
LightedDepth: Video Depth Estimation in light of Limited Inference View Angles
=== Supplementary Material ===

Shengjie Zhu and Xiaoming Liu
Department of Computer Science and Engineering,
Michigan State University, East Lansing, MI, 48824

zhusheng@msu.edu, liuxm@cse.msu.edu

1. Additional Implementation Details
We randomly select Nk = 10, 000 pixels from

RAFT [11] predicted flowmap. The recording vector size B
is set to be 100. The max scale smax for KITTI and NYUv2
datasets are 3 meter and 1 meter individually. The weight
parameter λ between epipolar constraint he(·) and hc(·) is
set to 0.3 in NYUv2. The minimum camera translation ks
for KITTI and NYUv2 is 0.1 meter and 0.05 meter sepa-
rately. In the ScanNet experiment, we take BTS [6] trained
on NYUv2 as the monocular-depth initialization.

2. Derivation in Details
2.1. Pixel-wise scale estimation

The projection process in the main paper Eqn. 4 is:

d′q = d′
[
qx qy 1

]⊺
= dKRK−1 p+ sKt, (1)

where p and q are homogeneous 2D pixel coordinates at
frame Im and In, given by the optical flow prediction O. K
is a 3 × 3 camera intrinsic matrix. The pixel-wise scale
to be computed is denoted as s. R and t are rotation
matrix and normalized translation vector. Denote M =[
m1 m2 m3

]⊺
= KRK−1 and

[
x y z

]⊺
= Kt.

By expanding Eqn. 1:
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1
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2

m⊺
3

p+ s ·

xy
z

 . (2)

As mentioned in the main paper Sec. 3.2 and main paper
Fig. 3, the point pair p and q is given by the optical flow,
not complying with the projection geometry, making depth
and scale in horizontal and vertical direction follow differ-
ent relationships. As a result, we represent the horizontal
and vertical depth dx and dy by the scale s∗ separately as:{
d′ · qx = dx ·m⊺

1p+ s · x
d′ = dx ·m⊺

3p+ s · z
,

{
d′ · qy = dy ·m⊺

2p+ s · y
d′ = dy ·m⊺

3p+ s · z
.

(3)

Solving Eqn. 3, we have:

dx(s) = s
x− qx · z

qxm3
⊺ p−m1

⊺ p
, dy(s) = s

y − qy · z
qym3

⊺ p−m2
⊺ p.

(4)
Then, we compute the pixel-wise scale s by minimizing
the quadratic loss between the depthmap d ∈ D and scale-
induced horizontal & vertical depth dx & dy:

L(s) = (dx(s)− d)
2
+ (dy(s)− d)

2
. (5)

The global optimal solution of quadratic loss L(s∗) is
achieved when its gradient is zero:

∂L(s)

∂s
= 2 (dx(s)− d+ dy(s)− d) = 0. (6)

By injecting Eqn. 4 into Eqn. 6, we solve s as:

s =
d

1
2

(
x−qx·z

qxm⊺
3 p−m⊺

1 p
+ y−qy·z

qym⊺
3 p−m⊺

2 p

) . (7)

The m = log(s)− log(d) in main paper Eqn. 7 is:

m = log(s)− log(d)

= − log
1

2

(
x− qx · z

qxm⊺
3 p−m⊺

1 p
+

y − qy · z
qym⊺

3 p−m⊺
2 p

)
(8)

2.2. Proof of the Scale & Depth Learning Equality

Theorem. Considering the optimal scale s∗ as the average
of pixel-wise scale s in log space, the learning loss of the
optical scale Ls∗ is upper-bounded by the learning loss of
the video depth Ld and a noise term contributed by the nor-
malized pose P and optical flow O estimate. Given a robust
normalized pose and optical flow estimate, scale learning
grounds down to video depth learning.

Proof. Define the optimal scale s∗ as the average of pixel-
wise scale s in log space:

log(s∗) =
1

n

n∑
i=1

log(si) =
1

n

n∑
i=1

(
log(di) +mi

)
. (9)
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Figure 1. We illustrate the empirical validation experiment of the learning equality between camera scale and video depth. In specific,
we extend the original framework in the main paper Fig. 2 with an additional “ScaleNet” S before the video depth estimation, which
further finetunes the camera scale s+ of the optimized pose P† from Sec. 3.2. Row 3 in the main paper Tab. 5 records the pose and depth
performance from this modified framework. The “ScaleNet” S adopts same architecture with “ResDepth Net” D.

where mi is given in Eqn. 8. Choose a robust l1 loss for s∗:

Ls∗ =∥ log(s̃)− log(s∗)∥ =∥ log(s̃)− 1

n

n∑
i=1

log(si)∥

= ∥1
n

n∑
i=1

(log(d̃i) + m̃i)−
1

n

n∑
i=1

(log(di) +mi) ∥

≤ ∥1
n

n∑
i=1

(
log(d̃i)− log(di)

)
∥+ ∥1

n

n∑
i=1

(m̃i −mi) ∥

≤ 1

n

n∑
i=1

∥ log(d̃i)− log(di)∥+ ∥1
n

n∑
i=1

(m̃i −mi) ∥

= Ld + ε(P,O).
(10)

Here, s̃ and m̃i is given by groundtruth labels. Ld is a robust
l1 video depth loss. And ε(P,O) is an error term that only
depends on predicted normalized pose P, and flow O.

Learning scale, as minimizing loss Ls∗ , can be achieved
through minimizing its upper bound loss Ld via learning
video depth. Except for the empirical experiment on the
main paper Tab. 5, we were not able to measure how large
the error term ε(P,O) is due to the lack of a dataset pro-
viding pose and flow groundtruth simultaneously.

One may question whether our definition of the opti-
mal scale s∗ is suitable to depict the learning process of
a deep scale estimator. Here, we emphasize that most prior
works [5, 7, 8, 15] which estimate pose by regression adopt
a Fully Convolutional Network, e.g. Monodepth2’s [5] pose
estimator predicts the pose as the average of a 2 × 2 pose
map under a 320 × 1, 024 input image resolution. Follow-
ing this, we define a generalized form of wide-adopted pose
estimation convention, suitable for the analysis.

3. Additional Ablations
3.1. Compare Projection Flow and Optical Flow

We conduct an empirical experiment to validate our mo-
tivation introduced in the main paper introduction section.
Specifically, we compare the performance between 3D pro-
jection flow and 2D optical flow. The former is computed
by the optimized camera pose and depthmap, while the

Mehod All Background
F1-epe F1-a1 F1-epe F1-a1

RAFT [11] 1.284 4.539 1.238 4.759
DeepV2D [10] 9.957 22.610 2.180 9.789

Ours 9.321 20.723 1.631 7.692

Table 1. Flow Performance Comparison on KITTI FLOW15
Dataset [4]. RAFT [11] computes flow via regression while
DeepV2D and our method compute flow via combining predicted
depthmap and pose. To facilitate comparison with depth methods,
we adopt Garg crop [3]. [Key: Best, Second Best, All: evaluated
over the entire image, Background: evaluated only on background
semantic categories.]

latter is from regression. In Tab. 1, the 2D optical flow
(RAFT [11]) demonstrates a clear advantage over the pro-
jection flow (DeepV2D and Ours), empirically supporting
our motivation. To exclude the influence of moving fore-
ground objects, we additionally report their performance af-
ter excluding pedestrians, cyclists, and cars. The semantics
label is provided by KITTI15 Semantic Dataset [4]. Metric
“epe” and “a1” [11] stand for “endpoint error” and “outlier
percentage”. Both the lower, the better.

3.2. Scale & Depth Learning Equality

We detail the empirical ablation experiment of the scale
and video depth learning equality in Fig. 1. The Fig. 1 and
the main paper Fig. 2 correspond to the framework adopted
in main paper Tab. 5 row 3 & 2. In Fig. 1, we augment the
optimized scale s† with an additional ScaleNet S with iden-
tical architecture to ResDepth Net (video depth network) D.

3.3. Depth Performance w.r.t Camera Scale

In Fig. 2, we compare video depth performance among
ours, DeepV2D’s, and our mono-depth initialization, along
different camera scales.

As described in the main paper Sec. 3.1, prior works [10,
13] only adopt a cost volume based decoder designed for
multi-view stereo to learn the depth prior. We consider such
a decoder is insufficient for depth learning. In the left-end
of both subfigures (a) and (b), i.e., Type I area, the camera
translation movement is insufficient. Due to a near static
camera movement, the video depth estimation de-generates
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(a) Metric a1 w.r.t. camera scale on KITTI dataset (b) Metric a1 w.r.t. camera scale on NYUv2 dataset
Figure 2. Subfigures (a) and (b) plot the error curves and standard deviations of a1 metric (δ < 1.25) against consecutive-frame camera
scale on KITTI and NYUv2. Both subfigures report the performance after applying the median scaling. Since NYUv2 does not provide
groundtruth poses, we use predicted scale s† as a replacement. To help analysis, we divide the plot into camera translation insufficient
cases (Type I) and sufficient cases (Type II). We mark the camera translation speed threshold between Type I and II below the blue dashed
line. The right axes (in purple) plots the percentage of the total frame number w.r.t. camera scale.

to a monocular depth estimation. In this case, the monocular
work significantly outperforms the multi-view video work,
indicating an insufficient depth prior knowledge learning.

We consider the monocular depth network and video
depth network learning different types of depth prior, with
the latter focusing on prior learning in the presence of lim-
ited image correspondence. As proof, our method still out-
performs multi-view DeepV2D when the camera movement
is sufficient. Meanwhile, even around near-static frames,
our method still outperforms mono-depth, due to the pro-
posed key-frame search strategy.

3.4. Indoor and Outdoor Camera Trajectory

In the main paper Fig. 5, we colorize the odometry using
a measurement m ranging between 0 and 1. The measure-
ment decibels the relative contribution from the rotation and
translation movement to an optical flow. Suppose the cam-
era movement P =

[
R t

]
is decomposed into a pure rota-

tion movement Pr =
[
R 0

]
and a pure translation move-

ment Pt =
[
I R⊺t

]
where P = PtPr. Given a pixel

pi at frame Im, each optical flow oi can be decomposed
into a rotation concluded flow or

i = f(Pr,pi) − pi and a
translation concluded flow ot

i = oi − or
i . Function f(·) is

the camera projection function, forming a homography un-
der a pure rotation movement Pr, becoming independent of
depth. Our measurement is defined as:

measurement =
∑N

i

(
∥or

i ∥2 > ∥ot
i∥2

)
N

(11)

The total pixel number is N . As the measurement m ap-
proaches 1, the camera rotation contributes most of the
scene motion, in against an epipolar constraint based pose
estimation algorithm.

4. Additional Quantitative Comparisons

Evaluate Video Depth on EigenSfM split. SfMR [12]
suggests eigen split [1] includes near-static images, which is
not suitable for SfM methods. As a result, they additionally
evaluate on a subset of eigen split whose camera scale is
larger than 0.5 meter, i.e., gt scale s̃ > 0.5 in Fig 2 (a),

around a speed > 10 mph. Still, our method outperforms
SfMR [12] with a clear margin, as in Tab. 2.
Evaluation on Odometry Sequence 09 and 10. We fur-
ther compare with [12] on odometry sequences 09 and 10.
Note, due to car translation movement in sequence 09 and
10 is more evident and steady than eigen split, our method
achieves a decent performance of 0.994 on a1 metric. The
result is shown in Tab. 2.
Performance at Noisy Flow and Mono-Depth. In
Tab. 3, we report depth and pose performance using a lower-
performed flow model selected from one of the baselines in
RAFT (Tab. 1 entry C+T). We use it to analyze performance
under noisy inputs. From Tab. 3, we see flow performance
affects pose, which in turn lowers depth performance. How-
ever, it can be alleviated with a filtering strategy. Even with
noisy flow, we still maintain the SoTA depth performance.
We also ablate performance under noisy mono-depth input
in the main paper Tab. 1, where MonoDepth2 is a noisy
lightweight monocular estimator.
Qualitative Comparisons. Please refer to Figs. 3 & 4 & 5
& 6 for more visual comparisons.
Limitations our method favors sufficient translation, more
suitable for outdoor environments. Meanwhile, perfor-
mance can be improved if equipped with an additional
bundle-adjustment module from multi-view methods.
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Figure 3. Residual depth is measured in meters as D∗ · (exp(∆D) − 1). We use Green boxes to highlight our improvement over 5-view
DeepV2D and monocular depth input BTS [6]. We avoid artifacts in DeepV2D arising from moving foreground objects and near-static
camera movement due to our formulation of video depth estimation as log space residual estimation.
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Figure 4. Continued with Fig. 3. Residual depth is measured in meters as D∗ · (exp(∆D) − 1). We use Green boxes to highlight our
improvement over 5-view DeepV2D and monocular depth input BTS [6]. We avoid artifacts in DeepV2D arising from moving foreground
objects and near-static camera movement due to our formulation of video depth estimation as log space residual estimation.
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Figure 5. Residual depth is measured in meters as D∗ · (exp(∆D) − 1). We use Green boxes to highlight our improvement over 8-view
DeepV2D, 2-view DeepV2D and monocular depth initialization.
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Figure 6. Continued with Fig. 5. Residual depth is measured in meters as D∗ · (exp(∆D) − 1). We use Green boxes to highlight our
improvement over 8-view DeepV2D, 2-view DeepV2D and monocular depth initialization.
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