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1. Proof of Local Optimality
We give a brief proof that, under constructed transfor-

mation set {φ(x | q,p)}, the proposed edge-edge consis-
tency lc(Γ(Ts | Td), T∗d), can achieve the local optimality
when the segmentation-augmented (or morphed) disparity
edge points satisfy T∗d = {p |

∥∥∥∂I∗d̂(p)∂x

∥∥∥ > t
1+t · k1}.

To prove this, let’s start by evaluating the gradient of
morphed disparity map I∗

d̂
at a semantic edge pixel q:
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Note if x = q, φ(x | q,p) = p. If
∂I∗

d̂
(x)
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is suffi-
ciently larger than a threshold, a semantic edge pixel q is
also an edge pixel in the morphed disparity map, leading to
the perfect edge-edge consistency for q. We now derive the
two terms in Eq. 1, in order to find that threshold.

When x is on the line segment−→qp, its projection x′ over-
laps with itself. We can thus compute ∂φ(x)
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Using ∂φ(x)
∂x
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= t
1+t with Eq. 1, we have:
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where the inequality is derived from Eq. 1 of the main pa-
per, which defines the threshold k1 for detecting edge pix-
els on the original disparity map. Here, in morphed dis-
parity map I∗

d̂
, since every counted semantic edge pixel

q ∈ Γ(Ts | Td) in computing the consistency lc has a gra-
dient magnitude larger than the threshold t

1+t · k1, q over-
laps with the paired or matched depth/disparity edge pixel
p as well, i.e., T∗d = {p |

∥∥∥∂I∗d̂(p)∂x

∥∥∥ > t
1+t · k1}. Thus, in

morphed disparity map I∗
d̂

, semantic border overlaps with
depth borders, making proposed consistency measurement
lc hit local minimum 0:
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⇐⇒ ∀q ∈ Γ(Ts | Td), δ(q,T∗d) = min
{p∈T∗

d}
‖p− q‖

= ‖q− q‖ = 0

⇐⇒ lc(Γ(Ts | Td), I∗d) = 0.

(4)

This shows that, under the defined transformation, we are
realigning the depth edge set Ω to the segmentation edge set
Γd
s , making the edge-edge consistency a local optimality.

Note that the threshold t
1+t · k1 is not actually being

applied to the morphed disparity map for edge detection.
Rather, we derive it as the condition that will be naturally
satisfied in our work, when both the morph function and k1
threshold for disparity map depth estimation (Eq. 1 of the
main paper) are employed.
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Depth Decoder
layer k s c res input activation
upconv5 3 1 256 32 econv5 ELU[1]
iconv5 3 1 256 16 ↑ upconv5, econv4 ELU
upconv4 3 1 128 16 iconv5 ELU
iconv4 3 1 128 8 ↑ upconv4, econv3 ELU
disp4 3 1 1 1 iconv4 Sigmoid
upconv3 3 1 64 8 iconv4 ELU
iconv3 3 1 64 4 ↑ upconv3, econv2 ELU
disp3 3 1 1 1 iconv3 Sigmoid
upconv2 3 1 32 4 iconv3 ELU
iconv2 3 1 32 2 ↑ upconv2, econv1 ELU
disp2 3 1 1 1 iconv2 Sigmoid
upconv1 3 1 16 2 iconv2 ELU
iconv1 3 1 16 1 ↑ upconv1 ELU
disp1 3 1 1 1 iconv1 Sigmoid

Table 1: The network architecture of our decoder. k, s and c
denote the kernel size, stride and output channel numbers of
the layer, respectively. res refers to relative downsampling
scale to the input image. ↑ symbol means a 2× nearest-
neighbour upsampling to input.

2. Network details

Across our experiments, we use ImageNet [2] pretrained
ResNet18 and ResNet50 [6] as our encoder. Our decoder
structure is same as Godard et al. [5] and Waston et al. [10],
as detailed in Table 1. We also incorporate other prac-
tices such as color augmentation, random flip, edge-aware
smoothness and exclusion of stationary pixels.

3. More Ablations

In this section, we perform additional ablations to fur-
ther validate our proposed approach. We ablate (1) Our
proposed morph strategy achieves local optimality of edge-
edge consistency lc, and (2) The stereo occlusion mask M
boosts clear borders. All our ablations are conducted on
Eigen [3] test splits of KITTI [4].

Reducing edge-edge consistency via morphing: We plot
the edge-edge consistency loss lc under various edge de-
tection thresholds k1 in Fig. 1. We cross-validate morph-
ing (detailed in main paper Section 3.1) as a technique to
achieve local optimality of lc from Fig. 1 via showing con-
sistently decreased measurement lc after applying morphing
once and twice. The lower loss in Fig. 1 shows that our
models are more consistent with segmentation compared
to [10]. Additionally, increased threshold k1 leads to thinner
edges and neglects distant objects, which have two effects.
First of all, thinner edges make edge-edge consistency to be
more challenge, thus higher loss values. Second, focusing
on close-range objects can best leverage the high-quality
segmentation, which leads to larger improvement margin
over the baseline [10].

Figure 1: We plot the edge-edge consistency lc between
Watson19 [10] and ours at different edge detection thresh-
olds k1. Additionally, we show the change of consistency lc
after applying morph strategy once and twice during infer-
ence, in addition to using our learned network.

Figure 2: The effects of proposed stereo occlusion mask
M. We plot the trend of the average detected edge num-

bers 1
n

∑i=n
i=1 (‖

∂Ii
d̂
(x)

∂x ‖ > k1) at different edge detection
thresholds k1, where n is for total number of tested images.

Stereo Occlusion Mask: In Fig. 5, we observe bleeding
artifacts universally exist in stereo-based systems [8, 9, 10].
In [10], the utilization of stereo proxy label partially sup-
presses it as its additional constrain on the low texture area.
[5] reduces the artifacts via supervision from videos. In
comparison, without any additional supervision sources,
we eliminate it via the proposed stereo occlusion mask
M. As an example, the top-right subfigure of Fig. 3
reveals a clearer and thinner border when comparing lr
against lr + M. This motivates us to treat “thinness” as
a measurement and use the average detected edge number
1
n

∑i=n
i=1 (‖

∂Ii
d̂
(x)

∂x ‖ > k1) as an approximated metric of bor-
der clearance, as shown in Fig. 2. As expected, after apply-
ing the mask M, edges become more “thinner” and clearer,
reflected as the decreased number of detected edges.

More quality comparisons: We show additional qualita-
tive examples when different loss are applied in Fig. 3. We
further provide qualitative comparisons against the baseline
method [10] in Fig. 4, and other methods in Fig. 5.
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Figure 3: On the left column, explicit utilization of segmentation information helps recovering more details. On the the right,
we show blobbed border artifacts in the low texture areas, caused by noisy predicted segmentation labels and low constrain
from the photometric loss lr. We suppress the artifacts by the incorporation of texture weight w and utilization of proxy
stereo labels [7, 10].
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Figure 4: More comparison between ours model and the state-of-the-art baseline [10]. Content within yellow box is zoomed
in and attached to the right. We show significantly improved border quality compared to the method of [10].
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Figure 5: Comparison against other state of the arts [5, 8, 9, 10]. Our method reconstructs more object details compared to
previous works and possesses the most clear border overall.
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