

# Towards Large-Pose Face Frontalization in the Wild

Xi Yin<sup>1</sup>, Xiang Yu<sup>2</sup>, Kihyuk Sohn<sup>2</sup>, Xiaoming Liu<sup>1</sup>, and Manmohan Chandraker<sup>2,3</sup>

<sup>1</sup>Department of Computer Science and Engineering, Michigan State University <sup>2</sup>Department of Media Analytics, NEC Laboratories America, Inc.

<sup>3</sup>Department of Computer Science and Engineering, University of California, San Diego

# NEC Laboratories

Relentless passion for innovation

# Highlights

#### **Problem Statement:**

Given a face image with arbitrary pose, generate a frontal face of the same identity.

# Need:

Face recognition engines favor frontal poses due to dataset biases.

Augmented reality requires photorealism from arbitrary viewpoints.

#### **Insights and Contributions:**

- ♦ Faces are constrained shapes: 3DMM priors.
- ♦ Low frequency bias in reconstruction: Adversarial framework.
- ♦ Special properties of faces: Smoothness and symmetry.
- ♦ Identity preservation: Face recognition engine.



# **Preliminaries**

# (1) 3D Morphable Model (3DMM)

3DMM defines face shape and texture in the PCA space.

Weak perspective projection: pitch, yaw, roll, scale, x-y-translations.

3DMM coefficients: shape and texture basis + projection matrix.

# (2) Generative Adversarial Network (GAN)

GAN maps from a source distribution to a target distribution using a minimax optimization between a generator and a discriminator.



# (3) Face Frontalization

Prior work [1]: use a single 3D surface as an approximation of any face shape.

Prior work [2]: 3DMM-based pose and expression normalization.

Drawbacks: small pose, artifacts.





| Х                                |                                  |                                                                                                                               |  |
|----------------------------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--|
|                                  | р                                | weighted L2 between p and p <sup>g</sup>                                                                                      |  |
| x and p                          | X <sup>f</sup>                   | L1 reconstruction, smoothness, symmetric; fool $D$ to classify $x^f$ as real; fool $C$ to classify $x^f$ as the same identity |  |
| x <sup>g</sup> or x <sup>f</sup> | real / generated                 | cross-entropy classification loss                                                                                             |  |
| x or x <sup>f</sup>              | identity                         | cross-entropy classification loss                                                                                             |  |
| _                                | x <sup>g</sup> or x <sup>f</sup> | xg or xf real / generated                                                                                                     |  |



# **Experimental Results**

# (1) 3D Face Reconstruction

Input / Generated

Estimated 3DMM



# (1) Face Recognition

Face verification results on LFW, compared to face frontalization methods.

|                    | ACC (%)             | AUC (%)             |  |  |  |  |  |
|--------------------|---------------------|---------------------|--|--|--|--|--|
| Ferrari et al.     | -                   | 94.29               |  |  |  |  |  |
| Hassner et al. [1] | $93.62 \pm 1.17$    | $98.36 \pm 0.06$    |  |  |  |  |  |
| HPEN [2]           | $96.25 \pm 0.76$    | 99.39 $\pm$ 0.02    |  |  |  |  |  |
| FF-GAN (syn.)      | <b>96.42</b> ± 0.89 | <b>99.45</b> ± 0.03 |  |  |  |  |  |

# Face recognition results on IJB-A.

|               | Verification      |                   | Identification    |                   |
|---------------|-------------------|-------------------|-------------------|-------------------|
|               | FAR=.01           | FAR=.001          | Rank-1            | Rank-5            |
| Wang et al.   | 72.9 $\pm$ 3.5    | 51.0 ± 6.1        | 82.2 ± 2.3        | 93.1 ± 1.4        |
| DCNN          | $78.7 \pm 4.3$    | -                 | $85.2 \pm 1.8$    | $93.7 \pm 1.0$    |
| DR-GAN        | 77.4 $\pm$ 2.7    | 53.9 ± 4.3        | $85.5 \pm 1.5$    | 94.7 $\pm$ 1.1    |
| FF-GAN (fuse) | <b>85.2</b> ± 1.0 | <b>66.3</b> ± 3.3 | <b>90.2</b> ± 0.6 | <b>95.4</b> ± 0.5 |

# (1) Face Frontalization

**Multi-PIE:** 





## **AFLW2000:**





## **References:**

[1] T. Hassner, S. Harel, E. Paz, and R. Enbar. "Effective face frontalization in unconstrained images". In CVPR, 2015.

[2] X. Zhu, Z. Lei, J. Yan, D. Yi, and S. Li. "High-Fidelity Pose and Expression Normalization for Face Recognition in the Wild". In CVPR, 2015.