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Abstract—Indoor video surveillance systems often use the
face modality to establish the identity of a person of interest.
However, the face image may not offer sufficient discriminatory
information in many scenarios due to substantial variations in
pose, illumination, expression, resolution and distance between
the subject and the camera. In such cases, the inclusion of an
additional biometric modality can benefit the recognition process.
In this regard, we consider the fusion of voice and face modalities
for enhancing the recognition accuracy. The main contribution
of this work is assembling a multimodal (face and voice), semi-
constrained, indoor video surveillance dataset referred to as the
MSU Audio-Video Indoor Surveillance (MSU-AVIS) dataset. We
use a consumer-grade camera with a built-in microphone to
acquire data for this purpose. We use current state-of-art deep-
learning based methods to perform face and speaker recognition
on the collected dataset for establishing baseline performance.
We also explore multiple fusion schemes to combine face and
speaker recognition to perform effective person recognition on
audio-video surveillance data. Experiments convey the efficacy
of the proposed multimodal fusion scheme (face and voice) over
unimodal approaches in surveillance scenarios. The collected
dataset is being made available for research purposes.

I. INTRODUCTION

A number of law enforcement operations utilize video
surveillance as a tool to either pro-actively mitigate potential
threats (e.g., by detecting suspicious behavior) or reactively de-
termine causal factors of an event (e.g., identifying suspects in
a crime scene). A typical automated surveillance tool consists
of a camera operating in the visible or near infrared spectrum,
that acquires a video stream pertaining to a scene, which
is subsequently processed by computer vision algorithms for
scene analysis and understanding. In some cases, the video
surveillance tool may incorporate a biometric module for
determining the identity of individuals in a scene. The face
modality is a viable modality in such biometric surveillance
systems since it lends itself to performing recognition-at-a-
distance.

In some indoor surveillance scenarios, the in-built micro-
phone in consumer grade cameras can potentially capture the
voice of a person of interest. The availability of the voice
modality enables speaker recognition to be performed on the
speech sample of subjects and this could be combined with
face recognition to generate a final decision. Such a biometric
system, based on a multi-modal approach, is expected to be
more robust to variations in the input data.

In this work, we assemble a multi-modal face and voice
dataset for research purposes. We capture both video (face
modality) and audio (voice modality) data in a simulated
indoor CCTV surveillance setup. The motivation of this work
is to generate a dataset that represents the challenges of
performing face and speaker recognition in this type of a
scenario.

II. RELATED WORK

Multi-modal biometric fusion has been shown to be benefi-
cial in different tasks [11], [25]. In biometrics, fusion [21] of
different biometric modalities, including face and voice, has
been explored at multiple levels such as data-level, feature-
level, score-level, rank-level, and decision-level. Data-level
fusion entails fusing multiple instances of raw data obtained
using different sensors or the same sensor [20]. Feature-level
fusion refers to the consolidation of feature sets extracted from
different modalities to produce a new feature set [19]. Score-
level fusion combines the match scores generated by multiple
biometric matchers to render the final decision [10]. Rank-
level fusion combines the multiple ranks associated with each
identity in a gallery database, where each rank is computed
by a different biometric identification method [2]. Decision-
level fusion pools the decision output by different biometric
matchers and uses techniques such as majority voting to
generate the final decision [29].

Among various fusion strategies, score-level fusion has
become popular since it represents a good trade-off between
information availability and information entropy. On one hand,
most commercial biometric systems do not provide access to
the raw data nor the feature sets extracted from the data. On
the other hand, while final decisions and ranks are readily
accessible in most commercial systems, their entropy is rather
limited compared to scores.

With the advent of hand-held and portable devices capable
of capturing biometric data, research has focused toward utiliz-
ing such devices for biometric applications. In [8], the authors
investigate the efficacy of existing face and speaker recognition
algorithms when deployed on hand-held devices, equipped
with lower quality audio/video capture hardware. The scores
output by the speaker and face systems are fused using linear
weighted summation, where the weights are learned using
the minimum classification error principle on a training set.



Table I
SUMMARIZING THE CHARACTERISTICS OF EXISTING MULTI-MODAL FACE AND VOICE DATASETS.

Dataset Subjects
Sessions Samples/Session Data specs

Covariates
Face Voice Face Voice Frame/Video Audio

M2VTS [17] 37 5 5 1 1 286 × 350 × 1 16bit, 48kHz Face pose variation, clean audio, text dependent
XM2VTS [15] 295 4 1 2 4 576 × 720 × 3 16bit, 32kHz Face pose variation, clean audio, text dependent

BANCA [5] 52 12 12 2 2 - 16bit, 32kHz Frontal face, clean & degraded audio, text independent
VidTIMIT [23] 43 3 3 1 3 (approx.) 512 × 384 × 1 16bit, 32kHz Face pose variation, clean audio, text dependent
MOBIO [13] 160 6 6 5 21 64 × 80 × 1 48kHz Frontal face, clean audio, text independent
MSU-AVIS
(proposed) 50 3 3 12 12 1920 × 1080 × 3 48kHz

Face pose-expression-distance variation, indoor,
clean & degraded audio, text independent

Further extending this idea of user authentication on hand-held
devices, the authors in [14] implement a bi-modal biometric
authentication scheme on a smartphone. Speaker recognition is
performed using the i-Vector Probabilistic Linear Discriminant
Analysis (PLDA) method, while face recognition is accom-
plished using a histogram of Local Binary Pattern (LBP)
features. The scores from both methods were then multiplied
to obtain the final fused score.

Technological improvements [1] in audio-visual acquisition
devices as well as processing algorithms have made video-
based biometric applications feasible, where a synchronized
audio-video stream can be used to identify a person more
effectively than using a static face image and an audio sample
taken separately. Further, such systems offer resilience to spoof
attacks and often have better data quality leading to improved
performance. Poh et al. [18] proposed a discriminative video-
based score-level fusion algorithm to leverage the temporal
relevance in the classification scores that vary with time across
the video frames, thereby improving the performance over
traditional rule-based fusion strategies in a video-based setting.

Authors in [3] use the speech and face modalities together
to measure audio-visual synchrony for talking-face identity
verification. While the work in their paper is aimed at
improving the robustness of audio-visual biometric systems
against impostor attacks, the authors also claim improved
biometric verification performance by fusing the speech and
face recognition systems using an SVM.

Degradations in biometric signals are known to be a major
contributing factor to poor performance in biometric systems.
For example, background noise can lead to poor-quality audio
signals and adverse illumination can impede the usability of
facial imagery. However, fusion based approaches, such as in
[12], [16], [24], have leveraged the quality of the raw biometric
data to control the influence of each individual biometric
modality in a multi-modal fusion framework.

In [28], the authors show the effectiveness of fusing face and
voice over unimodal biometrics in adverse outdoor situations,
where the quality of the biometric signal varies vastly depend-
ing upon the data acquisition environment. Multi-modal face
and voice biometrics is also being used in consumer appli-
cations [1] to boost security against spoof attacks, especially
in scenarios where single-factor biometric solutions are more
vulnerable to such attacks.

III. MSU-AVIS DATASET

The data collection conducted in this work involved acquir-
ing the audio-visual data of subjects freely walking in an in-
door environment. The resultant dataset is referred to as MSU-
AVIS (MSU Audio-Visual Indoor Surveillance). The purpose
of the data collection was to mimic a real-world surveillance
scenario in a semi-constrained indoor environment. Such a
scenario is often encountered in public buildings and grocery
stores. In these scenarios, face images exhibit variations due to
occlusions, pose, indoor-illumination, expressions, accessories,
etc. Similarly, audio samples exhibit variations due to distance
of subject from the microphone, indoor reverberations, back-
ground noise, etc. However, since this dataset is designed to
mimic an indoor surveillance scenario, it excludes certain chal-
lenges that are prevalent in an outdoor surveillance scenario
such as unconstrained natural illumination. Thus, we use the
term semi-constrained to refer to our data acquisition setup.

A. Data collection scenario

An office environment is used for the data collection as seen
in Fig. 1. The scenario involves two subjects. The first subject
referred to as the “target”, plays the role of the speaker, who
talks throughout the duration of the video. The second subject
plays the role of a “listener”, who only listens to what the
target has to say. The main role of the listener is to control
the location where the speech between the two subjects occurs.
For example, if the listener is seated far away from the camera,
it will force the target to also be away from the camera. Our
goal is to determine the target’s identity by utilizing audio-
visual cues obtained via the camera and microphone.

B. Data collection setup

We used a web-cam (Logitech C920 HD Pro) to collect
probe data, by fixing it at a height of 240cm from the ground.
It has built-in dual stereo microphones that are used to record
the audio in the room. When acquiring some of the videos
in the dataset, we replaced the built-in microphones with a
lower quality microphone that picked up surrounding noise at
a higher rate. This introduced some challenges in detecting
speech corresponding to the target. Further, the target was
asked to speak freely (text-independent) when acquiring the
probe surveillance videos. For assembling the gallery face
images and audio, we used the same web-cam, with the height
of the camera set to match the height of the target subject.
When collecting the gallery audio, the speech was scripted



Figure 1. Sample frames from the MSU-AVIS dataset.

(text-dependent), where the target was required to select a
short script at random from a list of five scripts.

C. Data collection statistics and challenges

We collected data from 50 subjects (among which 16 are
female). Some of the major challenges observed in the MSU-
AVIS dataset compared to existing multi-modal face and voice
datasets are summarized in Table I and described below.
• Some subjects spoke with a soft voice leading to extensive
voice activity detection challenges.
• Some subjects spoke for a short period of time, while
others spoke throughout the duration of the video, thereby
creating audio data imbalance across subjects.
• Nearly 30% of the videos were collected when using
a microphone that recorded some of the background noise
thereby making speaker recognition more challenging.
• Due to the semi-constrained nature of the data collection,
the size of faces varied extensively depending upon the stand-
off distance of the subject from the camera. There were also
large variations in subject pose with respect to the camera.
• Some subjects spent long periods of time with the back of
their heads toward the camera, thus rendering those frames un-
usable for face recognition and relying on speaker recognition
alone.
Our goal is to overcome many of the aforementioned chal-
lenges by fusing both audio and face visual cues.

D. MSU-AVIS auxiliary dataset

Based on our preliminary results (described later), face
and speaker recognition performance were observed to suffer
extensively under certain scenarios. For face recognition ,
facial image resolution and large pose variation were among
the most challenging factors impacting matching performance.
On the other hand, the performance of speaker recognition was
observed to degrade when the target subject was far away from
the microphone.

Therefore, we assembled an auxiliary set, based on a subset
of 10 subjects from the MSU-AVIS dataset, who were in-
structed to mimic the challenges indicated above. Each subject
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Figure 2. An illustration of the DR-GAN face recognition network.

provided 36 video clips, with each clip being five seconds
long. The auxiliary dataset helps us to specifically evaluate
(results given later) the benefits of using multi-modal fusion
in scenarios where unimodal approaches fail to perform well.

IV. ALGORITHMS FOR FACE AND SPEAKER RECOGNITION

For recognizing the individuals in a video from the probe
dataset, we used both the face and voice modalities. Detection
and recognition of both face and voice modalities were done
separately and then fused at the score level.

A. Face Recognition

1) Face recognition method: For recognizing the subjects
in the videos based on their face, we chose the DR-GAN
approach [26], [27]. Among many pose-robust face recognition
algorithms [6], [31], DR-GAN is one of the latest recog-
nition networks that can simultaneously learn pose-invariant
representation and synthesize faces with arbitrary poses. As
visualized in Fig. 2, the framework consists of a generator
and a discriminator. The main network, generator G, consists
of an encoder and a decoder. The encoder takes a face image
as input and extracts a feature representation f(x) ∈ R320. The
feature is then input to the decoder in order to synthesize face
images of the same person in different poses, where the pose
is specified by a pose code c. The ability to generate images in
different poses allows the pose feature to be disentangled from
the identity representation, which improves face recognition
performance.

In addition to adversarial loss, i.e., Dgan [7] that distin-
guishes between real and synthetic images, in DR-GAN, the
discriminator D has two more tasks: Id classification Did and
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Figure 3. An illustration of the 1-D CNN based speaker recognition algorithm used in this work.

pose estimation Dpose. This helps to guide the generator G in
synthesizing images that are not only realistic but also preserve
the subject identity while manipulating the pose.

2) Computing the face recognition score on MSU-AVIS:
We used the DR-GAN network trained on ∼500k images
of celebrities from the CASIA-Webface dataset [30]. To be
able to perform face recognition on the video streams, we
initially conducted face detection on every frame. We used
the Tiny Face Detector [9], which has been demonstrated to
detect faces over a wide range of scales and poses. Each
detection is accompanied by a confidence score. A threshold
of 0.5 was utilized to eliminate false detections. Based on
prior knowledge of the dataset, there are three possible face
detection outcomes on every frame: a) Zero faces detected.
None of the faces are visible in the frame, as can be seen in the
second-row third-column of Fig. 1. b) One face detected. The
detected face could belong to either the target or the listener,
as can be seen in the first-row of Fig. 1. c) Two faces are
detected. One belongs to the target walking in the room, and
the other corresponds to the listener, as can be seen in the
second-row first-column of Fig. 1.

For recognition purposes, we retained all faces of the target
in every clip. In the case of (b) and (c), where one or two
faces are detected, we need to exclude face images belonging
to the listener and only consider those of the target. This
was done as follows. We used the gallery images of the
target to compute a feature vector representing the target’s
face using the DR-GAN approach [26]. By computing the
similarity scores between this feature vector and those of the
detected faces in the frame, we can easily determine which of
the faces belongs to the target. Finally, we utilize all n face
images {xi}ni=1 to generate a fused representation, which is the
weighted average of individual representations, and the weight
corresponds to the coefficient wi estimated by the multi-image
DR-GAN algorithm. The coefficient is related to image quality
(see [27]):

f(x1, x2, ..., xn) =

∑n
i=1 wif(xi)∑n

i=1 wi
. (1)

Now we can identify the target by computing similarity
scores between this target and the gallery images of the 50
subjects in MSU-AVIS.

B. Speaker Recognition
1) Speech segmentation: To perform speaker recognition

from videos, we first extract the audio clips from the video
files. The extracted audio is then processed using Voice Activity
Detection for segmenting out the speech frames from non-
speech frames in the audio clip.

2) Speaker recognition method: For recognizing the sub-
jects in the probe videos based on their voice, we use a 1-D
CNN based speaker recognition algorithm [4]. The segmented
audio from the dataset is processed to extract Mel-Frequency
Cepstral Coefficients (MFCC) and Linear Predictive Coding
(LPC) features separately. MFCC features are widely used
in audio-based biometric systems [22]. The MFCC and LPC
features are then stacked together forming a two channel LPC-
MFCC feature matrix. For extracting the MFCC and LPC
features, a window size of 20ms was chosen with a stride
of 10ms. For the MFCC features, 20 cepstral coefficients (in-
cluding the 0th order cepstral coefficient) along with their delta
features were extracted, resulting in a 40 dimensional MFCC
feature vector per frame. For the LPC features, we extract
40 coefficients. The decision to extract 40 LPC coefficients
(instead of the traditional 12 to 20 coefficients) was made
in order to facilitate compatibility with that of the MFCC
features. This was necessary for inputting the MFCC and LPC
features as a two-channel matrix into the 1D-CNN. The two
channel feature matrix from the input audio was then split
along frames, as discussed in [4], and then into fixed-length
patches. The two channel feature patches were input to the
1D-CNN as shown in Fig. 3.

3) Computing the speaker recognition score on MSU-AVIS:
For training the 1D-CNN, we used the MSU-AVIS’s gallery
videos. MSU-AVIS dataset has one gallery video per target
subject. Each video was split into multiple clips of length 5
seconds each. The 1D-CNN was trained using all the clips
from the gallery set of 50 subjects. As stated in [4], to compute
the match score between a probe audio X and each of the
gallery speakers, the probe audio is first split into multiple
overlapping patches, xi, i ∈ {1, 2, ..., N}, each of length 5
seconds, where N is the number of patches. For each xi, the
trained CNN outputs match scores, {si,j}, j = {1, 2, ..., C},
pertaining to the C speakers in the gallery set. Here, si,j is
the match score assigned to the jth gallery subject for the ith

probe patch.



Table II
FUSION RULES USED IN OUR EXPERIMENTS.

Sum Rule Fsum = S1 + S2

Product Rule Fprod = S1 × S2

Fusion Rule-1 F1 = S1 × S2 × e
−
(

S1−S2
S1+S2

)2
Fusion Rule-2 F2 = W1 × S1 +W2 × S2

Fusion Rule-3 F3 = W1 × S1 ×W2 × S2

Fusion Rule-4
F4 = (W1 × S1)× (W2 × S2)×

e
−
(

(W1×S1)−(W2×S2)
(W1×S1)+(W2×S2)

)2

The mean of the scores corresponding to all the patches
extracted from the audio clip is then computed as follows:

Sj =
1

N

N∑
i=1

si,j ,∀j.

Here, Sj is the score between the input probe audio sample
and the jth gallery subject.

V. MULTI-MODAL FUSION EXPERIMENTS

For combining the scores from the face recognition (S1)
and speaker recognition (S2) algorithms, we first normalize
the individual scores in the range [0, 1]. Further, quality values
for both face images (W1) and audio data (W2) were extracted
based on the degree of usable face data and speech data
available in each clip. Here, we define a video frame to be
usable when the face detector detects a face image and the
voice activity detector detects some speech. The face quality,
W1, is computed as the average of the coefficients w produced
by DR-GAN on all detected faces in the video clip. The speech
quality, W2, is computed as the proportion of the audio clip
where speech was detected by the voice activity detector.

For establishing baseline performance for score-based fu-
sion, we chose the sum rule and product rule. We further
explore four more score-based fusion rules - Fusion Rule-1
to Fusion Rule-4 - as shown in Table II.

1) Fusion Rule-1: In this rule, we introduce an exponential
weighting factor in the product rule. This weighting factor
is inversely proportional to the squared difference between
face and voice scores. The rationale behind this weighting
mechanism is to assign a lower weight to the fused scores in
cases where the mutual confidence of the modalities is low.
2) Fusion Rule-2: In this rule, we use the quality values
for face images (W1) and audio data (W2) along with their
corresponding match scores (S1) and (S2), in a weighted sum
rule scheme.
3) Fusion Rule-3: In this rule, we use the quality values
for face images (W1) and audio data (W2) along with their
corresponding match scores (S1) and (S2), in a weighted
product rule scheme.
4) Fusion Rule-4: In this rule, we introduce the quality values
for face images (W1) and audio data (W2) along with their
corresponding match scores (S1) and (S2), in Fusion Rule-1.

VI. RESULTS AND ANALYSIS

Both identification and verification experiments were con-
ducted. The results of the identification and verification exper-
iments are given in Tables III and IV. Corresponding CMC and
ROC curves are given in Fig. 4 and 5. Rank-1 identification
accuracies (in %) are reported for the identification experi-
ments and True Match Rates (TMR) at a False Match Rate
(FMR) of 0.1 are reported for the verification experiments.
The experimental results corresponding to the entire MSU-
AVIS dataset using different methods are recorded in Tables III
and IV under the ‘Overall’ column. Further, experiments were
performed on several subsets, based on different data and
subject characteristics, and the corresponding results are given
in Tables III and IV with the columns labeled accordingly.

Session-based experiments: Each subject, during the probe
data collection, participated in three sessions. The main differ-
ence across the sessions is the distance between the subject and
the camera. The distance in sessions 1 through 3 progressively
reduced. The results are given in Table III and IV. The general
system performance degrades with large standoff distances,
due to the lower resolution of the captured face images and
the degraded quality of the recorded speech audio. It was
observed that the fusion results has the highest impact in
session 1, where both modalities have lower identification and
verification results.

Audio quality-based experiments: A total of 17 videos in
the MSU-AVIS dataset used a low quality microphone that
introduced high noise artifacts, making speaker recognition
very challenging, as can be seen from the results presented
in Tables III and IV. Due to the poor performance of speaker
recognition in these cases, the fusion methods had low impact
compared to the face-only performance.

Gender-based experiments: The total number of female
subjects was 16 out of a total of 50 subjects. The results of
gender-based performance can be seen in Tables III and IV.
It was observed that speaker identification for females was
higher than that of males. Fusion results also reflect the same
pattern, resulting in higher performance for females.

Race-based experiments: The Asian race is maximally
represented in the MSU-AVIS dataset, with a percentage of
28%. The results of Asian subjects versus non-Asian subjects
can be found in Tables III and IV. It was observed that
face recognition has lower performance on Asian subjects
compared to non-Asians. This is not surprising, since DR-
GAN was trained on celebrity faces in the CASIA-Webface
dataset, which does not have many Asian subjects. However,
the fusion methods improve the results on Asian targets
compared to the face-only performance.

Experiment on cases where face recognition fails: In this
experiment, we considered a subset of the MSU-AVIS dataset
where face recognition failed, as seen in Fig. 6. This amounted
to almost 30% of the entire MSU-AVIS dataset. We analyzed
the face images in this subset and found that most of the face
images are either of poor resolution or are side-profile faces.
We performed fusion experiments on this subset and found



Table III
IDENTIFICATION RESULTS (RANK 1, IN %) ON THE MSU-AVIS DATASET ACROSS DIFFERENT BASELINE METHODS.

Methods
Video Audio Quality Gender Race

Overall
1 2 3 Good Bad Male Female Asian Non Asian

Face -CNN 36.50 65.67 88.33 63.06 76.07 64.30 74.13 63.97 74.80 63.50

Speaker -CNN 10.50 14.33 19.33 20.57 14.96 15.52 23.09 18.06 21.43 14.72

Fusion -Sum Rule 37.00 64.10 85.80 66.24 67.64 61.19 77.56 66.14 69.35 64.04

Fusion -Product Rule 38.12 65.52 84.45 66.50 66.18 62.38 75.11 67.26 68.05 64.59

Fusion -1 37.00 64.10 85.99 66.24 67.64 61.49 77.56 66.14 69.35 64.04

Fusion -2 32.74 46.45 70.44 54.85 56.36 49.11 61.33 57.21 56.88 51.71

Fusion -3 38.12 64.30 81.57 64.73 66.18 60.99 73.11 65.77 66.49 63.15

Fusion -4 34.98 54.36 73.70 59.83 59.64 53.86 70.00 61.30 60.00 57.26

Table IV
VERIFICATION RESULTS (TMR@FMR = 0.1) ON THE MSU-AVIS DATASET ACROSS DIFFERENT BASELINE METHODS.

Methods
Video Audio Quality Gender Race

Overall
1 2 3 Good Bad Male Female Asian Non Asian

Face -CNN 0.57 0.83 0.94 0.76 0.10 0.15 0.08 0.14 0.40 0.77

Speaker -CNN 0.36 0.39 0.44 0.44 0.11 0.11 0.10 0.09 0.23 0.40

Fusion -Sum Rule 0.52 0.71 0.74 0.83 0.12 0.17 0.08 0.09 0.36 0.68

Fusion -Product Rule 0.66 0.85 0.95 0.81 0.13 0.18 0.10 0.08 0.42 0.81

Fusion -1 0.67 0.84 0.95 0.80 0.12 0.18 0.09 0.11 0.40 0.81

Fusion -2 0.28 0.43 0.50 0.42 0.08 0.16 0.12 0.11 0.23 0.39

Fusion -3 0.27 0.50 0.53 0.42 0.07 0.16 0.15 0.05 0.25 0.42

Fusion -4 0.32 0.51 0.55 0.45 0.07 0.17 0.15 0.05 0.25 0.43

(a) (b) (c)
Figure 4. CMC curves on (a) the entire MSU-AVIS dataset, (b) the subset where face recognition fails, and (c) the MSU-AVIS-auxiliary dataset

(a) (b) (c)
Figure 5. ROC curves on (a) the entire MSU-AVIS dataset, (b) the subset where face recognition fails, and (c) the MSU-AVIS-auxiliary dataset

that fusion with speaker recognition gives a substantial boost
to the overall recognition performance. The results are given
in Table V and Figs. 4 and 5.

Experiment on the auxiliary dataset: We performed
fusion experiments on the auxiliary dataset to confirm our
earlier findings on the subset of the MSU-AVIS dataset where

face recognition failed. We found that speaker recognition
positively aids in improving the recognition performance in
cases where face images are of degraded quality and exhibit
large pose variations. The results are given in Table V and
Figs. 4 and 5.

However, it is interesting to note that the performance gain



Table V
IDENTIFICATION (RANK 1) AND VERIFICATION (TMR@FMR=0.1)

RESULTS ON A SUBSET OF THE MSU-AVIS DATASET WHERE THE FACE
MODALITY FAILS AND ON THE MSU-AVIS-AUXILIARY DATASET.

Methods
Face Failure Subset Auxiliary Dataset
Ident. Verif. Ident. Verif.

Face-CNN 0 0.15 0 0.08

Speaker-CNN 10.98 0.06 8.49 0.02

Fusion-Sum Rule 18.62 0.10 7.36 0.10

Fusion-Product Rule 19.60 0.12 9.63 0.12

Fusion-1 18.43 0.09 7.36 0.12

Fusion-2 14.90 0.11 5.38 0.02

Fusion-3 19.60 0.10 9.63 0.06

Fusion-4 19.60 0.10 9.63 0.02

Figure 6. Examples of video clips where face recognition fails. The larger
images are sub-regions from a frame obtained from the clip. The smaller
images are some of the other faces obtained from the same clip.

offered by fusion in the auxiliary dataset is not as large as was
seen in the cases where face recognition failed on the original
MSU-AVIS dataset. This could be attributed to the fact that,
unlike in the MSU-AVIS dataset, face images in the auxiliary
dataset are strictly non-frontal and captured at a large stand-off
distance. This makes face recognition even more challenging
and, hence, the impact of the face recognition algorithm on
fusion is further reduced.

VII. SUMMARY

In summary, the following are the primary contributions of
this work:

(i) A multi-modal indoor-surveillance dataset comprising of
face and voice modalities was collected.

(ii) The performance of CNN-based face recognition and
speaker recognition was evaluated on this dataset.

(iii) The benefit of fusing the voice and face modalities was
demonstrated in scenarios where both the face and voice data
suffer from extensive degradations.

VIII. DATASET AVAILABILITY

The dataset is available for research purposes at
http://cvlab.cse.msu.edu/msu-avis-dataset.html
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