
Fully Understanding Generic Objects:
Modeling, Segmentation, and Reconstruction

— Supplementary Material

Feng Liu , Luan Tran , Xiaoming Liu
Department of Computer Science and Engineering
Michigan State University, East Lansing MI 48824
{tranluan, liufeng6, liuxm}@msu.edu

In this supplementary material, we provide:
i) Implementation details, including
� Training details;
� Network structures;
� Linear search and linear-binary search algorithms.
ii) Additional experimental results, including
� Expressiveness;
� Texture representation power;
� Over-fitting problem study;
� Additional qualitative performances on 3D segmenta-

tion, reconstruction and image decomposition, and 3D re-
construction on unseen categories.

1. Implementation Details
1.1. Training Details

Data Preparation. Following the work [1], we first
obtain color voxelization in different resolutions (163×3,
323×3, 643×3, 1283×3) for ShapeNet 3D models. Fig. 1
shows two examples of 643×3 colored voxel. Then, simi-
lar to the sampling strategy of [3], we obtain the triple data
{xj , oj , cj}Kj=1 offline for each colored voxel. x, o, c are
the spatial point and the corresponding occupancy label and
albedo.

Figure 1. Color voxelization of ShapeNet models. Original 3D
mesh (left) and 643 × 3 colored voxel (right).

Training Process. We summarize the training process in
Tab. 1. In Stage 1, we adopt a progressive training tech-
nique [3], to train our model on gradually increasing res-
olution data (163→323→643→1283), which stabilizes and
significantly speeds up the training process.

Table 1. Training process.
Network Training data Loss

Stage 1 E ′, DS , DA
643 × 3 colored voxels and

sampled point-values L1

Stage 2 E , DA synthetic images L2

Stage 3 E , DA real images L3

Table 2. Colored voxel encoder network structure.
Layer Kernel size Stride

Activation
function

Output size
(d1,d2,d3,C)

input - - - (64, 64, 64, 3)
conv3d (4, 4, 4) (2, 2, 2) LReLU (32, 32, 32, 32)
conv3d (4, 4, 4) (2, 2, 2) LReLU (16, 16, 16, 64)
conv3d (4, 4, 4) (2, 2, 2) LReLU (8, 8, 8, 128)
conv3d (4, 4, 4) (2, 2, 2) LReLU (4, 4, 4, 256)
conv3d (4, 4, 4) (1, 1, 1) - (1, 1, 1, 515)
fC - - - 3
fS - - - 256
fA - - - 256

Hyperparameters. In our experiments, we set lC = 3,
lS = 256 and lA = 256. We set λ1 = 1, λ2 = 0.1, λ3 =
10, λC = 1, λS = 5, λA = 5, λP = 10 to balance the
losses. We set q = 50 in the local feature extraction. Adam
optimizer is used with a learning rate of 0.0001 in all stages.

1.2. Network Structures

Colored Voxel Encoder E ′. To auto-encode 3D shape and
albedo simultaneously, we adopt a 3D CNN [2, 3] as en-
coder E ′ to learn the embedding category, shape and albedo
features fC , fS , fA from 643 × 3 colored voxel. The archi-
tecture of E ′ is depicted in Tab. 2.
Image Encoder E . As shown in Tab. 3, we use a modi-
fied ResNet-18 architecture, which was pre-trained on Im-
ageNet, as our image encoder. However, we adjust the last
fully-connected layer to project the features to four embed-
dings L, P, fS and fA.
Shape and Albedo Decoders DS ,DA. The shape de-
coder architecture is followed the work of [2] (unsuper-
vised case). The network takes shape latent representation

1



Table 3. Image encoder network structure (slightly modified from
ResNet-18).

Layer Kernel size Stride Activation fun. Input size Output size
input - - - - (128, 128, 3)
conv1 (7, 7) (2, 2) BN, LReLU (128, 128, 3) (32, 32, 64)
conv2 (ResNet block) (3, 3) - - (32, 32, 64) (32, 32, 64)
conv3 (ResNet block) (3, 3) - - (32, 32, 64) (16, 16, 128)
conv4 (ResNet block) (3, 3) - - (16, 16, 128) (8, 8, 256)
conv5 (ResNet block) (3, 3) - - (8, 8, 256) (4, 4, 512)
average pool (4, 4) - - (4, 4, 512) (1, 1, 512)
FCL - - - 512 27
FCP - - - 512 12
FCfC - - - 512 3
FCfS - - - 512 256
FCfA - - - 512 256

Figure 2. The shape decoder network is composed of 3 fully con-
nected layers, denotes as “FC”. The fC (3-dim), fS (256-dim) are
concatenated, denoted “+”, with the xyz query, making a 262-dim
vector, and is provided as input to the first layer. The Leaky ReLU
activation is applied to the fist 2 FC layers while the final value is
obtained with Sigmoid activation.

Figure 3. The albedo decoder network is composed of 6 fully con-
nected layers. Specifically, it takes the point coordinate (x, y, z),
along with fC , fS , fA, and outputs the RGB color values. The
Leaky ReLU activation is applied to the fist 5 FC layers while the
final value is obtained with Tanh activation.

fS and a spatial point (x, y, z) as inputs. It is composed of 3
fully connected layers each of which is applied with Leaky
ReLU, except the final output is applied Sigmoid activa-
tion (Fig. 2). The albedo decoder architecture is similar,
with only two differences. The inputs to the network have
an additional vector, albedo latent representation fA. The
output is applied with an Tanh activation. Fig. 3 depicts
the albedo decoder architecture.

1.3. Linear Search and Linear-Binary Search Algo-
rithms

For efficient network training, instead of finding exact
surface points, we approximate them using Linear search or
Linear-Binary search (Fig. 4). The detailed algorithms for
Linear Search and Linear-Binary Search are represented in
Algorithm 1 and 2 respectively.

Empirically, with the same number of evaluating steps,
the proposed Linear-Binary search better approximates the
object surface. This is demonstrated on render images of
surface normals (Fig. 5). While the ad-hoc Linear search

Algorithm 1: Linear Search Ray Tracing
input : Shape decoderDS , projection P, error margin ε, image size

W,H
output:W×H surface points Xfinal

// Step 1: Generate candidate grid
1 Xboundary ← [[−1,−1,−1], [−1,−1, 1], [−1, 1,−1], [−1, 1, 1], ...

[1,−1,−1], [1,−1, 1], [1, 1,−1], [1, 1, 1]];
2 Uboundary ← apply projection(P,Xboundary);
3 dmin ← min(Uboundary[:, 2]);
4 dmax ← max(Uboundary[:, 2]);
5 d← (dmin : dmax : ε);
6 Ucandidate ← meshgrid((1 : W ) ∗ d, (1 : H) ∗ d,d);
7 Xcandidate ← apply projection(P−1,Ucandidate);
// Step 2: Surface point selection
// Step 2.1: Select first surface point (o > 0.5)

8 for k ← d 1ε e to 1 do
// Evaluate the occupancy field

9 Xcurr candidate ← Xcandidate[:, :, k]);
10 Ocurr ← DS(fS ,Xcurr candidate);

// Selection (As backward tracing, the last
selected point is the closest to the camera

11 Xfinal[Ocurr > 0.5]← Xcurr candidate[Ocurr > 0.5];
12 O[:, :, k]← Ocurr;

// Step 2.2: Select largest closest point to the
surface for the background

13 Xclosest ← Xcandidate[argmax(O, axis = 2)];
14 Xfinal[Xfinal = 0]← Xclosest[Xfinal = 0];

approach leads to artifacts, Linear-Binary search results in
smooth continuous surfaces.

(a) Linear Search (b) Linear-Binary Search

Figure 4. Ray tracing for surface points detection. In Linear
search, candidates (red points) are uniformly distributed in the
grid. In Linear-Binary search, after the first point inside the ob-
ject found, Binary search will be used between the last outside
point and current inside point for all remaining iterations.

(a)

(b)

Figure 5. Compare surface normal rendering quality of (a) Linear
vs. (b) Linear-Binary search. With the same computation budget,
Linear-Binary search better approximates surface points, which
leads to smooth normal computation meanwhile Linear search
causes artifacts on rendering, which spoils model training.

2



Algorithm 2: Linear-Binary Search Ray Tracing
input : Shape decoderDS , projection P, error margin ε, image size

W,H
output:W×H surface points Xfinal

// Step 1: Calculate initial position and ray
direction

1 Xboundary ← [[−1,−1,−1], [−1,−1, 1], [−1, 1,−1], [−1, 1, 1], ...
[1,−1,−1], [1,−1, 1], [1, 1,−1], [1, 1, 1]];

2 Uboundary ← apply projection(P,Xboundary);
3 dmin ← min(Uboundary[:, 2]);
4 dmax ← max(Uboundary[:, 2]);
5 d← (dmin : dmax : ε);
6 Uinit ← meshgrid((1 : W ) ∗ d, (1 : H) ∗ d,d);
7 Xinit ← apply projection(P−1,Uinit);
8 Xinit v ← cal direction(P);
// Step 2: Surface point selection

9 Omax ← 0;
10 Oargmax ← 0;
11 Xfinal ← Xinit;
12 for k ← 1 to d 1ε e do

// Evaluate the occupancy field
13 Xcurr candidate ← Xfinal + Xinit v;
14 Ocurr ← DS(fS ,Xcurr candidate);

// Move outside points forward
15 Xfinal[Ocurr < 0.5]← Xfinal[Ocurr < 0.5]+Xinit v[Ocurr < 0.5];

// Reduce velocity of inside points for binary
search

16 Xinit v[Ocurr ≥ 0.5]← Xinit v[Ocurr ≥ 0.5]/2;

// Update max occupancy value
17 Omax[Ocurr > Omax]← Ocurr[Ocurr > Omax];
18 Oargmax[Ocurr > Omax]← Xfinal[Ocurr > Omax];

// Update background spatial points
19 Xfinal[Omax < 0.5]← Oargmax[Omax < 0.5];

2. Additional Experimental Results
2.1. Expressiveness

Given our disentangled intrinsic 3D representations, we
are able to manipulate any individual component describing
the image.

For example, changing P allows us to virtually rotate
the object or alternative L can switch the image lighting.
Here we demonstrate our ability to interpolate between two
objects. We can interpolate objects in shape/albedo latent
space αf (1)S/A + (1 − α)f

(2)
S/A (α ∈ [0,1]) within the same

category (Fig. 6 and 7).
Further, the trained single universal model also allows

us to show the interpolation performance across different
categories. Fig. 8 shows object interpolation in category
latent space αf (1)C +(1−α)f (2)C (α ∈ [0,1]), while having the
same shape latent code. It can be observed that our model
allows us to synthesize 3D object with new shape, albedo
and even category by sampling the latent spaces.

2.2. Texture Representation Power

In this experiment, we explore the texture representa-
tion power of the our joint color field model by assuming
we know the ground truth camera projection. We consider
Im2Avatar [7] and Texture field [5] as baselines for full tex-
tured 3D reconstruction from a single image. Following the
same setting, we test on the categories ‘plane’, ‘car’, ‘chair’

Figure 6. Linear interpolation of two objects within the same cat-
egory in shape latent space.

and ‘table’ of ShapeNet. The testing renderings are pro-
vided by Choy et al. [4]. For evaluation, we measure the
structure similarity image metric (SSIM) [9]. The quan-
titative comparisons in Tab. 4 demonstrate that our model
achieves the best average SSIM. The results of these two
baselines are cited from [5]. For a fair comparison, we re-
port our results based on the category-specific models.

3



Figure 7. Linear interpolation of two objects within the same cat-
egory in albedo space.

Table 4: Single image texture reconstruc-
tion comparison, using the SSIM metrics.

Im2Avatar [7] Texture Field [5] Proposed
plane − 0.921 0.932
car 0.760 0.837 0.876
chair 0.695 0.842 0.843
table 0.749 0.869 0.875
Mean 0.734 0.867 0.882

2.3. Over-Fitting Problem Study

Reconstruction implies reasoning about the 3D structure
of the input image using cues such as texture, shading, and
perspective effects. Recently, the work of [8] argues that
most of reconstruction methods do not actually perform re-
construction but retrieve due to they only simply map the
input image to 3D space through a latent representation.
Thanks to the combination of 3D decomposition and mod-
eling, our framework does learn both high-level semantic
understanding and low-level image cues from images.

To further prove that, we provide evidences that our
model does not actually overfit to training shapes, nor treat
3D reconstruction as a retrieval problem. We statistically
evaluate the distance between the latent codes (combination
of fC and fS) of train and test samples together with their
corresponding closet pre-learned ground-truth latent codes.
As shown in Fig. 9, we visualize the distribution of distance
scores for the testing and training samples. It is obvious that
the distributions of training and testing features are similar,
which indicates our model does not perform retrieval. If we
performed retrieval, the test sample distribution would shift
to the origin of the x-axis and be very close to zero.

2.4. Additional Qualitative Performances

3D Image Decomposition. We provide several 3D im-
age decomposition results on real-world car images (see
Fig. 10). Our framework produces good visual decompo-
sitions for real images.
Branched Albedo Visualization. We assign a color for the
output of each branch of our shape decoder and reasonable
parts are obtained. Since our segmentation is unsupervised
and the model for each category is trained separately, our
results are not guaranteed to produce the same part counts
for all categories. Fig. 11 shows the estimations of albedo
colors of valid branches. The albedo branches do represent
the dominant albedo colors of the objects.
Reconstruction on Synthetic/Real image. Fig. 12 shows
more qualitative comparisons with Front2Back method [12]
(F2B, CVPR 20’) on 13 categories of ShapeNet. Obvi-
ously, our model is able to estimate 3D shapes that closely
resemble the ground truth shapes. To provide more com-
prehensive comparisons on the 3D reconstruction quality.
We provide more reconstruction results on Pascal3D+ [11]
(Fig. 13) and Pix3D [6] datasets (Fig. 14). Comparison is
made with ShapeHD [10] using trained model provided by
the authors.
Reconstruction on Unseen Categories. To further ex-
plore how well our semi-supervised analysis-by-synthesis
framework can learn from unseen categories without access
to ground truth 3D shapes, we fine-tune our model on im-
ages from unseen categories in a self-supervised manner.
We select 50 samples from each of 8 unseen ShapeNet cat-
egories and render 100 images with lighting and pose vari-

4



Figure 8. Linear interpolation of objects’ shape in category latent space.

Figure 9. Distribution of nearest distance of latent features (com-
bination of fC and fS) for 13 categories. Blue: training samples;
Red: testing samples.

ations for each sample. 40 instances of each category are
utilized for fine-tuning while 10 for testing. Fig. 15 shows
that our method achieves promising results on 3D model-
ing learning and fitting from unseen categories without 3D
labels.

References
[1] Kevin Chen, Christopher B Choy, Manolis Savva, An-

gel X Chang, Thomas Funkhouser, and Silvio Savarese.
Text2shape: Generating shapes from natural language by
learning joint embeddings. In ACCV, 2018.

[2] Zhiqin Chen, Kangxue Yin, Matthew Fisher, Siddhartha
Chaudhuri, and Hao Zhang. BAE-NET: Branched autoen-
coder for shape co-segmentation. In ICCV, 2019.

[3] Zhiqin Chen and Hao Zhang. Learning implicit fields for
generative shape modeling. In CVPR, 2019.

[4] Christopher B Choy, Danfei Xu, JunYoung Gwak, Kevin
Chen, and Silvio Savarese. 3D-R2N2: A unified approach
for single and multi-view 3D object reconstruction. In
ECCV, 2016.

[5] Michael Oechsle, Lars Mescheder, Michael Niemeyer, Thilo
Strauss, and Andreas Geiger. Texture fields: Learning tex-
ture representations in function space. In ICCV, 2019.

[6] Xingyuan Sun, Jiajun Wu, Xiuming Zhang, Zhoutong
Zhang, Chengkai Zhang, Tianfan Xue, Joshua B Tenenbaum,
and William T Freeman. Pix3D: Dataset and methods for
single-image 3D shape modeling. In CVPR, 2018.

[7] Yongbin Sun, Ziwei Liu, Yue Wang, and Sanjay E Sarma.
Im2avatar: Colorful 3D reconstruction from a single image.
arXiv preprint arXiv:1804.06375, 2018.

[8] Maxim Tatarchenko, Stephan R Richter, René Ranftl,
Zhuwen Li, Vladlen Koltun, and Thomas Brox. What do
single-view 3D reconstruction networks learn? In CVPR,
2019.

[9] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P
Simoncelli. Image quality assessment: from error visibility
to structural similarity. TIP, 2004.

[10] Jiajun Wu, Chengkai Zhang, Xiuming Zhang, Zhoutong
Zhang, William T Freeman, and Joshua B Tenenbaum.
Learning shape priors for single-view 3D completion and re-
construction. In ECCV, 2018.

[11] Yu Xiang, Roozbeh Mottaghi, and Silvio Savarese. Beyond
pascal: A benchmark for 3D object detection in the wild. In
WACV, 2014.

[12] Yuan Yao, Nico Schertler, Enrique Rosales, Helge Rhodin,
Leonid Sigal, and Alla Sheffer. Front2Back: Single view 3D
shape reconstruction via front to back prediction. In CVPR,
2020.

5



Input Recon. Albedo Normal Shading

Figure 10. 3D image decomposition on real-world car images. Our
work decomposes a 2D image of generic objects into albedo, com-
pleted 3D shape and illumination.

Figure 11. Visualization of albedo branch outputs. We render the
albedo with reconstructed mesh.

6



Input image F2B [12] Proposed Ground-truth Input image F2B [12] Proposed Ground-truth

Figure 12. Reconstruction comparison with Front2Back method [12] (F2B, CVPR20’) of 13 categories on ShapeNet. Our reconstructions
more closely match the ground-truth shapes.

7



Input image ShapeHD [10] Proposed Input image ShapeHD [10] Proposed Input image ShapeHD [10] Proposed

Figure 13. Additional 3D reconstruction results on Pascal3D+ [11] dataset. Compared to ShapeHD [10], our method reconstructs 3D
shape with more details.

8



Input image ShapeHD [10] Proposed Ground-truth Input image ShapeHD [10] Proposed Ground-truth

Figure 14. Additional 3D reconstruction results on Pix3D [6]. For each input image, we show reconstructions by ShapeHD [10], and
ground truth. Our reconstructions resemble the ground truth.

9



Input image Rec. Ground-truth Input image Rec. Ground-truth

Figure 15. 3D reconstruction results on unseen categories of ShapeNet dataset.

10


	. Implementation Details
	. Training Details
	. Network Structures
	. Linear Search and Linear-Binary Search Algorithms

	. Additional Experimental Results
	. Expressiveness
	. Texture Representation Power
	. Over-Fitting Problem Study
	. Additional Qualitative Performances


