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Abstract

Video depth estimation infers the dense scene depth from
immediate neighboring video frames. While recent works
consider it a simplified structure-from-motion (SfM) prob-
lem, it still differs from the SfM in that significantly fewer
view angels are available in inference. This setting, how-
ever, suits the mono-depth and optical flow estimation. This
observation motivates us to decouple the video depth es-
timation into two components, a normalized pose estima-
tion over a flowmap and a logged residual depth estimation
over a mono-depth map. The two parts are unified with an
efficient off-the-shelf scale alignment algorithm. Addition-
ally, we stabilize the indoor two-view pose estimation by in-
cluding additional projection constraints and ensuring suf-
ficient camera translation. Though a two-view algorithm,
we validate the benefit of the decoupling with the substantial
performance improvement over multi-view iterative prior
works on indoor and outdoor datasets. Codes and models
are available at https://github.com/ShngJZ/LightedDepth.

1. Introduction
Depth estimation is a fundamental task for applica-

tions such as 3D reconstruction [3], robotics [26], and au-
tonomous driving [59]. The depth is self-contained in the
scene motion brought by the camera movement. The clas-
sic SfM methods [17, 31, 37, 38, 54] hence jointly recover
the scene depth and camera poses by applying bundle-
adjustment over the entire video sequence. However, the
iterative optimization defined over all frames makes SfM a
computationally intensive method. Video depth estimation
simplifies the computation by only consuming the immedi-
ate neighboring frames. In consequence, only limited cam-
era view angles are available, as shown in Fig. 2 (a).

The limited camera views, however, suit optical flow
and monocular depth estimation. We are then motivated
to connect video depth to mono-depth and flow estimation
by decoupling the video-depth into two components. First,
we use the flowmap to estimate a normalized up-to-scale
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Figure 1. Video Depth Performance Comparison on KITTI
Dataset. We mark the methods taking different numbers of frames
with different colors. We propose a two-view video depth estima-
tion method that substantially outperforms prior two-view, three-
view, and five-view methods. Our method uses a monocular depth
as initialization. The arrow marks our improvement when using
the BTS [27] as the initialization. Comparison is detailed in Tab. 1.

camera pose, i.e., camera pose with a unit-length transla-
tion vector. Second, we estimate video depth as a logged
residual over the mono-depthmap. The two components are
unified by an efficient off-the-shelf camera scale alignment
algorithm, aligning the depthmap and flowmap, making the
residual depth estimation a stereo matching.

Unlike our method, most prior video depth estimation
works [41, 46, 50, 52, 55] formulate their solutions as deep
SfM, shown in Fig. 2 (b). They can be grouped into two
types [50]. Type I methods [41, 46, 52] execute SfM within
a fixed frame window, embedding bundle-adjustment as a
differentiable module within a network. Type II meth-
ods [50, 55] execute a consecutive-frame SfM. They se-
quentially estimate an up-to-scale pose and an up-to-scale
depthmap. While prior works solve video depth estimation
as a simplified SfM problem, our method differs in decou-
pling the video depth estimation to two sub-tasks which are
robust to deficient camera views, i.e., flow based normalized
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(a) Limited view angles of video depth (b) Prior Multi-View (c) Ours Two-View
Figure 2. (a) Unlike classic SfM, video depth estimation possesses significantly fewer view angles during inference. (b) Prior multi-view
video depth estimation works [40, 41, 46] mimic SfM pipeline, focusing on improving deep bundle-adjustment. (c) Considering the SfM
alike pipelines are compromised by the limited view angles, we base the video depth estimation on two deficient view robust sub-tasks,
i.e., the relative camera pose estimation based on the flowmap, and the logged residual video depth estimation based on the monocular
depthmap. The two sub-tasks are connected by a novel and efficient scale alignment algorithm. We skip RGB inputs for simplicity in (c).

pose estimation and logged residual depth estimation.
On pose estimation, we compare the optical flow with the

projection flow computed from the pose and depthmap, us-
ing the State-of-The-Art (SoTA) methods of each side, i.e.,
DeepV2D [41] and RAFT [42]. The results in Supp.Tab. 1
show that the optical flow is more robust than the projection
flow. Since the flow performance is a bottleneck for pose
performance, this suggests, instead of optimizing poses by
bundle-adjustment together with the depthmap as the type I
method, directly estimating the pose from flowmap can be
more accurate, as the noise inside the depthmap is avoided.
We follow [60] in using the five-point algorithm [29] with
RANSAC [13] to estimate the normalized pose.

On video depth estimation, we treat it as a log space
residual estimation over the monocular initialization. While
prior works [41, 46, 52] already adopt mono-depthmap as
initialization, the connection between monocular and video
depth is under-explored. Prior works simply repeat the
video depth estimation after updating the pose. Specifically,
they estimate the video depth by a 3D cost volume con-
structed by sampling the next frame feature map at differ-
ent projected locations specified by pre-defined depth can-
didates. Instead, we change the sampling from fixed can-
didates to fixed log space residual candidates. This brings
three benefits: (1) It enables the video depth to benefit from
SoTA monocular depth. (2) It improves the sampling ef-
ficiency in constructing the cost volume, as candidates are
drawn dynamically, centering around the initial guess rather
than fixed. (3) It provides a reliable lower-bound depth per-
formance for moving foreground objects and static frames.

The residual video depth estimation is stereo matching
via an estimated pose. Yet, we only estimate the normal-
ized pose, still lacking the baseline. We then propose an
efficient voting based scale alignment algorithm, estimating
the camera scale by aligning the monocular depthmap with
flowmap. This algorithm connects the two decoupled sub-
tasks: the normalized pose and residual depth estimation.

Empirically, we find that the five-point algorithm runs
less accurately in indoor scenarios. This is because indoor
videos are taken by hand-held cameras, possessing much
more rotation movement than outdoor videos taken by car-
mounted cameras. The additional rotation movement weak-
ens the epipolar constraint, which is required by the five-
point algorithm. To tackle the issue, during each RANSAC
consensus checking, we perform the scale alignment algo-
rithm, turning normalized camera pose to metric space pose.
Then, we include an additional projection constraint to the
original epipolar constraint. It improves both indoor depth
and pose performance.

We estimate the camera scale from the mono-depth in-
stead of video depthmap. Ideally, similar to residual depth
learning, we may use an additional cost volume based de-
coder to learn the residual camera scale. However, we show
that under robust pose and flow estimate, the camera scale
learning loss can be converted to a relaxed depth learn-
ing loss, as the two only differ by a constant in log space.
This reduces camera scale learning to depth learning. Em-
pirically and theoretically, we show that a single decoder is
sufficient for both residual depth and camera scale learning.

We summarize the contributions of our work as follows:

• We propose a comprehensive two-view video depth esti-
mation method. Unlike a simplified SfM, we decompose
into two sub-tasks that are robust to deficient view angles,
and connect them via an efficient scale alignment algorithm.

• We stabilize the indoor normalized pose estimation with
the additional projection constraint.

• Theoretically and empirically, we prove the equality be-
tween scale and video depth learning.

• On KITTI [16] and NYUv2 [35] datasets, our two-view
sequential method reduces 56.5% and 34.1% error on the
metric δ < 1.25 of video depth estimation over SoTA multi-
view iterative work [41].
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2. Prior Works

Pose and Depth from Multi-View System Structure-
from-motion (SfM) [17,31,37,38,54] is the classic approach
to recover scene geometry and camera motion from video.
After proper initialization, the pose and 3D points are fine-
tuned by bundle-adjustment over the input point correspon-
dences. Visual simultaneously localization and mapping
(vSLAM) methods [10, 11, 34, 36, 39, 43, 44, 54] are simi-
lar to SfM but focus on odometry.

Video depth estimation is the other multi-view system.
It contrasts to SfM as operating on fixed frame windows,
providing limited camera views. Recent works [12, 20,
22, 40, 41, 46, 52, 61] solve video depth estimation as an
SfM problem. Inspired by classic SfM, they propose differ-
ent deep bundle-adjustment modules, minimizing a residual
term during the network inference. For instance, [52] and
[41] separately propose a first-order and second-order deep
optimization scheme. [52] applies an exhaustive search over
a local region in the pose parameter space. Given the projec-
tion flow computed by the current depth and pose, [41] em-
ploys a motion module to estimate a residual flow term. The
pose is refined via applying a Gauss-Newton update [53].
Surprisingly, compared to estimating residual pose in infer-
ence, none of the prior works estimate residual depth.

Our work solves the video depth estimation from the
other perspective. Instead of emphasizing the improved
deep bundle-adjustment module, we decompose the video
depth into sub-tasks that are robust to narrow view angles.
Our work can benefit other multi-view methods via serving
as their two-view initialization module [41, 52].

Deep Two-View Structure-from-Motion SfMR [50] re-
visits the classic two-view SfM [7, 25] with deep learning.
They first solve a normalized pose from the input flowmap
and then estimate a normalized depthmap, i.e., depthmap
divided by the camera scale.

Our method improves [50] in multiple perspectives.
First, we validate that the optical flow is more robust than
the projection flow between immediate frames (detailed in
Supp.Tab. 1.). This completes the motivation of estimating
normalized pose from the flowmap instead of applying deep
bundle-adjustment. In comparison, [50] only discusses its
improvement over classic SIFT [32] based two-view SfM.
Second, we improve indoor pose estimation performance
by including the additional projection constraint. Third, the
normalized depth in [50] is poorly ranged, varying from
zero to infinity, while the proposed logged residual depth
is well ranged. As a result, our model with 32 depth candi-
dates outperforms [50] with 128 depth candidates. Fourth,
our method does not require groundtruth pose to produce
normalized depth. The normalized pose and camera scale
are learned from synthetic flow and groundtruth depth la-
bels, avoiding the noise from the IMU or GPS device.

Multi-View-Stereo With the optimized camera poses,
video depth estimation is treated as a multi-view-stereo
(MVS) problem. Similar to SfM, most MVS methods [6,
30, 48, 49, 56, 57] assume sufficient view variations, esti-
mating without an init mono-depthmap. A concurrent MVS
work [1], however, positions itself to infer depth within a
limited frame window. [1] skips the non-trivial pose estima-
tion and models depth as a Gaussian distribution. The video
depth is estimated by selecting the residual that max-a-
posteriori. However, unlike us, they do not align depthmap
with the camera pose scale, lacking geometric constraint. In
return, though [1] uses groundtruth poses and more frames,
we still outperform this iterative method, as in Tab. 1.

3. Proposed Method
Our objective is to jointly solve the interdependent pose

and depth given two video frames. Take the process of re-
constructing image Im at frame m from image In at frame n
under a depthmap D and pose P as I∗m = g (f (D,P) , In),
where I∗m is the reconstructed image. f(·) produces 2D pro-
jection locations in In, as a function of D, P, and the intrin-
sic matrix K (skipped in f(·) for simplicity). g(·) applies
bilinear sampling to In at 2D locations from f (D,P). For-
mally, we aim to compute the depth D† and pose P† by
optimizing the photometric constraint:

P†,D† = argmin
P,D

hp (g (f (D,P) , In) , Im) , (1)

where hp(·) can be defined in forms such as structural sim-
ilarity index measure (SSIM) [51, 63]. Recent multi-view
works [12,20,22,40,41,46,52,61] focus on improved mech-
anisms which, in inference time, enforce Eqn. 1. Typically,
they adopt an iterative and alternative optimization scheme,
minimizing Eqn. 1 by iteratively solving:

P† = argmin
P

hp (g (f (D,P) , Ij) , Ii)

D† = argmin
D

hp (g (f (D,P) , Ij) , Ii) .

(2a)

(2b)

For simplicity, Eqn. 2 is written with two-view inputs.
Interestingly, their optimization is primarily for pose esti-
mation. If an optimal pose P† is given, video depth is esti-
mated through a single forward inference [12,20,22,40,41,
46, 52, 61]. In comparison, our method runs sequentially.
Given the input flow O and mono-depth initialization D∗,
we decouple the video depth estimation into two narrow-
view robust objectives:

P
†
, s† = argmin

p,s

(
he

(
P,O

)
+

λ · hc

(
f
(
D∗, p

(
P, s

))
,O

))
D† = argmin

D
hp

(
g
(
f
(
D∗, p

(
P, s

))
, Ij

)
, Ii

)
.

(3a)

(3b)
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Figure 3. Our algorithm takes two RGB inputs (Im, In), the initial mono-depth D∗, and flowmap O as inputs. Our proposed framework
consists of 2 key steps: (1) An improved five-point algorithm. Given flowmap O and mono-depth map D, apply consensus check over
randomly initiated normalized pose set P and its corresponding scale set S. (2) Residual video depth estimation with a cost volume
network. Between the two steps, we perform key-frame search if under insufficient camera translation, i.e., re-estimate flowmap and pose
with the next frame. Scale set S estimation and video depth D† estimation are further detailed in Fig. 4 and 6.

Function p(·) combines normalized pose P with scale
s: p

(
P, s

)
=

[
R s · t

]
. D∗ and O are initial mono-

depthmap and flowmap. D† and λ are the optimized video
depthmap and a predefined weighting parameter. Functions
he(·) and hc(·) are epipolar and projection consistency con-
straints detailed in Sec. 3.1.

The rest of the section presents our sequential pose and
video depth estimation. We discuss about the equality be-
tween scale and depth learning at the end of the section. The
overall framework is illustrated in Fig. 3.

3.1. Pose Estimation
We optimize Eqn. 3a in camera pose estimation. Given

the flowmap O and mono-depthmap D∗, we reformulate
the five-point [29] algorithm with RANSAC [13] to include
an additional projection consistency constraint. Specifi-
cally, for each normalized pose P initiated by the five-point
algorithm, a pixel-wise camera scale is determined given
the pixel-wise depth and flow pair. The optimal scale is
therefore selected by voting, see Fig. 4. This enables us to
include a projection constraint in addition to the epipolar
constraint during the RANSAC consensus checking.
Random Normalized Pose Initiates. We denote the Nk

pixels randomly sampled from frame Im, flowmap O and
monocular depthmap D∗ as {p}, {o} and {d}. Then frame
In’s corresponded pixels {q} are given as {qk | qk =
pk + ok, k ∈ Nk}, where Nk is the number of randomly
sampled correspondence. For simplicity, we assume the
RANSAC algorithm loops to the max iteration number Nr,
where r indexes each RANSAC loop. Meanwhile, in each
loop, a quick chirality check [29] is applied to convert the
essential matrix to the normalized pose. As such, we initiate
Nr random normalized pose with the five-point algorithm,
denoted as the set P = {Pr | r ∈ Nr}.
Pixel-wise scale estimation. Given any normalized pose
P =

[
R t

]
, the depth value of each pixel can deter-

mine a camera scale. We name the set of camera scales
determined by each depth pixel as pixel-wise scale s. Set
p =

[
px py 1

]⊺
and q =

[
qx qy 1

]⊺
are the homoge-

neous pixel coordinates in Im and In, connected by flow O
at pixel p. Set camera projection as:

d′q = d′
[
qx qy 1

]⊺
= dKRK−1 p+ sKt. (4)

The d and d′ refer to depth at frame Im and In. By arranging
Eqn. 4, we acquire the relationship between depth d and
scale s at horizontal and vertical directions separately as:

dx=s
x− qx · z

qxm3
⊺ p−m1

⊺ p
, dy=s

y − qy · z
qym3

⊺ p−m2
⊺ p

. (5)

Here
[
m1 m2 m3

]⊺
=KRK−1,

[
x y z

]⊺
=Kt.

As in Fig. 4 (a), optical flow induced pixel q may not reside
on the epipolar line lp, making dx and dy possess different
values. To pursue a unique mapping between scale s and
depth d, we compute the optimal pixel-wise scale s by min-
imizing the L2 distance between input monocular depth d
and dx, dy:

s = argmin
s

(dx − d)
2
+ (dy − d)

2
. (6)

Then the pixel-wise mapping from depth d to scale s is:

log(s) = log(d) +m, (7)

where m = − log 1
2

(
x−qxk ·z

qxkm
⊺
3 pk−m⊺

1 pk
+

y−qyk ·z
qykm

⊺
3 pk−m⊺

2 pk

)
.

The proof is detailed in the supplementary material.
Camera Scale Estimation. Next, we determine the unique
camera scale sr from the pixel-wise scale set sr under nor-
malized pose P

r
by majority voting, as shown in Fig. 4.

Specifically, we produce the histogram of the scale set sr as
a B-dim vector r. For the bth element of r, its value r[b] is:

r[b] =

Nk∑
k=1

(
b

B
· smax ≤ sk <

b+ 1

B
· smax

)
. (8)

Hyper-parameter smax is the max scale value we record. The
optimal scale sr under normalized pose P

r
is then:

sr = smax
b+ 0.5

B
, b = arg max

0≤b<B
r[b]. (9)

To this step, for the Nr randomly sampled normalized pose
P in RANSAC, we conclude the corresponded Nr scale es-
timate, denoted as set S = {sr | r ∈ Nr}.
Consensus Check. As in Fig. 5, we introduce an additional
projection constraint hc to stabilize the five-point algorithm
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(a) Pixel-wise scale estimation (b) Camera scale estimation

Figure 4. We randomly sample Nk pixels {p} on frame Im,
marked in orange. Corresponded frame In’s pixels {q} are de-
termined by flowmap O. Sampled depth is {d}. We illustrate: (a)
Due to the noise, corresponded pixel q does not comply projective
geometry, i.e., q resides outside the epipolar line lp. In Eqn. 6, we
approximate the scale determined by pixel q with two pixels qx

and qy , residing horizontally and vertically on epipolar line lp. (b)
One normalized pose P

r
is initiated by five-point algorithm. Next,

with Eqn. 7, we acquire a pixel-wise scale set sr . After producing
the B-dim histogram of scale set sr , the optimal scale sr is deter-
mined by majority voting.

in indoor videos. For the rth randomly sampled normalized
pose P

r
, given {p}, {q}, {o} and {d}, the original epipolar

constraint he(P
r
, {o}) and the additional projection consis-

tency constraint hc(P
r
, sr, {p}, {q}, {d}) are:

he(P
r
, {o}) =

Nr∑
k=1

(
q⊺
kK

-⊤EK⊺pk < ke
)

hc(P
r
, sr, {p}, {q}, {d}) =
Nr∑
k=1

(
∥f(dk, p(P

r
, sr))− qk∥2 < kc

)
.

(10a)

(10b)

Here E is an essential matrix, expressed by the matrix
form of the cross product [ ]× as E = R[t]×. The final
consensus check number is a weighted summation of the
two as h(P

r
) = he(·) + λ · hc(·).

The optimal normalized pose P
†

and scale s† is selected
with the highest consensus number. The RANSAC stop cri-
teria are updated with the new constraint h(·).
Key-frame Search. In Fig. 5, scene depth becomes ir-
relevant with scene motion under an extreme pure rotation
movement. Without the loss of generality, more 3D infor-
mation is revealed from two-view triangulation as the cam-
era translation a.k.a., baseline, increases. For video cap-
tured by a moving platform or a service robot, e.g., KITTI
dataset, there typically exists sufficient camera translation
between consecutive frames. However, the camera rota-
tion frequently dominates the movement for the video taken
by a hand-held camera, e.g., NYUv2 and ScanNet dataset.
We alleviate the issue by actively seeking sufficient cam-
era translation. Automatically, as in Fig. 3, we repeat the
flow initialization step and pose estimation step with the
next frame if the estimated scale s† < ks, where ks is a
predefined minimum translation.
Scale Update. The camera scale s† will be updated with
the finetuned video depthmap D† using Eqn. 8 and Eqn. 9
if odometry is desired.

(a) KITTI Flow (b) NYUv2 Flow

Figure 5. Outdoor video motion patterns differ from indoor.
Marked in yellow arrows, we visualize an indoor and outdoor
scene motion. In (a), a translation dominates the scene motion.
In (b), a rotation dominates the scene motion. Comparing (a)
and (b), as rotation accumulates, the flow becomes irrelevant to
scene depth, making image clues less usable for depth. Further,
it degenerates the nonlinear projection transformation to the linear
affine transformation, undermining the epipolar constraint based
five-point algorithm. We thus introduce the additional projection
constraint hc in Eqn. 10. Further, we actively seek keyframes un-
til sufficient translation movement is detected. We plot the entire
odometry on the corner of (a) and (b). As the color changes from
blue to red, more scene motion is from the rotation movement.

3.2. Video Depth Estimation
To this end, we have optimized Eqn. 3a. To optimize

Eqn. 3b in inference, we adopt a cost volume based net-
work, taking in an initial monocular depthmap D∗, pre-
dicted pose P† = p(P

†
, s†) and a frame pair Im/In (see

Fig. 3). We consider video depth estimation a log space
residual learning over its monocular depth initialization D∗.
The meaning of residual is two-fold.
Construct Cost Volume VD. We sample residual depth
candidates D of size kD around initial monocular depthmap
D∗ with predefined interval ∆d as:

D =
{
Di ∥Di = exp(∆di) ·D∗}kD

i=1
. (11)

We then sample feature map Fn according to D and pre-
dicted pose P as:

F∗
d =

{
F∗

i ∥ F∗
i = g(f(Di,P),Fn)

}kD

i=1
. (12)

VD is then constructed by stacking F∗
d and the repetition of

input feature Fn, illustrated in Fig. 6.
Estimate Residual Depth. The cost volume is decoded
by ResDepth network D, yielding a log space residual
depthmap ∆D for monocular initial D∗, preparing the fi-
nal video depthmap D as:

D† = D∗ · exp(∆D) = D∗ · exp(D(VD)). (13)

Supervision Signal. Following [27], we use a scale-
invariant loss, to supervise the training of the depth network,

D(w)=
1

n

n∑
i=1

w2
i−

(1
n

n∑
i=1

wi

)2

+(1−µ)
( 1

n

n∑
i=1

wi

)2

, (14)

where wi = log di − log d̃i, n is the number of pixels and
d̃i is groundtruth depth.
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Figure 6. Illustration of video depth estimation. The shared en-
coder is drawn as one for simplicity in Fig. 3. The encoder and de-
coder of video depth network D are plotted. We dynamically sam-
ple the residual depth candidates D in log space centering around
the initial depthmap D∗. Then we construct cost volume VD with
predicted normalized pose p† and the aligned scale s†. Finally, we
predict residual depth ∆D in log space through network D.

3.3. Equality of Scale and Video Depth Learning
In Fig. 3, scale is required before video depth estima-

tion. Though scale can be optimized over an initial mono-
depthmap, augmenting it with a network seems a natural
choice. In this section, we show the equality of video depth
and scale learning and its implication to the choice of scale
estimation. Following Eqn. 7, we define the optimal scale
s∗ as the average of pixel-wise scale s:

log(s∗) =
1

n

n∑
i=1

log(si) =
1

n

n∑
i=1

(
log(di) +mi

)
. (15)

We then show that the learning objective for scale s∗ can be
approximated as the learning objective for video depth and
a noise term contributed by normalized pose P and optical
flow O estimate:

Ls∗ =∥ log(s̃)− log(s∗)∥

≤ 1

n

n∑
i=1

∥ log(d̃i)−log(di)∥+∥ 1
n

n∑
i=1

(m̃i−mi)∥.

(16)
Here, s̃ and d̃ are groundtruth scale and depth. Estimating
scale, by minimizing Ls∗ , can be approximately achieved
by minimizing its upper-bound in Eqn. 16, thus converting
to video depth estimation. This indicates that a deep scale
estimator learns the same prior knowledge as a video depth
estimator. We empirically support our analysis by showing
that the framework in Supp Fig. 1 has no benefit in final
depth and scale performance, as in Tab. 5.

4. Experiments
We evaluate depth on KITTI and NYUv2 where both

video and monocular depth methods report their results.
We conduct indoor pose comparison on ScanNet as NYUv2
does not have pose groundtruth.
Implementation Details For both KITTI and NYUv2 ex-
periments, we train with the Adam optimizer [24] with a
learning rate of 1e−4. The training takes 20 epochs with a
batch size of 4. We train 2 days on 2 RTX 2080 Ti GPUs.
For the pre-computed initial monocular depthmap, we ap-
ply color augmentation to ensure consistent performance

between validation and training set. We use BTS [27] dur-
ing training but test against various mono-depth inputs. For
all three monocular methods, BTS [27], AdaBins [2], and
NewCRFs [58], we use the author released models. The
Monodepth2 [18] is re-trained by us. For flow, we adopt the
publicly available model of RAFT [42] trained using the
synthetic datasets [33]. On KITTI, we train with a cropped
320 × 576 resolution. On NYUv2, we train with the orig-
inal resolution. For both datasets, we test with their full
resolution. The residual depth candidates D with a size
of kD = 32. While selecting the random correspondences
from flowmap for pose estimation, we do not apply forward-
backward consistency [60] as the improvement does not
worth its running time. But we exclude the invisible area
and object edges in the next views. We use the OpenCV’s
EPnP [28] algorithm as a replacement if the five-point algo-
rithms fail.

4.1. Monocular Video Depth and Pose Estimation

KITTI Depth KITTI is a widely adopted benchmark
for outdoor scenes with stereo, LiDAR, and GPS/IMU
available. For fair comparison, we train with Eigen
split [9], evaluated on semi-dense groundtruth [45] under
Garg crop [15] capped at 80 meters. Tab. 1 reports results
in standard 7 metrics [9], with baselines from both single-
view and multi-view methods. We outperform all of them
by a substantial margin. Particularly, compared to 2-view
methods [20, 50], our method significantly reduces 66.7%
and 77.3% errors on the a1 metric (δ < 1.25). Addition-
ally, we are the first 2-view work to outperform the 5-view
SoTA performance [41], achieving a substantial improve-
ment of 60.9% (= 0.991−0.977

1−0.977 ) on a1 metric. Further, we
reduce 70.5% a1 metric error compared to our mono-depth
initialization BTS. Fig. 7 shows our improvement qualita-
tively. Finally, our performance gain over prior SoTA does
not attribute to monocular initialization. In Tab. 1, our result
still substantially outperforms DeepV2D with a lightweight
MonoDepth2 monocular initialization.
NYUv2 Depth NYUv2 dataset [35] has RGB and depth
image pairs in indoor environments. Our experiment fol-
lows the standard train/test split [9]. As NYUv2 is captured
by a handheld camera, rotation frequently dominates cam-
era motion across frames, which is undesirable for video
depth estimation (see Fig. 5). Despite all the hurdles, our
2-view performance grouped with NewCRFs [58] still sub-
stantially outperforms 8-view DeepV2D, reducing 34.1%
error on a1 metric. Compared to its 2-view performance,
the improvement goes up to 46.3%.

Further, our method shows great generalization ability
under different mono-initialization. Though trained with
BTS, when tested with BTS, AdaBins, and NewCRFs, we
reduce error on a1 metric by 15.7%, 20.6%, and 16.7%,
respectively. However, this performance gain is less than
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Method Venue Frame Labels Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

DORN [14] CVPR’18 1 D 0.069 0.300 2.857 0.112 0.945 0.998 0.996
BTS [27] Arxiv’18 1 D 0.059 0.245 2.756 0.096 0.956 0.993 0.998

AdaBins [2] CVPR’21 1 D 0.058 0.190 2.360 0.088 0.964 0.995 0.999
NeWCRFs [58] CVPR’22 1 D 0.052 0.155 2.129 0.079 0.974 0.997 0.999
Ours + BTS [27]

CVPR’23
2 D+F 0.037 0.110 1.809 0.059 0.987 0.998 0.999

Ours + AdaBins [2] 2 D+F 0.045 0.108 1.817 0.064 0.987 0.998 0.999
Ours + NeWCRFs [58] 2 D+F 0.041 0.107 1.748 0.059 0.989 0.998 0.999

BA-Net [40] ICLR’19 5 D+P 0.083 0.025 3.640 0.134 - - -
SfMR [50] CVPR’21 2 D+F+P 0.055 0.224 2.273 0.091 0.956 0.984 0.993

DeepMLE [8] Arxiv’22 2 D+F+P 0.060 0.203 2.257 0.089 0.967 0.995 0.999
DRO [20] Arxiv’21 2 D+P 0.047 0.199 2.629 0.082 0.970 0.994 0.998

MaGNet [1] CVPR’22 3 D 0.051 0.160 2.077 0.079 0.974 0.995 0.999

DeepV2D [41] ICLR’20 2 D+P 0.064 0.350 2.964 0.120 0.946 0.982 0.991
5 D+P 0.037 0.174 2.005 0.074 0.977 0.993 0.997

DeepV2cD [22] ICPRAI’22 5 D+P 0.037 0.167 1.984 0.073 0.978 0.994 -
Ours + MonoDepth2 [18]

CVPR’23

2 D+F 0.032 0.106 1.889 0.057 0.986 0.998 0.999
Ours + BTS [27] 2 D+F 0.029 0.098 1.729 0.053 0.989 0.998 0.999

Ours + AdaBins [2] 2 D+F 0.030 0.089 1.655 0.052 0.989 0.998 0.999
Ours + NeWCRFs [58] 2 D+F 0.028 0.087 1.597 0.049 0.991 0.998 0.999

Table 1. KITTI Monocular Video Depth Evaluation on Eigen split [9] with Garg crop [15] capped at 80 meters using semi-dense
groundtruth [45]. The lower half table applies median scaling [62] to the predicted depths to compare with SfM methods. [Key: Best,
Second Best except our work, Frame=the number of frames used in inference, Labels=required supervision in training, D=semi-dense
depthmap, P=IMU pose, F=synthetic optical flow datasets [4, 33]]

Method Venue Frame Abs Rel Sc Inv RMSE log10 δ < 1.25 δ < 1.252 δ < 1.253

DORN [14] CVPR’18 1 0.115 - 0.509 - 0.828 0.965 0.992
BTS [27] Arxiv’18 1 0.108 0.115 0.404 0.047 0.885 0.978 0.994

AdaBins [2] CVPR’21 1 0.103 0.106 0.370 0.044 0.903 0.983 0.997
NewCRFs [58] CVPR’22 1 0.095 0.090 0.334 0.041 0.922 0.992 0.998

Ours + BTS [27]
CVPR’23

2 0.102 0.098 0.356 0.044 0.903 0.984 0.997
Ours + AdaBins [2] 2 0.095 0.089 0.326 0.040 0.923 0.990 0.998

Ours + NewCRFs [58] 2 0.090 0.080 0.306 0.038 0.935 0.995 0.999

DfUSMC [21] CVPR’16 Multi 0.447 0.456 1.793 0.169 0.487 0.697 0.814
DeMoN [46] CVPR’17 2 0.144 0.179 0.775 0.061 0.805 0.951 0.985

DeepV2D [41] ICLR’20 2 0.094 0.133 0.521 0.403 0.905 0.975 0.992
9 0.061 0.094 0.403 0.026 0.956 0.989 0.996

Ours + BTS [27]
CVPR’23

2 0.070 0.098 0.280 0.030 0.948 0.991 0.998
Ours + AdaBins [2] 2 0.064 0.089 0.255 0.027 0.961 0.994 0.999

Ours + NewCRFs [58] 2 0.057 0.080 0.230 0.025 0.971 0.996 0.999

Table 2. NYUv2 Monocular Video Depth Evaluation. Results in the lower half table apply median scaling in evaluation. Results of
DeMoN [46] is from [41]. Results of 2-view DeepV2D [41] are evaluated with the published code and pretrained model. [Key: Best,
Second Best, Frame=the number of frames in inference]

Seq Err BetterGen∗ [60] LTMVO∗ [64] DfVWild∗ [19] MLF-VO [23] SfMR [50] LSR∗ † [47] Ours Seq Err DeepV2d [41] Ours

09
terr 6.03 3.49 3.10 3.90 1.70 1.19 1.08± 0.07

00
terr 3.80 1.19± 0.04

rerr 0.44 1.03 - 1.41 0.48 0.30 0.28± 0.02 rerr 1.66 0.39± 0.02

10
terr 4.66 5.81 5.40 4.88 1.49 1.34 1.29± 0.04

05
terr 3.25 1.36± 0.05

rerr 0.62 1.82 - 1.38 0.55 0.37 0.36± 0.02 rerr 1.34 0.40± 0.03

Table 3. KITTI Odometry Evaluation. Results in the right of the table are trained on Eigen split [9] and tested on odometry sequence 00
and 05. Performance is reported with 5 random runs. Self-supervised methods are marked with *. † uses test time parameter fine-tuning
(PFT) [47]. [Key: Best, Second Best]

in KITTI (15.7% to 70.5%), indicating our method shines
more on videos with sufficient translation.

KITTI Pose KITTI Odometry includes 20 driving videos
with 11 having odometry groundtruth. Our experiment in-
cludes both self-supervised and supervised methods and re-
ports standard metrics [19]. For methods [19, 23, 47, 50, 60,
64], we follow [19] to train/test on sequences 00-08/09-10.
For DeepV2D [41], as trained on Eigen split [9], we test
on unseen sequences 00 and 05. As odometry from self-
supervised methods lacks real-world scale priors, we align

prediction against groundtruth trajectory by applying 7 DoF
transformation [60] during inference. In Tab. 3, we outper-
form SoTA on rotation and translation errors.

ScanNet Pose ScanNet [5] is a large indoor dataset with
groundtruth depthmap and camera trajectory. We follow
DeepV2D’s test protocol, train on NYUv2, and test on
2, 000 sequences of ScanNet. We outperform 8 frames
DeepV2D-8 except for the metric ‘tr. (deg)’. Further, our
method achieves solid improvement over 2-view DeepV2D.
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(a) RGB Input It (b) DeepV2D [41] (c) Init D∗ (d) Finetuned D† (e) Residual (meter)

Figure 7. Subplot (e) shows residual depth D∗ · (exp(∆D) − 1) in meter. In Green boxes, mono-depthmap gets improved after residual
estimation. In Pink boxes, artifacts around moving foreground objects are avoided.

ScanNet DeMoN [46] BA-Net [40] DSO DeepV2D-2 DeepV2D-8 FivePoint Ours
Rotation (degree) ↓ 3.791 1.009 0.946 0.806 0.714 0.671 0.621 ± 0.007
Translation (degree) ↓ 31.626 14.626 19.238 13.259 12.205 13.878 12.840 ± 0.161
Translation (cm) ↓ 15.500 2.365 2.165 1.726 1.514 1.524 1.440 ± 0.011

Table 4. ScanNet Pose Evaluation. DeMoN, BA-Net, and DSO are trained on ScanNet. DSO is evaluated only on success cases.
DeepV2D and ours are trained on NYUv2 and tested on ScanNet. DeepV2D-2/8 are DeepV2D taking 2 or 8 frames. FivePoint is the
baseline five-point algorithm with RANSAC. Our result is reported with 5 random runs. [Key: Best, Second Best]

K
IT

T
I ResDepth PoesEstimation ScaleNet Abs Rel Sq Rel RMSE RMSE log δ < 1.25 Seq-00 terr

✓ 0.070 0.275 2.405 0.093 0.959 1.55
✓ ✓ 0.038 0.110 1.821 0.060 0.987 1.55
✓ ✓ ✓ 0.037 0.117 1.841 0.059 0.986 1.24

Table 5. Ablation on Outdoor Video Depth Estimation. [Key: ‘ResDepth’= Residual depth learning (Sec. 3.2). ‘PoseEstimation’= Pro-
posed Pose Estimation Method (Sec. 3.1). ‘ScaleNet’=Further refine pose scale with an additional ScaleNet (detailed in Supplementary).]

N
Y

U
v2

FivePoint PoesEstimation KeySearch Abs Rel Sc Inv RMSE log10 δ < 1.25
✓ 0.063 0.087 0.248 0.027 0.964

✓ 0.061 0.083 0.239 0.026 0.968
✓ ✓ 0.057 0.080 0.230 0.025 0.971

Table 6. Ablation on Indoor Video Depth Estimation. [Key: ‘FivePoint’=Baseline Five-point algorithm with RANSAC. ‘PoseEstima-
tion’=Proposed Pose Estimation Method (Sec. 3.1). ‘KeySearch’=Keyframe search. Bold marks the best score.]

4.2. Ablation Study
The Equality between Scale and Video Depth Learning
In Tab. 5 row 2 & 3, we ablate pose & depth performance
if augment pose scale learning with an additional ScaleNet
(detailed in Supplementary). Clearly, the added ScaleNet
learns additional scale prior, reducing terr from 1.55 to 1.24.
However, the improved pose scale does not benefit video
depth due to the equality between their learning objective.
Further, this benefit diminishes after updating the scale with
video depthmap (1.19 from Tab. 3 and 1.24 from Tab. 5).
This is expected, as the LiDAR depth possesses less noise
than IMU and GPS pose. Thus we empirically demonstrate
the equality between scale and video depth learning.
Residual Depth Estimation Estimating video depth as
logged residual improves cost volume sampling efficiency,
supported by our improvement over SfMR [50] in Tab. 1
and the performance gap in row 1 and 2 of Tab. 5. Mean-
while, it avoids artifacts in moving objects, as in Fig. 7.
Pose Estimation and Key-frame Search Compared to us-
ing baseline five-point algorithm over flow estimate [50,60],
our proposed method benefits both pose and depth perfor-

mance, as shown in Tabs. 4 and 6. Also, ensuring suffi-
cient camera translation shows noticeable improvement, as
shown in Tab. 6.
Computational Efficiency We compare the running time
to DeepV2D [41] on an RTX 2080 Ti GPU, for 192× 1088
images. In Fig. 3, our inference has 1 + 2 steps: initializa-
tion of flow [42] and mono-depth [27], pose estimation, and
video depth estimation. Each takes 0.124 + 0.063, 0.253,
0.058s respectively, in total 0.498s. In comparison, 5-view
DeepV2D takes 1.619s.

5. Conclusions
Video depth estimation in prior works is solved as a sim-

plified SfM problem. But video depth has fewer view an-
gles in video depth estimation. Thus, we decompose it into
two sub-tasks that are robust to deficient views, i.e., normal-
ized pose, and residual depth estimation. We connect the
two tasks with a scale alignment algorithm. The proposed
framework improves both pose and video depth.
Limitations Our method depends on multiple modality ini-
tializations. A joint model is preferred.
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