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Abstract

Dense geometric matching determines the dense pixel-
wise correspondence between a source and support image
corresponding to the same 3D structure. Prior works em-
ploy an encoder of transformer blocks to correlate the two-
frame features. However, existing monocular pretraining
tasks, e.g., image classification, and masked image model-
ing (MIM), can not pretrain the cross-frame module, yield-
ing less optimal performance. To resolve this, we reformu-
late the MIM from reconstructing a single masked image to
reconstructing a pair of masked images, enabling the pre-
training of transformer module. Additionally, we incorpo-
rate a decoder into pretraining for improved upsampling
results. Further, to be robust to the textureless area, we pro-
pose a novel cross-frame global matching module (CFGM).
Since the most textureless area is planar surfaces, we pro-
pose a homography loss to further regularize its learning.
Combined together, we achieve the State-of-The-Art (SoTA)
performance on geometric matching. Codes and models are
available at https://github.com/ShngJZ/PMatch.

1. Introduction
When a 3D structure is viewed in both a source and a

support image, for a pixel (or keypoint) in the source image,
the task of geometric matching identifies its corresponding
pixel in the support image. This task is a cornerstone for
many downstream vision applications, e.g. homography es-
timation [18], structure-from-motion [45], visual odometry
estimation [21] and visual camera localization [7].

There exist both sparse and dense methods for geomet-
ric matching. The sparse methods [16, 19, 32, 33, 40, 42,
48, 48, 56] only yield correspondence on sparse or semi-
dense locations while the dense methods [20, 54, 55] es-
timate pixel-wise correspondence. They primarily differ
in that the sparse methods embed a keypoint detection or
a global matching on discrete coordinates, which underly-
ingly assumes a unique mapping between source and sup-
port frames. Yet, the existence of textureless surfaces in-

Figure 1. Most vision tasks start with a pretrained network. In geo-
metric matching, the unique network components processing two-
view features cannot benefit from the monocular pretraining task,
e.g., image classification, and masked image modeling (MIM). As
in the figure, this work enables the pretraining of a matching model
via reformulating MIM from reconstructing a single masked im-
age to reconstructing a pair of masked images.

troduces multiple similar local patches, disabling keypoint
detection or causing ambiguous matching results. Dense
methods, though facing similar challenges at the coarse
level, alleviate it with the additional fine-level local context
and smoothness constraint. Until recently, the dense meth-
ods demonstrate a comparable or better geometric matching
performance over the sparse methods [20, 54, 55].

A relevant task to dense geometric matching is the opti-
cal flow estimation [50]. Both tasks estimate dense corre-
spondences, whereas the optical flow is applied over con-
secutive frames with the constant brightness assumption.

In geometric matching [9, 48], apart from the encoder
encodes source and support frames into feature maps, there
exist transformer blocks which correlate two-frame fea-
tures, e.g., the LoFTR module [48]. Since these network
components consume two-frame inputs, the monocular pre-
training task, e.g., the image classification and masked im-
age modeling (MIM) defined on ImageNet dataset, is un-
able to benefit the network. This limits both the geometric
matching performance and its generalization capability.

To address this, we reformulate the MIM from single
masked image reconstruction to paired masked images re-
construction, i.e., pMIM. Paired MIM benefits the geomet-
ric matching as both tasks rely on the cross-frame module
to correlate two frames inputs for prediction.
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With a pretrained encoder, the decoder in dense geomet-
ric matching is still randomly initialized. Following the idea
of pretraining encoder, we extend pMIM pretraining to the
decoder. As part functionality of decoder is to upsample
the coarse-scale initial prediction to the same resolution as
input, we also task the decoder in pMIM to upsample the
coarse-scale reconstruction to its original resolution. Corre-
spondingly, we consist the decoder as stacks of the depth-
wise convolution except for the last prediction head. With
the depth-wise decoder, when transferring from pMIM to
geometric matching, we duplicate the decoder along the
channel dimension to �nish the initialization. To this end,
there exists only a small number of components in the de-
coder randomly initialized, we pretrain the rest network
components using synthetic image pair augmentation [54].

To further improve the dense geometric matching perfor-
mance, we propose a cross-frame global matching module
(CFGM). In CFGM, we �rst compute the correlation vol-
ume. We model the correspondences of coarse scale pixels
as a summation over the discrete coordinates in the support
frame, weighted by the softmaxed correlation vector. How-
ever, this modeling fails when multiple similar local patches
exit. As a solution, we impose positional embeddings to
the discrete coordinates and decode with a deep architec-
ture to avoid ambiguity. Meanwhile, we notice that the tex-
tureless surfaces are mostly planar structures described by
a low-dimensional8 degree-of-freedom (DoF) homography
matrix. We thus design a homography loss to augment the
learning of the low DoF planar prior.

We summarize our contributions as follows:
� We introduce the paired masked image modeling pretext
task, pretraining both the encoder and decoder of a dense
geometric matching network.
� We propose a novel cross-frame global matching module
that is robust to textureless local patches. Since the most
textureless patches are planar structures, we augment their
learning with a homography loss.
� We outperform dense and sparse geometric matching
methods on diverse datasets.

2. Related works

2.1. Pretraining and Finetuning

Pretraining and �netuning is an effective paradigm in vi-
sion tasks. Supervised image classi�cation has been one
of the most widely adopted pretraining methods. An en-
coder [24, 25, 47],e.g., ResNet [24], together with a few
fully connected (FC) layers is trained for image classi�ca-
tion using a large-scale dataset,e.g., ImageNet [14]. After
converging, the encoder is used as the initialization in the
downstream vision tasks.

Apart from supervised classi�cation tasks, there are self-
supervised methods producing discriminative feature rep-

resentation. Inspired by BYOL [22], DINO [8] introduces
a self-supervised mean-teacher knowledge distillation task.
It encourages the prediction consistency between a stu-
dent and teacher model where the teacher is an exponen-
tial moving average of the student model. The pretrained
ViT model embeds explicit information of semantic seg-
mentation, which is not observed in a supervised coun-
terpart. Other self-supervised pretraining methods include
color transformation [11], geometric transformation [11],
Jigsaw Puzzle [35], feature frame prediction [39],etc.

Among the self-supervised learning tasks, masked im-
age modeling (MIM) [3, 23, 58, 62, 64, 68] achieves SoTA
�netuning performance on ImageNet [14]. The task intro-
duces Masked Language Modeling used in NLP domain
to vision, reconstructing an image from its masked input.
While iGPT [10], ViT [17], and BEiT [3] adopt sophisti-
cated paradigm in modeling, MAE [23] and SimMIM [63]
show that directly regressing the masked continuous RGB
pixels can achieve competitive results. Typically, they focus
on pretraining the encoder, adopting an asymmetric design
where only a shallow decoder head is appended.

In this paper, we reformulate MIM from reconstructing
a single image to the paired images, reducing the domain
gap between the pretexting task and the downstream geo-
metric matching. As a result, we extend the bene�t of MIM
pretraining to the task of dense geometric matching.

2.2. Sparse Geometric Matching

There are detector-based and detector-free sparse geo-
metric matching methods. Classic works are detector based,
and employ the nearest neighbor (NN) match using the
hand-crafted feature on detected keypoints,e.g., SIFT [33],
SURF [5], and ORB [43]. Both keypoint detection and
feature extraction are improved by data-driven deep mod-
els [16, 16, 19, 38, 40, 66]. Later, [42, 44, 56] propose to
replace the naive NN match by graph neural network based
differentiable matching.

While the detector based methods operate on keypoints,
the detector free methods,e.g. LoFTR [48] and ASpan-
Former [9] operate all-to-all matching on coarse-scale dis-
crete grid locations. Still, their matching depends on the
correlation between features, yielding ambiguous results
when multiple local patches exist. We improve LoFTR from
two perspectives. First, we extend the LoFTR module to
the proposed cross-frame global matching module to bene-
�t from the MIM pretexting task. Second, we alleviate the
ambiguity caused by similar local patches by imposing po-
sitional embeddings over the low-dimensional 2D coordi-
nates. A decoder is then employed to resolve the ambiguity.

2.3. Dense Geometric Matching

DGC-Net [34] regresses dense correspondences from a
global correlation volume at a limited resolution. GLU-
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Figure 2.Methodology Overview. In (a), we illustrate the proposed dense geometric matching network. After extracting the multi-scale
feature with the encoderE � , we extend the LoFTR module with (1) Transformer blocksT� and (2) positional embeddings with an appended
decoderD � to remove the ambiguity when multiple local patches exist. In (b), we show the proposed paired MIM pretext task. We apply
image masking at the scales = 2 , and recover the masked images with the transformer blocks. In (a), networkD � (in red) is not included
in pMIM pretraining. In dense matching,R � takes in the stack of source and the aligned support frame feature. In the pretext task,R0

�

only takes in the source frame feature. Thus,R0
� is a sub-graph ofR � . We detail how to initializeR � usingR0

� in Fig. 3. The residual
re�nement at other scales repeats the process at scales = 8 but consumes feature embeddings of other scales, skipped for simplicity.

Net [53] increases the resolution with a global-local cor-
relation layer. GOCor [52] further improves GLU-Net [53]
by replacing the correlation layer with online optimization.
Other methods, such as RANSAC Flow [46], iteratively re-
cover a homography transformation to reduce the visual dif-
ference between the source and support images.

Though dense methods estimate more correspondences
than sparse methods, it is less favored for geometric match-
ing. Until recently, PDC Net+ [54] and DKM [20] close
the gap between dense and sparse methods. Both methods
model the dense match as probability functions. PDC Net+
adopts a mixture Laplacian distribution while DKM models
with the Gaussian Process (GP). Furthermore, they estimate
a con�dence score to remove false positive results. We fol-
low [20, 54] in the con�dence estimation. However, instead
of applying probabilistic regression, we keep the correlation
based explicit matching process. This saves the computa-
tion of the inverse matrix required in the GP Regression of
DKM. Also, we apply a unique architecture design to ben-
e�t from the MIM pretexting task.

3. Method

In this section, we �rst introduce the proposed dense ge-
ometric matching method. Then we discuss how to pretext
the network via the paired masked image modeling. Fig. 2
depicts our framework in �netuning and pretexting stages.

3.1. Dense Geometric Matching

Dense geometric matching computes the dense corre-
spondences between the source imageI 1 and support im-
ageI 2. Under the estimated correspondencesT, source im-
ageI 1 can be recovered from support imageI 2 by applying
bilinear sampling atT. Since the dense correspondences
betweenI 1 andI 2 is not guaranteed to exist at each pixel
location, we follow [20] in estimating con�denceP to in-
dicate the �delity of the prediction.
Feature Extraction. As shown in Fig. 2, we adopt a multi-
scale ResNet-based [24] feature extractorE � . Taking the
source frameI 1 as an example, we produce the multiscale
feature embeddings as:

f ' s=2
1 ; ' s=4

1 ; ' s=8
1 g = E � (I 1): (1)

For the input imageI 1 of resolutionH � W , the scales
indicates a feature map of resolutionH=s � W=s.
Cross-Frame Global Matching The cross-frame global
matching module (CFGM) is designed to accomplish
coarse-scale geometric matching. To bene�t from the MIM
pretext task, we �rst process the scales = 8 feature map
' s=8

1 with the transformer block [27]:

f ' s=8
1

0
; ' s=8

2
0
g = T� (' s=8

1 ; ' s=8
2 ): (2)

In the pretraining stage, the masked feature map is recov-
ered by the appended transformer blocks. Then, we follow

3



LoFTR [48] in using linear transformer blocks to correlate
the source and support frame feature:

f ' s=8
1 ; ' s=8

2 g = L � (' s=8
1

0
; ' s=8

2
0
): (3)

To compute the global matching results, we �rst com-
pute the 4D correlation volumeC

�
' s=8

1 ; ' s=8
2

�
2

RH= 8� W=8� H= 8� W=8, where:

Cijkl =
X

h

1



�
' s=8

1

�
ijh �

�
' s=8

2

�
klh ; (4)

where 
 is a temperature scalar. The coarse matches
are computed as a summation over pixel locationsX 2
R(H= 8)( W=8) � 2 weighted by the softmaxed correlation vol-
ume. That is, after the correlation volumeC being reshaped
to C 2 R(H= 8)( W=8) � (H= 8)( W=8) , we apply the softmax:

fCij = softmax(Cij ): (5)

Here, elementCij is a size(H=8)(W=8) � 1 vector. We
conclude the coarse global matching results as:

T s=8
� = eC � X : (6)

Note, Eqn. 6 will cause ambiguous results when multiple
similar textureless local patches exist,i.e., multiple peak
values in softmaxed correlation vectorfCij . To resolve this,
we modify Eqn. 6 with:

T s=8
� ; P s=8

� = D �

�
eC � M (X )

�
; (7)

whereM (X ) is cosine positional embeddings with learn-
able tokens [20, 48], projecting the 2D pixel locations to a
high dimensional space to avoid ambiguity when multiple
similar patches exist. The decoderD � decodesT s=8

� , ini-
tial correspondences estimation at scales = 8 , andP s=8

� ,
initial con�dence estimation.
Multi-Scale Re�nement We follow [20] in using the
multi-scale re�nement module:

� T s; � P s = R� (' s
1; f (' s

2; T s)) ; (8)

where functionf (�) indicates the bilinear interpolation to
align the support frame feature using the current estimated
correspondencesT s, shown in Fig. 2. To accommodate the
transfer between pretexting and �netuning stage, we apply
depth-wise convolution [20] inR� . We detail the discussion
in Fig. 3 and Sec.3.2. The correspondences and con�dence
on the next scale are initialized with the bilinear upsam-
pling.

3.2. Paired MIM Pretraining

Paired Masked Image Modeling (MIM) MIM is exten-
sively adopted in image classi�cation task [23, 63]. An

Figure 3. Resolution of the Discrepancy betweenR � and R0
� .

We adopt stacks of the depth-wise convolution in the re�nement
module,i.e., each convolution kernel only works with one channel
of the input feature maps. This makes re�nerR0

� in pretexting a
sub-graph of re�nerR � in �netuning. While transferring from the
pretexting task to �netuning task, the input feature map concate-
nates an extra aligned support frame featuref (' s

2 ; T s ). As the
bilinear samplingf imposes minimal distribution change, we du-
plicate the kernel weight along the channel dimension.

image classi�cation network can be further improved after
MIM pretexting. As shown in Fig. 1 and 4, the network
reconstructs the input from randomly masked feature em-
beddings at a speci�c scale. In this work, we investigate
the bene�t of pretraining both the encoder and decoder un-
der MIM. Compared to only pretraining the encoder, pre-
training the whole network further reduces the domain gap
between pretexting and �netuning tasks.
Masking Strategy We follow SimMIM [63] in using ran-
domly selected32 � 32 mask patches with a prede�ned
masking ratior 1 andr 2 for source and support frames. For
source view, given the feature embeddings' s=2

1 output by
the extractorE � at scales = 2 , we apply the randomly gen-
erated maskw to mask out the feature embeddings,i.e.:

' s=2
1

0
= ' s=2

1 � (1 � w) + x � w ; (9)

wherex is the learnable mask tokens. Note, our extractor
E � starts from a3 � 3 convolution kernel to avoid leakage
of the masked patches.
Prediction Heads Different from SimMIM [63], our pre-
diction heads include most network components of the de-
coder. We complete the masked feature embeddings with
the transformer as:

' s=8
1

0
= T� (' s=8

1 ): (10)

Here, we use the same notation as Eqn.2 since both indicate
image features at the scales = 8 . Note that the subsequent
network component LoFTR is a series of linear transformer
blocks [27] which reduce the quadratic computational com-
plexity to linear. However, empirically we �nd the linear
transformer poorly recovers the masked patches. We thus
append the transformer blocks.

As shown in Fig. 2, after Eqn. 10, we feed the completed
feature map to CFGM. Note the re�ner between the two
stages is different. Instead of taking a stacked feature map
(Eqn. 8), in pretexting we only take in a single feature map:

� I s
1 = R0

� (' s
1); � I s

2 = R0
� (' s

2): (11)
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To account for the difference between Eqn. 8 and Eqn. 11,
we apply depth-wise convolution, where each convolution
kernel operates on one channel of the feature map, shown
in Fig. 3. Sincef (' s

2; T s) in Eqn. 8 is a resampled support
frame feature, it imposes minimal distribution difference to
' s

2. Then, while transferring from the pretexting task to the
downstream task, we only need to duplicate the channel of
R� to complete the initialization. We follow SimMIM [63]
in estimating full resolution residual RGB images in each
scale of the decoder. We visualize the reconstructed paired
masked images in Fig. 4.
Network Components not included in pMIM Since the
feature map ats = 2 contains little information about
masked patches, the pretraining only includes re�nement
modules at scales = 4 ands = 8 . Furthermore, the CFGM
decoderD � and part ofR� are not included. We pretrain the
rest network component with synthetic image pairs [54].
Prediction Objective Set the accumulated reconstruction
at each scales asI s, we regress the raw pixel value with an
l1 loss:

L M =
X

s

1
N

(jI s
1 � I 1j1 + jI s

2 � I 2j1); (12)

whereN is the number of unmasked pixels.

3.3. Dense Geometric Matching Loss

Homography Loss The image correspondences between
two planar structures are constrained by a3� 3 homography
matrix H with 8 DoF. Compared to correspondences esti-
mation over arbitrary shapes, the correspondences in planar
structures possess a lower rank. Given a surface normaln
computed using the depth gradient [36], the homography of
the pixel can be computed as:

H =

2

4
h |

1
h |

2
h |

3

3

5 = K 1

�
R +

t >

d
n

�
K � 1

2 ; (13)

where theK 1 and K 2 are intrinsic matrices ofI 1 and
I 2, R and t are camera rotation and translation, andd is
the pixel depth. We randomly sampleK anchor points
f pm j 1 � m � K g. For each anchor pointpm , we sample
K candidate pointsf qm

n j 1 � n � K g. We determine
a co-planar indicator matrixO+ of sizeK � K to suggest
all co-planar pairs. We use the normal consistency, point-to-
plane distance, and homography consistency to compute the
co-planar groundtruth, detailed in Supp. Finally, we apply a
gradient-based penalty, penalizing the correspondences dif-
ference between the estimation and the groundtruth.

L s
h =

1
jO+ j

X

O +
p ; q =1

j
�
T s

p � T s
q

�
�

�
T

s
p � T

s
q

�
j1: (14)

Global Matching Loss Following [48], we minimize a bi-
nary cross-entropy loss over the correlation volumeC after
a dual-softmax operation:

]Cijkl
0

= softmax(Cij ) � softmax(Ckl ); (15)

whereCij andCkl are(H=8)(W=8) � 1 vectors. The loss
is de�ned as:

L g = �
1

jM + j

X

ijkl 2M +

log ]Cijkl
0

�
1

jM � j

X

ijkl 2M �

log
�

1 � ]Cijkl
0�

;
(16)

whereM + and M � are groundtruth indicator matrix of
sizeH � W � H � W indicating whether a source frame
pixel (i; j ) pairs with a target frame pixel(k; l ).
Re�nement Loss Following [20], we supervise both corre-
spondences and con�dence on each scale of the predictions,

L s
r =

1
jP+ j

X

ij 2 P +

�
�
�T s

ij � T
s
ij

�
�
�
2

; (17)

whereP+
ij is aH � W matrix that indicates whether a valid

pair is found at pixel locationij in the source frame. Simi-
larly, the loss of con�dence is de�ned as:

L s
c = �

1
jP + j

X

ij 2 P +

log(Pij ) �
1

jP � j

X

ij 2 P �

log(1 � Pij ):

(18)
Total Loss The total loss is a weighted summation of pro-
posed losses:

L =
1
4

X

s

(L s
r + wcL s

c) + wg � L g +
1
4

wh

X

s

L s
h : (19)

The constant4 comes from the four scaless = f 1; 2; 4; 8g
set in our paper.

4. Experiments

We �rst compare with other SoTA dense matching meth-
ods on the MegaDepth dataset. Then, to comprehensively
re�ect the contributions from both the density and accu-
racy of geometric matching, we follow [20, 48] in us-
ing the two-view relative camera pose estimation perfor-
mance as the metric. We report on both the outdoor
scenario MegaDepth [30] dataset and the indoor scenario
ScanNet [12] dataset. We additionally evaluate on the
HPatches [1] and the YFCC100m [51] datasets to demon-
strate the generalizability of the model.

4.1. Implementation Details

Pretext stage From DeMoN [57], BlendedMVS [65], Hy-
perSim [41], ARKitScenes [4], and TartanAir [60] datasets,

5



Figure 4.Visual Quality of the paired MIM pretext task. Visualized cases are from the MegaDepth and the ScanNet dataset.

we collect a pretraining dataset of1; 281; 167 image pairs,
i.e., the same size as ImageNet [14]. Each pair is collected
with a �xed frame index interval. In the pretraining dataset,
we train the model using a batchsize of128under the res-
olution 192� 256. We use the Adam optimizer [28] with
a learning rate2e� 4, running for250k steps on2� A100
GPUs. We stack1 transformer layer. We initialize the
masking ratior 1 = 75% andr 2 = 75%. The masking op-
eration applies to the ResNet, causing signi�cantly differ-
ent batch statistics between masked and unmasked inputs.
Since the downstream task takes the unmasked image, we
linearly reduce the support frame masking ratior 2 to 0 and
use a different batch normalization layer for support view,
resolving the batch statistics difference. We also apply the
synthetic image pair augmentation introduced in [54].

Finetuning stage Our model trains with a batchsize of16
at the resolution544� 720. The learning rate is set to4e� 4,
running 250k steps with a warmup of25k steps. On4�
A100 GPUs, we train for5 days with the Adam optimizer.
We follow [48] in sampling the paired images, weighted by
the sequence length and overlap ratio. The softmax temper-
ature
 is 0:1. We set loss weightwg to 0.7 andwh to 0:02.
We sample600� 600points for homography lossL h .

4.2. Datasets

MegaDepth MegaDepth [30] collects over10thousand im-
ages of worldwide landmarks from the Internet. The col-
lected images are processed by COLMAP [45] to produce
groundtruth poses and depthmaps. The dataset collects im-
ages of signi�cant visual contrast due to lighting conditions,
view angles, and imaging devices. This imposes challenges
to geometric matching.

ScanNet [12] is a large-scale indoor dataset with1; 613
videos captured by RGB-D cameras. There are challenging
textureless indoor scenes for geometric matching.

YFCC100m [51] is a large multi-media dataset. A subset
of 72reconstructions of tourist landmarks is generated with
groundtruth poses and depthmap.

Hpatches [2] provides the pair of one source and �ve sup-
port images taken under different view angles and lighting

Methods Venue Dense Match PCK" Run-
@1px @3px @5px time (ms)

RANSAC-FLow [46] ECCV'20 53:47 83:45 86:81 3; 596
PDC-Net [67] CVPR'21 71:81 89:36 91:18 1; 017

PDC-Net+ [54] Arxiv'21 74.51 90.69 92.10 1; 017
LIFE [26] Arxiv'21 39:98 76:14 83:14 78

GLU-Net-GOCor [52] NeurIPS'20 57:77 78:61 82:24 71
PDC-Net [67] CVPR'21 68:95 84:07 85:72 88

PDC-Net+ [54] Arxiv'21 72:41 86:70 88:12 88
PMatch (Ours) CVPR'23 79.83 95.18 96.52 124

Table 1.MegaDepth Dense Geometric Matching.The running
time of all methods is measured at the resolution480� 480. The
upper and lower groups are methods running multiple or single
times. [Key:Best, Second Best]

Category Methods Venue Pose Estimation AUC"
@5� @10� @20�

Sparse SuperGlue [44] CVPR'19 42:2 61:2 75:9
W/ Detector SGMNet [29] Pattern'20 40:5 59:0 72:6

DRC-Net [32] ICASSP'22 27:0 42:9 58:3
LoFTR [48] CVPR'21 52:8 69:2 81:2

Sparse QuadTree [49] ICLR'22 54:6 70:5 82:2
Wo/ Detector MatchFormer [59] ACCV'22 53:3 69:7 81:8

ASpanFormer [9] ECCV'22 55:3 71:5 83:1

Dense
PDC-Net+ [54] Arxiv'19 43:1 61:9 76:1

DKM [20] CVPR'23 60.5 74.9 85.1
PMatch (Ours) CVPR'23 61.4 75.7 85.7

Table 2. MegaDepth Two-View Camera Pose Estimation.We
compare three groups of methods following SuperGlue [44] in
evaluation. The pose AUC error is reported. Our method shows
substantial improvement. [Key:Best, Second Best]

conditions with groundtruth homography transformation.

4.3. Dense Geometric Matching

We follow the RANSAC-Flow [46] in training and test-
ing split on the MegaDepth dataset. The PCK scores in
Tab. 1 refer to the thresholded keypoints accuracy. We
divide the baseline methods into single and multiple run
methods. Note, the baseline methods PDC Net [55] and
PDC Net+ [54] consume the additional synthetic data gen-
erated using COCO [31] instance segmentation label. For
PCK @1px, we outperform the SoTA single and multiple
run methods by an absolute margin of4:89%and6:99%re-
spectively. Meanwhile, we are about8� faster than SoTA
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Figure 5. Visual Quality of the Reconstruction. We visualize4 reconstructed images using estimated dense correspondences. In each
group, from left to right is the source image, support image, and the reconstructed image. The areas of low con�dence are �lled with white
color. In ScanNet where the con�dence groundtruth is not available, we use forward-backward �ow consistency mask as a replacement.

baselines while suppassing SoTA performance.

4.4. Two­View Camera Pose Estimation

Evaluation Protocol In the MegaDepth, ScanNet, and
Hpatches datasets, we follow the evaluation protocol of [20,
44, 48] in reporting the pose accuracy AUC curve thresh-
olded at5, 10, and20 degrees. In the YFCC100m dataset,
we follow the protocol of RANSAC-Flow [46], addition-
ally reporting the pose mAP value. The pose estimation is
considered an outlier if its maximum degree error of trans-
lation or rotation exceeds the threshold. The two-view rel-
ative pose is estimated using the �ve-point algorithm [37]
with RANSAC [15] via the OpenCV implementation [6].

Baseline Methods We compare with three groups of the
methods,i.e., sparse methods with detector [29, 44], sparse
methods without detector [9, 32, 48, 49, 59] and dense
methods [13, 20, 46, 54, 55, 61]. For sparse detector based
methods, we use SuperPoint [16] as the keypoint detector.
For dense methods, we further categorize them into single-
run and multiple-run methods. For multiple-run methods,
e.g., RANSAC-Flow [46], it repeats the prediction while
reducing the visual difference with an estimated homogra-
phy transformation. Among baselines, AspanFormer [9] is
a recent publicly available sparse detector-free method, im-
proving LofTR with a sophisticated attention mechanism.

Outdoor Dataset We test our method on the outdoor
dataset MegaDepth. We follow the training and validation
split of [20, 44, 48]. The evaluation split contains1; 500
paired images randomly selected from the scene0015and
0022. As shown in Tab. 2, we achieve an absolute im-
provement of0:9% over the recent SoTA dense method
DKM [20]. Compared to the SoTA sparse method ASpan-
Former [9], we maintain an improvement of6:1%.

Indoor Dataset We test our method on the indoor dataset
ScanNet. We follow [20] in training and testing protocol,
resizing images to480� 640. The validation split of Scan-
Net consists of1; 500image pairs [44]. In Tab. 3, we main-
tain competitive performance with the SoTA dense method

Category Methods Venue Pose Estimation AUC"
@5� @10� @20�

Sparse SuperGlue [44] CVPR'19 16:2 33:8 51:8
W/ Detector SGMNet [29] PR'20 15:4 32:1 48:3

DRC-Net [32] ICASSP'22 7:7 17:9 30:5
LoFTR [48] CVPR'21 22:0 40:8 57:6

Sparse QuadTree [49] ICLR'22 24:9 44:7 61:8
Wo/ Detector MatchFormer [59] ACCV'22 24:3 43:9 61:4

ASpanFormer [9] ECCV'22 25.6 46:0 63:3

Dense
PDC-Net+ [54] Arxiv'19 20:2 39:4 57:1

DKM [20] CVPR'23 29.4 50.7 68.3
PMatch (Ours) CVPR'23 29.4 50.1 67.4

Table 3.ScanNet Two-View Camera Pose Estimation.We fol-
low SuperGlue [44] in the testing protocol. The pose AUC error
is reported. Our method achieves clear improvement over other
baselines. [Key:Best, Second Best]

Methods Venue Pose Estimation AUC" Pose Estimation mAP"
@5� @10� @20� @5� @10� @20�

RANSAC-Flow [46] ECCV'20 - - - 64:9 73:3 81:6
PDC-Net [55] CVPR'21 35:7 55:8 72:3 63:9 73:0 81:2

PDC-Net+ [54] Arxiv'21 37:5 58:1 74:5 67.4 76.6 84.6
OANet [13] ICCV'19 - - - 52.2 - -
CoAM [61] CVPR'21 - - - 55:6 66:8 -

PDC-Net [55] CVPR'21 32:2 52:6 70:1 60:5 70:9 80:3
PDC-Net+ [54] Arxiv'21 34:8 55:4 72:6 63:9 73:8 82:7

ASpanFormer [9] ECCV'22 44.5 63.8 78.4 - - -
PMatch (Ours) CVPR'23 45.7 65.2 79.8 75.9 83.1 89.3

Table 4.YFCC100m Two-View Camera Pose Estimation.The
upper group runs multiple times, while the lower group runs a sin-
gle time. We follow [67] in the evaluation and preprocessing, re-
porting both pose AUC and mAP errors. [Key:Best, Second Best]

DKM [20] and outperform SoTA sparse method by1:4%.

Generalization to YFCC100m We use the MegaDepth
trained model to test on YFCC100m [51] dataset. We fol-
low the preprocessing steps of [67], evaluated on4 scenes
with a total of1; 000images. During the evaluation, we re-
sample the input images of the shorter side to480. Tab. 4
shows that our method can achieve a superior generalization
ability, maintaining an improvement of1:2% over SoTA
sparse methods [9].

Generalization to HPatches Following LoFTR [48], we
test the MegaDepth dataset trained model on HPatches.
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