semantic segmentation can be used to boost accuracy and efficiency of pedestrian detection without demanding additional data.

The main contributions are:

- Multi-task infusion framework for supervision on pedestrian detection and semantic segmentation, meant to infuse semantic features into shared layers
- Cascaded two-stage specialized networks
- Stage-wise fusion of classification scores

Proposed Method

The method contains 2 primary stages trained separately. Each stage has an additional layer to supervise semantic segmentation using weakly annotated boxes.

- Semantic Segmentation Layer
 - Infuses semantic features of pedestrians into the shared layers (conv1-5).
 - Trained using weakly annotated boxes only.
- Stage 1: Region Proposal Network (RPN)
 - Sliding window detector across 9 anchors.
 - Labeling policy uses **lenient** IoU > 0.5 for high recall.
- Stage 2: Binary Classification Network (BCN)
 - Crops, pads, and warps RGB proposals to fixed size for a final classification.
 - Labeling policy differentiates from RPN by enforcing a stricter IoU > 0.7, thereby suppressing poorly localized boxes and achieving higher precision.

Weak Semantic Segmentation

Visualization of the similarity between pixel-wise masks (Cityscapes dataset) and weak box annotations when down-sampled in our framework. By pooling, the differences between pixel-wise annotations and box annotations are negligible.

Example ground truth masks for the BCN with and without padding. Without padding there is no discernible difference between the ground truth masks of a welllocalized proposal (a) and a poorly localized proposal (b).

Garrick Brazil, Xi Yin, Xiaoming Liu Computer Vision Lab, Michigan State University

{brazilga, yinxi1, liuxm}@msu.edu

Network Architecture

Experimental Results

Feature map visualizations of conv5 and the proposal layer for the baseline RPN (left) and the RPN infused with weak segmentation supervision (right). The weak semantic segmentation supervision helps *illuminate* pedestrians in the shared feature maps.

Method	Caltech	KITTI	Runtime
DeepParts	11.89	58.67	1s
CompACT-Deep	11.75	58.74	1s
MS-CNN	9.95	73.70	0.4s
SA-FastRCNN	9.68	65.01	0.59s
RPN+BF	9.58	61.29	0.60s
F-DNN	8.65	-	0.30s
F-DNN+SS	8.18	-	2.48s
SDS-RPN (ours)	9.63	_	0.13s
SDS-RCNN (ours)	7.36	63.05	0.21s

Comprehensive comparison with other state-ofthe-art methods showing the Caltech miss rate, KITTI mAP score, and runtime.

Comparison of SDS-RCNN with the stateof-the-art methods on the Caltech dataset using the reasonable setting.

Component Disabled	RPN	BCN	Fusion
proposal padding	10.67	13.09	7.69
cost-sensitive	9.63	14.87	7.89
strict supervision	10.67	17.41	8.71
weak segmentation	13.84	18.76	10.41
SDS-RCNN	10.67	10.98	7.36

Shared Layer	BCN MR	Fused MR	Runtime
conv5	16.24	10.87	0.15s
conv4	15.53	10.42	0.16s
conv3	14.28	8.66	0.18s
conv2	13.71	8.33	0.21s
conv1	14.02	8.28	0.25s
RGB	10.98	7.36	0.21s

+ source code