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Abstract

Dense geometric matching determines the dense pixel-
wise correspondence between a source and support image
corresponding to the same 3D structure. Prior works em-
ploy an encoder of transformer blocks to correlate the two-
frame features. However, existing monocular pretraining
tasks, e.g., image classification, and masked image model-
ing (MIM), can not pretrain the cross-frame module, yield-
ing less optimal performance. To resolve this, we reformu-
late the MIM from reconstructing a single masked image to
reconstructing a pair of masked images, enabling the pre-
training of transformer module. Additionally, we incorpo-
rate a decoder into pretraining for improved upsampling
results. Further, to be robust to the textureless area, we pro-
pose a novel cross-frame global matching module (CFGM).
Since the most textureless area is planar surfaces, we pro-
pose a homography loss to further regularize its learning.
Combined together, we achieve the State-of-The-Art (SoTA)
performance on geometric matching. Codes and models are
available at https://github.com/ShngJZ/PMatch.

1. Introduction

When a 3D structure is viewed in both a source and a
support image, for a pixel (or keypoint) in the source image,
the task of geometric matching identifies its corresponding
pixel in the support image. This task is a cornerstone for
many downstream vision applications, e.g. homography es-
timation [ 8], structure-from-motion [45], visual odometry
estimation [21] and visual camera localization [7].

There exist both sparse and dense methods for geomet-
ric matching. The sparse methods [16, 19, 32, 33, 40, 42,

, 48, 56] only yield correspondence on sparse or semi-
dense locations while the dense methods [20, 54, 55] es-
timate pixel-wise correspondence. They primarily differ
in that the sparse methods embed a keypoint detection or
a global matching on discrete coordinates, which underly-
ingly assumes a unique mapping between source and sup-
port frames. Yet, the existence of textureless surfaces in-

Pretraining: Paired MIM

Figure 1. Most vision tasks start with a pretrained network. In geo-
metric matching, the unique network components processing two-
view features cannot benefit from the monocular pretraining task,
e.g., image classification, and masked image modeling (MIM). As
in the figure, this work enables the pretraining of a matching model
via reformulating MIM from reconstructing a single masked im-
age to reconstructing a pair of masked images.

troduces multiple similar local patches, disabling keypoint
detection or causing ambiguous matching results. Dense
methods, though facing similar challenges at the coarse
level, alleviate it with the additional fine-level local context
and smoothness constraint. Until recently, the dense meth-
ods demonstrate a comparable or better geometric matching
performance over the sparse methods [20, 54, 55].

A relevant task to dense geometric matching is the opti-
cal flow estimation [50]. Both tasks estimate dense corre-
spondences, whereas the optical flow is applied over con-
secutive frames with the constant brightness assumption.

In geometric matching [9, 48], apart from the encoder
encodes source and support frames into feature maps, there
exist transformer blocks which correlate two-frame fea-
tures, e.g., the LOFTR module [48]. Since these network
components consume two-frame inputs, the monocular pre-
training task, e.g., the image classification and masked im-
age modeling (MIM) defined on ImageNet dataset, is un-
able to benefit the network. This limits both the geometric
matching performance and its generalization capability.

To address this, we reformulate the MIM from single
masked image reconstruction to paired masked images re-
construction, i.e., pMIM. Paired MIM benefits the geomet-
ric matching as both tasks rely on the cross-frame module
to correlate two frames inputs for prediction.


https://github.com/ShngJZ/PMatch

With a pretrained encoder, the decoder in dense geometresentation. Inspired by BYOL [22], DINO [8] introduces
ric matching is still randomly initialized. Following the idea a self-supervised mean-teacher knowledge distillation task.
of pretraining encoder, we extend pMIM pretraining to the It encourages the prediction consistency between a stu-
decoder. As part functionality of decoder is to upsample dent and teacher model where the teacher is an exponen-
the coarse-scale initial prediction to the same resolution astial moving average of the student model. The pretrained
input, we also task the decoder in pMIM to upsample the VIT model embeds explicit information of semantic seg-
coarse-scale reconstruction to its original resolution. Corre-mentation, which is not observed in a supervised coun-
spondingly, we consist the decoder as stacks of the depthierpart. Other self-supervised pretraining methods include
wise convolution except for the last prediction head. With color transformation [11], geometric transformation [11],
the depth-wise decoder, when transferring from pMIM to Jigsaw Puzzle [35], feature frame prediction [tk
geometric matching, we duplicate the decoder along the Among the self-supervised learning tasks, masked im-
channel dimension to nish the initialization. To this end, age modeling (MIM) [3, 23, 58, 62, 64, 68] achieves SoTA
there exists only a small number of components in the de- netuning performance on ImageNet [14]. The task intro-
coder randomly initialized, we pretrain the rest network duces Masked Language Modeling used in NLP domain
components using synthetic image pair augmentation [54]. to vision, reconstructing an image from its masked input.

To further improve the dense geometric matching perfor- While iGPT [10], ViT [17], and BEIT [3] adopt sophisti-
mance, we propose a cross-frame global matching modulecated paradigm in modeling, MAE [23] and SimMIM [63]
(CFGM). In CFGM, we rst compute the correlation vol- show that directly regressing the masked continuous RGB
ume. We model the correspondences of coarse scale pixelpixels can achieve competitive results. Typically, they focus
as a summation over the discrete coordinates in the supporon pretraining the encoder, adopting an asymmetric design
frame, weighted by the softmaxed correlation vector. How- where only a shallow decoder head is appended.
ever, this modeling fails when multiple similar local patches  In this paper, we reformulate MIM from reconstructing
exit. As a solution, we impose positional embeddings to a single image to the paired images, reducing the domain
the discrete coordinates and decode with a deep architecgap between the pretexting task and the downstream geo-
ture to avoid ambiguity. Meanwhile, we notice that the tex- metric matching. As a result, we extend the bene t of MIM
tureless surfaces are mostly planar structures described bpretraining to the task of dense geometric matching.

a low-dimensionaB degree-of-freedom (DoF) homography ) )
matrix. We thus design a homography loss to augment the2-2- Sparse Geometric Matching

learning of the low DoF planar prior. There are detector-based and detector-free sparse geo-
We summarize our contributions as follows: metric matching methods. Classic works are detector based,
We introduce the paired masked image modeling pretextand employ the nearest neighbor (NN) match using the
task, pretraining both the encoder and decoder of a denséand-crafted feature on detected keypoiatg, SIFT [33],

geometric matching network. SURF [5], and ORB [43]. Both keypoint detection and

We propose a novel cross-frame global matching modulefeature extraction are improved by data-driven deep mod-
that is robust to textureless local patches. Since the moskls [16, 16, 19, 38, 40, 66]. Later, [42, 44, 56] propose to
textureless patches are planar structures, we augment theeplace the naive NN match by graph neural network based
learning with a homography loss. differentiable matching.

We outperform dense and sparse geometric matching While the detector based methods operate on keypoints,
methods on diverse datasets. the detector free methods,g. LOFTR [48] and ASpan-

Former [9] operate all-to-all matching on coarse-scale dis-

2. Related works crete grid locations. Still, their matching depends on the

- . . correlation between features, yielding ambiguous results
2.1. Pretraining and Finetuning when multiple local patches exist. We improve LOFTR from

Pretraining and netuning is an effective paradigm in vi- WO perspectives. First, we extend the LoFTR module to
sion tasks. Supervised image classi cation has been onethe proposed cross-frame global matching module to bene-
of the most widely adopted pretraining methods. An en- t from the MIM pretexting task. Second, we alleviate the
coder [24, 25, 47]e.g, ResNet [24], together with a few a@mbiguity caused by similar local patches by imposing po-
fully connected (FC) layers is trained for image classi ca- sitional embeddings over the low-dimensional 2D coordi-
tion using a large-scale datasetg, ImageNet [14]. After nates. A decoder is then employed to resolve the ambiguity.
converging, the encoder is used as the initialization in the
downstream vision tasks.

Apart from supervised classi cation tasks, there are self- DGC-Net [34] regresses dense correspondences from a
supervised methods producing discriminative feature rep-global correlation volume at a limited resolution. GLU-

2.3. Dense Geometric Matching



Figure 2.Methodology Overview. In (a), we illustrate the proposed dense geometric matching network. After extracting the multi-scale
feature with the encodé& , we extend the LOFTR module with (1) Transformer blotksand (2) positional embeddings with an appended
decodelD to remove the ambiguity when multiple local patches exist. In (b), we show the proposed paired MIM pretext task. We apply
image masking at the scade= 2, and recover the masked images with the transformer blocks. In (a), ndbwa(ik red) is not included

in pMIM pretraining. In dense matchin@® takes in the stack of source and the aligned support frame feature. In the preteR%ask,
only takes in the source frame feature. ThR§,is a sub-graph oR . We detail how to initializeR usingR® in Fig. 3. The residual

re nement at other scales repeats the process at scale but consumes feature embeddings of other scales, skipped for simplicity.

Net [53] increases the resolution with a global-local cor- 3.1. Dense Geometric Matching
relation layer. GOCor [52] further improves GLU-Net [53]
by replacing the correlation layer with online optimization.
Other methods, such as RANSAC Flow [46], iteratively re-
cover a homography transformation to reduce the visual dif-
ference between the source and support images.

Dense geometric matching computes the dense corre-
spondences between the source imbgand support im-
agel ,. Under the estimated correspondentesource im-
agel ; can be recovered from support imdgeby applying
bilinear sampling all. Since the dense correspondences

Though dense methods estimate more correspondencegetweenl ; andl, is not guaranteed to exist at each pixel
than sparse methods, it is less favored for geometric matchipcation, we follow [20] in estimating con dence to in-
ing. Until recently, PDC Net+ [54] and DKM [20] close  djcate the delity of the prediction.
the gap between dense and sparse methods. Both methogs, 4t re Extraction. As shown in Fig. 2, we adopt a multi-
model the dense match as probability functions. PDC Net+ ;1o ResNet-based [24] feature extragor Taking the

adopts a mixture Laplacian distribution while DKM models ¢, ce frame ; as an example, we produce the multiscale
with the Gaussian Process (GP). Furthermore, they eStimatGFeature embeddings as: ’

a con dence score to remove false positive results. We fol-

low [20, 54] in the con dence estimation. However, instead ! i=2 o §=4 ! §=8 g=E (l1): (1)

of applying probabilistic regression, we keep the correlation

based explicit matching process. This saves the computafor the input imagé; of resolutionH W, the scales

tion of the inverse matrix required in the GP Regression of indicates a feature map of resolutibirs ~ W-=s.

DKM. Also, we apply a unique architecture design to ben- Cross-Frame Global Matching The cross-frame global

e t from the MIM pretexting task. matching module (CFGM) is designed to accomplish
coarse-scale geometric matching. To bene t from the MIM
pretext task, we rst process the scale= 8 feature map

3. Method ' $78 with the transformer block [27]:

In this section, we rst introduce the proposed dense ge- frs8 0 578 Og =T (5%, 578): 2)
ometric matching method. Then we discuss how to pretext
the network via the paired masked image modeling. Fig. 2 In the pretraining stage, the masked feature map is recov-
depicts our framework in netuning and pretexting stages. ered by the appended transformer blocks. Then, we follow



LoFTR [48] in using linear transformer blocks to correlate
the source and support frame feature:

+—S=8 . +S= —_ ] = O.l = .
e sPg= L (500 ) ®)
To compute the global matching results, we rst com-

pute the 4D correlation volumeC FTS;FEZB 2
RH=8 W=8 H=8 W=8 \here:

Figure 3. Resolution of the Discrepancy betweeR and R°.
We adopt stacks of the depth-wise convolution in the re nement
module,i.e., each convolution kernel only works with one channel

X 1 5 - of the input feature maps. This makes re ef in pretexting a
Cix = -1 iih 5 an (4) sub-graph of re neR in netuning. While transferring from the
h pretexting task to netuning task, the input feature map concate-

nates an extra aligned support frame featuge3; T®). As the
bilinear sampling imposes minimal distribution change, we du-
plicate the kernel weight along the channel dimension.

where is a temperature scalar. The coarse matches
are computed as a summation over pixel locatighs2
R(H=8)(W=8) 2 \yejghted by the softmaxed correlation vol-

ume. Thatis, after the correlation volur@ebeing reshaped  jmage classi cation network can be further improved after
to C 2 R(M=8)(W=8) (H=8)(W=8) \ve apply the softmax: MIM pretexting. As shown in Fig. 1 and 4, the network
reconstructs the input from randomly masked feature em-
beddings at a speci c scale. In this work, we investigate
the bene t of pretraining both the encoder and decoder un-
der MIM. Compared to only pretraining the encoder, pre-
training the whole network further reduces the domain gap
T8 =€ X: (6) between pretexting and netuning tasks.

Masking Strategy We follow SimMIM [63] in using ran-
Note, Eqn. 6 will cause ambiguous results when multiple domly selected32 32 mask patches with a prede ned
similar textureless local patches exigg., multiple peak  masking ratiar; andr, for source and support frames. For
values in softmaxed correlation veclrfiajr . Toresolve this,  source view, given the feature embeddings? output by
we modify Eqn. 6 with: the extractoE at scales = 2, we apply the randomly gen-

erated maskv to mask out the feature embeddings,

¢; = softmaxC; ): (5)

Here, elemenC; is a size(H=8)(W=8) 1 vector. We
conclude the coarse global matching results as:

TS:8;PS:8 = D @ M(X) , (7) 1 3220 '

s=2
1 -1

Q1 w)+x w; 9)
whereM (X)) is cosine positional embeddings with learn-
able tokens [20, 48], projecting the 2D pixel locations to a
high dimensional space to avoid ambiguity when multiple
similar patches exist. The decoder decodesT $=8 | ini-

tial correspondences estimation at scake 8, andPS=8
initial con dence estimation.

Multi-Scale Re nement We follow [20] in using the
multi-scale re nement module:

wherex is the learnable mask tokens. Note, our extractor
E starts from & 3 convolution kernel to avoid leakage
of the masked patches.
Prediction Heads Different from SimMIM [63], our pre-
diction heads include most network components of the de-
coder. We complete the masked feature embeddings with
the transformer as:
1 s=8 0 _ 1 s=81.
TS, PS=R (5f(5TY); (8) =T (10)
Here, we use the same notation as Egince both indicate
where functionf () indicates the bilinear interpolation to image features at the scale= 8. Note that the subsequent
align the support frame feature using the current estimatedneyork component LoFTR is a series of linear transformer
correspondenceg®, shown in Fig. 2. To accommodate the pjocks [27] which reduce the quadratic computational com-
transfer between pretexting and netuning stage, we apply plexity to linear. However, empirically we nd the linear
depth-wise convolution [20] iR . We detail the discussion  yransformer poorly recovers the masked patches. We thus
in Fig. 3 and Sec.3.2. The correspondences and con denceappend the transformer blocks.
on the next scale are initialized with the bilinear upsam-  Ag shownin Fig. 2, after Eqn. 10, we feed the completed
pling. feature map to CFGM. Note the re ner between the two
3.2. Paired MIM Pretraining stages is_different._ Instead of takin_g a st_acked feature map
(Eqgn. 8), in pretexting we only take in a single feature map:
Paired Masked Image Modeling (MIM) MIM is exten-
sively adopted in image classi cation task [23, 63]. An 15 = RO $); $= R 3): (11)



To account for the difference between Eqgn. 8 and Eqn. 11,Global Matching Loss Following [48], we minimize a bi-
we apply depth-wise convolution, where each convolution nary cross-entropy loss over the correlation volutnafter
kernel operates on one channel of the feature map, showra dual-softmax operation:

in Fig. 3. Since (' 3;T%) in Eqn. 8 is a resampled support 0

frame feature, it imposes minimal distribution difference to ftijk. = softmaxC; ) softmaxXCy ); (15)

' 5. Then, while transferring from the pretexting task to the

downstream task, we only need to duplicate the channel ofVhereCj andCy are(H=8)(W=8) 1 vectors. The loss
R to complete the initialization. We follow SimMIM [63] IS dened as:

in estimating full resolution residual RGB images in each L. = 1 X log & 0

scale of the decoder. We visualize the reconstructed paired ’ iM *j i M !

masked images in Fig. 4. 1 o (16)
Network Components not included in pMIM  Since the M i o log 1 Gy

feature map as = 2 contains little information about
masked patches, the pretraining only includes re nementwhereM * andM  are groundtruth indicator matrix of
modules at scale = 4 ands = 8. Furthermore, the CFGM  sizeH W H W indicating whether a source frame
decodeD andpartoR are notincluded. We pretrainthe pixel (i;j ) pairs with a target frame pix¢k;1).

rest network component with synthetic image pairs [54].  Re nement Loss Following [20], we supervise both corre-

Prediction Objective Set the accumulated reconstruction spondences and con dence on each scale of the predictions,
at each scals asl %, we regress the raw pixel value with an . X

|, loss: LS= — TSOT (17)
IPT. 2
X 1. i TR, 12 2P
Ly = —(jl + ; . . - .
M . N U T+ 13 T2l (12) whereP;” isaH W matrix that indicates whether a valid
pair is found at pixel locatioij in the source frame. Simi-
whereN is the number of unmasked pixels. larly, the loss of con dence is de ned as:
. . 1 X 1 X
3.3. Dense Geometric Matching Loss LS = log(P; ) _ log(1 P;):

Py, P .
Homography Loss The image correspondences between 2P i 2P (18)

two planar structures are constrained I8/ &8 homography | h I . iahted . f
matrix H with 8 DoF. Compared to correspondences esti- Tota dLIOSS T .e total loss Is a weighted summation of pro-
mation over arbitrary shapes, the correspondences in planapOse 0sses.

structures possess a lower rank. Given a surface narmal 1 X . . 1 X ..
computed using the depth gradient [36], the homography of L= 7 (Lr+ Welo)+ wg Lo+ Zwh Lyt (19)
the pixel can be computed as: s s

2hl 3 The constantt comes from the four scales= f1;2;4;8g

t> set in our paper.
H:4h;5:K1 R+ - K, (13) pap
h3 4. Experiments

where theK; and K, are intrinsic matrices of; and We rst compare with other SOTA dense matching meth-

I,, R andt are camera rotation and translation, ahi ods on the MegaDepth dataset. Then, to comprehensively
the pixel depth. We randomly sample anchor points  re ect the contributions from both the density and accu-
fpmjl m Kag. Foreachanchor poimt,, we sample  racy of geometric matching, we follow [20, 48] in us-

K candidate pointéqy j1 n Kg. We determine  ing the two-view relative camera pose estimation perfor-
a co-planar indicator matri®@* of sizeK K tosuggest mance as the metric. We report on both the outdoor
all co-planar pairs. We use the normal consistency, point-to-scenario MegaDepth [30] dataset and the indoor scenario
plane distance, and homography consistency to compute thé&canNet [12] dataset. We additionally evaluate on the
co-planar groundtruth, detailed in Supp. Finally, we apply a HPatches [1] and the YFCC100m [51] datasets to demon-
gradient-based penalty, penalizing the correspondences difstrate the generalizability of the model.

ference between the estimation and the groundtruth.

1 X
o

4.1. Implementation Details

S

Ty Tg T, TZ j1n (14) Pretext stage From DeMoN [57], BlendedMVS [65], Hy-

0}.q=1 perSim [41], ARKitScenes [4], and TartanAir [60] datasets,

Ls =



Figure 4.Visual Quality of the paired MIM pretext task. Visualized cases are from the MegaDepth and the ScanNet dataset.

we collect a pretraining dataset bf281; 167 image pairs, Methods Venue @1'?:”52%"’?;"“ E@?;x tmf:?rhs)
i.e, the same size as ImageNet [ ] Each pair is collected RANSAC-FLow [46] ECCV20 5347 8345 8a81 3596
with a xed frame index interval. In the pretraining dataset, PDC-Net [67] CVPR21 7181 8936 9118 1017
. . . _ PDC-Net+ [54] Arxiv'21 7451 90.69 92.10 1,017
we '_[raln the model using a batch5|ze]1ﬁ8_un_der the res OFE 7] A2l 3698 7614 B34 75
olution 192 256, We use the Adam optimizer [28] with GLU-Net-GOCor [52] NeurlPS'20 57.77 7861 8224 71
a learning rate2e 4, running for250k steps or2  A100 PDC-Net [57] CVPR21 6895 8407 8572 88
L PDC-Net+ [54] Arxivi21l 7241 8870 8812 88
GPUs. We stack transformer layer. We initialize the PMatch (Ours) CVPR23 7983 9518 9652 124

masking ratior; = 75% andr, = 75%. The masking op-
eration applies to the ResNet, causing signi cantly differ- Table 1. MegaDepth Dense Geometric Matching.The running
ent batch statistics between masked and unmasked inputgime of all methods is measured at the resolud80 480. The
Since the downstream task takes the unmasked image, w&pper and lower groups are methods running multiple or single
linearly reduce the support frame masking ratido O and ~ fimes. [Key:Best Second Best

use a different batch normalization layer for support view,
resolving the batch statistics difference. We also apply the

Category Methods Venue Pose Estimation AUC
@5 @10 @20

synthetic image pair augmentation introduced in [54]. Sparse SuperGlue [44]  CVPR'19 422 612 759
: : ; : : W/ Detector SGMNet [29] Pattern'20 405 590 726
Finetuning stage Our model trains ywth a bgtch3|ze ﬂiﬁ DRC-Net[17]  ICASSP22 270 429 583
at the resolutio®44 720. The learning rate is set e *, LoFTR [48] CVPR21 528 692 812
running 25k steps with a warmup 025k steps. O™ /Sparse QUﬁdTree [[ ]] ICLR'22 546 705 822
. . P Wo/ Detector MatchFormer ACCV'22 533 697 818

A100 GPUs, we train f(_)S days W!th the Adam op_t|m|zer. ASpanFormer[o] ECCV'22 553 715 83l
We follow [48] in sampling the paired images, weighted by PDC-Net+ [54]  Aniv19 431 619 761
the sequence length and overlap ratio. The softmax temper-  Dense DKM [20] CVPR23 605 749 851

PMatch (Ours) CVPR'23 614 757 85.7

ature is 0:1. We set loss weighty to 0.7 andwy, to 0:02.

We samples00  600points for homography losisy. Table 2. MegaDepth Two-View Camera Pose EstimationWe

compare three groups of methods following SuperGlue [44] in
evaluation. The pose AUC error is reported. Our method shows
substantial improvement. [Keyest, Second Begt

4.2. Datasets

MegaDepth MegaDepth [30] collects ovaiOthousand im-
ages of worldwide landmarks from the Internet. The col-
lected images are processed by COLMAP [45] to produce ., itions with groundtruth homography transformation.
groundtruth poses and depthmaps. The dataset collects im-
ages of signi cant visual contrast due to lighting conditions, 4.3. Dense Geometric Matching
view angles, and imaging devices. This imposes challenges
to geometric matching.

ScanNet [12] is a large-scale indoor dataset with613
videos captured by RGB-D cameras. There are challengin
textureless indoor scenes for geometric matching.

We follow the RANSAC-Flow [46] in training and test-
ing split on the MegaDepth dataset. The PCK scores in
Tab. 1 refer to the thresholded keypoints accuracy. We

Yivide the baseline methods into single and multiple run
methods. Note, the baseline methods PDC Net [55] and

YFCC100m [51] is a large multi-media dataset. A subset ppc Net+ [54] consume the additional synthetic data gen-

of 72reconstructions of tourist landmarks is generated with erated using COCO [31] instance segmentation label. For

groundtruth poses and depthmap. PCK @1px, we outperform the SoTA single and multiple
Hpatches [2] provides the pair of one source and ve sup- run methods by an absolute margirdd89%and6:99%re-

port images taken under different view angles and lighting spectively. Meanwhile, we are abdit faster than SoTA



Figure 5. Visual Quality of the Reconstruction. We visualize4 reconstructed images using estimated dense correspondences. In each
group, from left to right is the source image, support image, and the reconstructed image. The areas of low con dence are lled with white
color. In ScanNet where the con dence groundtruth is not available, we use forward-backward ow consistency mask as a replacement.

baselines while suppassing SoTA performance. Category Methods Venue @5'3059 @')Efgma‘g‘zéuc
i i i Sparse SuperGlue [44] CVPR'19 162 338 518
4.4, Two-View Camera Pose Estimation W/ Detector ~ SGMNet [29] PR20 154 321 483
DRC-Net[32]  ICASSP22 7.7 179 305
Evaluation Protocol In the MegaDepth, ScanNet, and S l(-goFE[ ][ , C\TE&Z;Z ;21:8 212573 gzg

. parse uadTree ! : : :

Hpatchgs datase_ts, we follow the evaluation protocol of [20, ./ Detector MatchFormer [59] ACCV'22 243 439 614
, 48] in reporting the pose accuracy AUC curve thresh- ASpanFormer [9] ECCV'22 256 460 633
olded at5, 10, and20 degrees. In the YFCC100m dataset, PDC-Net+[54]  Arxivi9 202 394 571
Dense DKM [20] CVPR23 294 507 683

we follow the protocol of RANSAC-Flow [46], addition-
ally reporting the pose mAP value. The pose estimation is
considered an outlier if its maximum degree error of trans- Table 3. ScanNet Two-View Camera Pose EstimationWe fol-
lation or rotation exceeds the threshold. The two-view rel- low SuperGlue [44] in the testing protocol. The pose AUC error
ative pose is estimated using the ve-point algorithm [37] is reported. Our method achieves clear improvement over other
with RANSAC [15] via the OpenCV implementation [6].  baselines. [KeyBest Second Best

Baseline Methods We compare with three groups of the

P : Methods Venue Pose Estimation AUC Pose Estimation mAP
methodsj.e., sparse methods with detector [29, 44], sparse @ @0 @0 @ @0 @20

PMatch (Ours) CVPR23 29.4 50.1 67.4

methods without detector [9, 32, 48, 49, 59] and dense RANSAC-FIcEw[] ] ECCV20 - - - 649 733 BIL6
PDC-Net CVPR21 357 558 723 639 730 812
methods [13, 20, 46, 54, ) ]. For sparse det.eCtor based ppcnetr[si]  Aivel 375 581 745 674 766 846
methods, we use SuperPoint [16] as the keypoint detector.  OANet[13] ICCVig - - - 22 - -
. . . CoAM [61] CVPR21 - - - 556 668 -
For dense methods, we further categorize them into single-  ppcinetss;  cvPrR21 322 526 701 605 709 803
run and multiple-run methods. For multiple-run methods,  PDC-Net+[54] — Anxiv2l 348 554 726 639 738 827
. - . ASpanFormer [9] ECCV'22 445 63.8 78.4 - - -
e.g, RANSAC-Flow [46], it repeats the prediction while PMatch (Ours)  CVPR23 457 652 798 759 831 893

reducing the visual difference with an estimated homogra-
phy transformation. Among baselines, AspanFormer [9] is Table 4. YFCC100m Two-View Camera Pose EstimationThe
a recent publicly available sparse detector-free method, im-UPper group runs multiple times, while the lower group runs a sin-
proving LofTR with a sophisticated attention mechanism. 9!€ time. We follow [6/] in the evaluation and preprocessing, re-
Outdoor Dataset We test our method on the outdoor porting both pose AUC and mAP errors. [Kejes|, Second Be

dataset MegaDepth. We follow the training and validation

split of [20, 44, 48]. The evaluation split contaiasso0 DKM [20] and outperform SoTA sparse method tij%.
paired images randomly selected from the sdgd&5and Generalization to YFCC100m We use the MegaDepth
0022 As shown in Tab. 2, we achieve an absolute im- trained model to test on YFCC100m [51] dataset. We fol-
provement of0:9% over the recent SoTA dense method low the preprocessing steps of [67], evaluateddastenes
DKM [20]. Compared to the SoTA sparse method ASpan- with a total ofl; 000images. During the evaluation, we re-
Former [9], we maintain an improvement@fL%. sample the input images of the shorter sidé80 Tab. 4
Indoor Dataset We test our method on the indoor dataset Shows that our method can achieve a superior generalization
ScanNet. We follow [20] in training and testing protocol, aPility, maintaining an improvement df.2% over SoTA
resizing images t480 640, The validation split of Scan- ~ SParse methods [9].

Net consists ofl; 500image pairs [44]. In Tab. 3, we main- Generalization to HPatches Following LOFTR [48], we

tain competitive performance with the SoTA dense method test the MegaDepth dataset trained model on HPatches.
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