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Experimental Results

Problem Statement:

Given a face image with arbitrary pose, generate a frontal face of the same identity.

Need:

Face recognition engines favor frontal poses due to dataset biases.

Augmented reality requires photorealism from arbitrary viewpoints.

Insights and Contributions:

 Faces are constrained shapes: 3DMM priors.

 Low frequency bias in reconstruction: Adversarial framework.

 Special properties of faces: Smoothness and symmetry.

 Identity preservation: Face recognition engine.
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(1) 3D Morphable Model (3DMM)

3DMM defines face shape and texture in the PCA space.

Weak perspective projection: pitch, yaw, roll, scale, x-y-translations.

3DMM coefficients: shape and texture basis + projection matrix.

(2) Generative Adversarial Network (GAN)

GAN maps from a source distribution to a target distribution using a minimax optimization
between a generator and a discriminator.

(3) Face Frontalization

Prior work [1]: use a single 3D surface as an approximation of any face shape.

Prior work [2]: 3DMM-based pose and expression normalization.

Drawbacks: small pose, artifacts.

Module Input Output Loss

R x p weighted L2 between p and pg

G x and p xf

L1 reconstruction, smoothness, symmetric;
fool D to classify xf as real;

fool C to classify xf as the same identity

D xg or xf real / generated cross-entropy classification loss

C x or xf identity cross-entropy classification loss
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Ablation Study
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Performance (syn.) 74.2 59.2 73.4 68.5 69.3 72.9 73.1

Quantitative results of ablation study on Multi-PIE.

Input / Generated

Estimated 3DMM

Ground truth 3DMM

ACC (%) AUC (%)

Ferrari et al. - 94.29

Hassner et al. [1] 93.62± 1.17 98.36± 0.06

HPEN [2] 96.25± 0.76 99.39± 0.02

FF-GAN (syn.) 96.42± 0.89 99.45± 0.03

Face verification results on LFW, compared to
face frontalization methods. Verification Identification

FAR=.01 FAR=.001 Rank-1 Rank-5

Wang et al. 72.9 ± 3.5 51.0 ± 6.1 82.2 ± 2.3 93.1 ± 1.4

DCNN 78.7 ± 4.3 - 85.2 ± 1.8 93.7 ± 1.0

DR-GAN 77.4 ± 2.7 53.9 ± 4.3 85.5 ± 1.5 94.7 ± 1.1

FF-GAN (fuse) 85.2± 1.0 66.3± 3.3 90.2± 0.6 95.4± 0.5

Face recognition results on IJB-A. 
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Training Set:

300W-LP: 122,450 images augmented from 300W.

For each training sample:

- Face image pair: x and xg

- 3DMM coefficients: pg

3DMM Coefficients


