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Fig. 1: The proposed approach can detect spoof faces, disentangle the spoof traces, and reconstruct
the live counterparts. It can be applied to various spoof types and recognize diverse traces (e.g.,
Moiré pattern in replay attack, artificial eyebrow and wax in makeup attack, color distortion in
print attack, and specular highlights in 3D mask attack). Zoom in for details.
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Abstract. Prior studies show that the key to face anti-spoofing lies in the subtle
image pattern, termed “spoof trace”, e.g., color distortion, 3D mask edge, Moiré
pattern, and many others. Designing a generic anti-spoofing model to estimate
those spoof traces can improve not only the generalization of the spoof detection,
but also the interpretability of the model’s decision. Yet, this is a challenging
task due to the diversity of spoof types and the lack of ground truth in spoof
traces. This work designs a novel adversarial learning framework to disentangle
the spoof traces from input faces as a hierarchical combination of patterns at
multiple scales. With the disentangled spoof traces, we unveil the live counterpart
of the original spoof face, and further synthesize realistic new spoof faces after a
proper geometric correction. Our method demonstrates superior spoof detection
performance on both seen and unseen spoof scenarios while providing visually-
convincing estimation of spoof traces. Code is available at https://github.
com/yaojieliu/ECCV20-STDN.

1 Introduction

In recent years, the vulnerability of face biometric systems has been widely recognized
and brought increasing attention to the vision community due to various physical and
digital attacks. There are various physical and digital attacks, such as face morphing [13,
52,55], face adversarial attacks [14, 20, 44], face manipulation attacks (e.g., deepfake,
face swap) [9,45], and face spoofing (i.e., presentation attacks) [5, 19,40], that can
be used to attack the biometric systems. Among all these attacks, face spoofing is the
only physical attack to deceive the systems, where attackers present faces from spoof
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mediums, such as photograph, screen, mask and makeup, instead of a live human. These
spoof mediums can be easily manufactured by ordinary people, therefore posing a
huge threat to applications such as mobile face unlock, building access control, and
transportation security. Therefore, face biometric systems need to be reinforced with
face anti-spoofing techniques before performing face recognition tasks.

Face anti-spoofing' has been studied for over a decade, and one of the most common
approaches is based on texture analysis [6, 7, 37]. Researchers noticed that presenting
faces from spoof mediums introduces special texture differences, such as color distor-
tions, unnatural specular highlights, Moiré patterns and efc. Those texture differences
are inherent within spoof mediums and thus hard to remove or camouflage. Early works
build a conventional feature extractor plus classifier pipeline, such as LBP+SVM and
HOG+SVM [17,26]. Recent works leverage deep learning techniques and show great
progress [4,29,31,41,51].

However, there are two limitations in the deep learning-based approaches. First, most
prior works concern limited spoof types, either print/replay or 3D mask alone, while a
real-world anti-spoofing system may encounter a wide variety of spoof types including
print, replay, 3D masks, and facial makeup. Second, many approaches formulate face anti-
spoofing as merely a classification/regression problem, with a single score as the output.
Although a few methods [29, 24, 51] attempt to offer insights via fixation, saliency, or
noise analysis, there is little understanding on what the exact differences are between
live and spoof, and what patterns the classifier’s decision is based upon.

We regard the face spoof detection for all existing spoof types as generic face anti-
spoofing, and term the patterns differentiating a spoof face and its live counterpart as
spoof trace. As shown in Fig. 1, this work aims to equip generic face anti-spoofing
models with the ability to explicitly extract the spoof traces from the input faces. We
term this process as spoof trace disentanglement. This is a challenging objective due to
the diversity of spoof traces and the lack of ground truth of traces. However, we believe
that tackling this problem can bring several benefits:

1. Binary classification for face anti-spoofing would harvest any cue that helps classifi-
cation, which might include spoof-irrelevant cues such as lighting, and thus hinder
generalization. In contrast, spoof trace disentanglement explicitly tackles the most
fundamental cue in spoofing, upon which the classification can be grounded and
witnesses better generalization.

2. With the trend of pursuing explainable Al [1, 3], it is desirable for the face anti-
spoofing model to generate the spoof patterns that support its binary decision, and
spoof trace serves as a good visual explanation of the model’s decision. Certain
properties (e.g., severity, methodology) of spoof attacks could potentially be revealed
based on the traces.

3. Spoof traces are good sources for synthesizing realistic spoof samples. High-quality
synthesis can address the issue of limited training data for the minority spoof types,
such as special 3D masks and makeup.

As shown in Fig. 2, we propose a Spoof Trace Disentanglement Network (STDN)
to tackle this problem. Given only the binary labels of live vs. spoof, STDN adopts an

! As most face recognition systems are based on a monocular camera, this work only concerns
monocular face anti-spoofing methods, and terms as face anti-spoofing hereafter for simplicity.
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Fig. 2: Overview of the proposed Spoof Trace Disentanglement Network (STDN).

overall GAN training strategy. The generator takes input faces, detect the spoof faces,
and disentangles the spoof traces as the combination of multiple elements. With the
spoof traces, we can reconstruct the live counterpart from the spoof and synthesize new
spoof from the live. To correct possible geometric discrepancy during spoof synthesis,
we propose a novel 3D warping layer to deform spoof traces toward the target face. We
deploy multiscale discriminators to improve the fidelity of both the reconstructed live
and synthesized spoof. Moreover, the synthesized spoof samples are further utilized to
train the generator in a supervised fashion, thanks to disentangled spoof traces as ground
truth for the synthesized sample.
In summary, the main contributions of this work are as follows:

We for the first time study spoof trace for generic face anti-spoofing;

We propose a novel model to disentangle spoof traces into a hierarchical representa-
tion;

We utilize the spoof traces to synthesize new data and enhance the training;

e We achieve SOTA anti-spoofing performance and provide convincing visualization.

2 Related Work

Face Anti-Spoofing: Face anti-spoofing has been studied for more than a decade and
its development can be roughly divided into three stages. In early years, researchers
leverage the spontaneous human movement, such as eye blinking and head motion, to
detect simple print photograph or static replay attacks [25, 35]. However, when facing
counter attacks, such as print face with eye region cut, and replaying a face video, those
methods would fail. Later, researchers pay more attention to texture differences between
live and spoof, which are inherent with spoof mediums. Researchers mainly extract
handcrafted features from the faces, e.g., LBP [6, 17, 18, 33], HoG [26, 50], SIFT [37]
and SUREF [7], and train a classifier to discern the live vs. spoof, such as SVM and
LDA. Recently, face anti-spoofing solutions equip with deep learning techniques and
demonstrate significant improvements over the conventional methods. Methods in [16,
27,36,49] train a deep neural network to learn a binary classifier between live and spoof.
In [4,29,31,41, 51], additional supervisions, such as face depth map and rPPG signal,
are proposed to help the network to learn more generalizable features. With the latest
approaches achieving saturated performance on several benchmarks, researchers start to
explore more challenging cases, such as few-shot/zero-shot face anti-spoofing [31, 38,
54], domain adaptation in face anti-spoofing [41,42], etc.
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In this work, we aim to solve an interesting but very challenging problem: disentan-
gling and visualizing the spoof traces from the input faces. Related works [24, 43, 12]
also adopt GAN seeking to estimate the different traces. However, they formulate the
traces as low-intensity noises, which is limited to print and replay attacks and cannot
provide convincing visual results. In contrast, we explore spoof traces from a wide
range of spoof attacks, visualize them with novel disentanglement, and also evaluate the
proposed method on the challenging cases (e.g., zero-shot face anti-spoofing).
Disentanglement Learning: Disentanglement learning is often adopted to better repre-
sent complex data and features. DR-GAN [46, 47] disentangles face into identity and
pose vectors for pose-invariant face recognition and view synthesis. Similarly in gait
recognition, [53] disentangles the representations of appearance, canonical, and pose
features from an input gait video. 3D reconstruction works [28] also disentangle the
representation of a 3D face into identity, expressions, poses, albedo, and illuminations.
To solve the problem of image synthesis, [15] disentangles an image into appearance
and shape with U-Net and Variational Auto Encoder (VAE). Different from [28, 46,
53], we intend to disentangle features that have different scales and contain geometric
information. We leverage the multiple outputs from different layers to represent features
at different scales, and adopt multiple-scale discriminators to properly learn them. More-
over, we propose a novel warping layer to handle the geometric information during the
disentanglement and reconstruction.

3 Spoof Trace Disentanglement Network

3.1 Problem Formulation

Let the domain of live faces be denoted as £ C RNV and spoof faces as S C RIVXNX3
where N is the image size. We intend to obtain not only the correct prediction (live vs.
spoof) of the input face, but also a convincing estimation of the spoof traces. Without
the guidance of ground truth spoof traces, our key idea is to find a minimum change that
transfers an input face to the live domain:

argmin |[I —I||p s.t. Te (SUL) and T € L, (1
i

where I is the input face from either domain, I is the target face in the live domain, and
I — I is defined as the spoof trace. For an input live face Ijy., the spoof traces should
be 0 as it’s already in £. For an input spoof face Lspoof, this L-2 regularization on spoof
traces is also preferred, as there is no paired solution for the domain transfer and we hope
the spoof traces to be bounded. Based on [24, 37], spoof traces can be partitioned into
multiple elements based on scales: global traces, low-level traces, and high-level traces.
Global traces, such as color balance bias and range bias, can be efficiently modeled by a
single value. The color biases here only refer to those created by the interaction between
spoof mediums and the capturing camera, and the model is expected to ignore those
spoof-irrelevant color variations. Low-level traces consist of smooth content patterns,
such as makeup strokes, and specular highlights. High-level traces include sharp patterns
and high-frequency texture, such as mask edges and Moiré pattern. Denoted as G(-), the
spoof trace disentanglement is formulated as a coarse-to-fine spoof effect build-up:
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Fig. 3: The proposed STDN architecture. Except the last layer, each conv and transpose conv is
concatenated with a Leaky ReLU layer and a batch normalization layer. /2 denotes a downsam-
pling by 2, and X2 denotes an upsampling by 2.

GO =1-1
=I-(1-s)I-b—[C|y—T) )
=sI+b+ |C|y+T,

where s,b € R represent color range bias and balance bias, C € R¥*1*3 denotes
the smooth content patterns (L<N to enforce the smoothness), || is the resizing opera-
tion, and T € RVN3 s the high-level texture patterns. Compared to the single layer
representation [24], this disentangled representation {s,b, C, T} can largely improve
disentanglement quality and suppress unwanted artifacts due to its coarse-to-fine process.

As shown in Fig. 3, Spoof Trace Disentanglement Network (STDN) consists of a
generator and multiscale discriminators. They are jointly optimized to disentangle the
spoof trace elements {s, b, C, T} from the input faces. In the rest of this section, we
discuss the details of the generator, face reconstruction and synthesis, the discriminators,
and the training steps and losses used in STDN.

3.2 Disentanglement Generator

Spoof trace disentanglement is implemented via the generator. The disentanglement
generator adopts an encoder-decoder as the backbone network. The encoder progressively
downsamples the input face I € R2592563 (0 a Jatent feature tensor F € R323296 yia
conv layers. The decoder upsamples the feature tensor F with transpose conv layers back
to the input face size. To properly disentangle each spoof trace element, we leverage the
natural upscaling property of the decoder structure: s, b have the lowest spatial resolution
and thus are disentangled in the very beginning of the decoder; C is extracted in the
middle of the decoder with the size of 64; T is accordingly estimated in the last layer of
the decoder. Similar to U-Net [39], we apply the short-cut connection between encoder
and decoder to leak the high-frequency details for a high-quality estimation.

Unlike typical GAN scenarios where the generator only takes data from the source
domain, our generator takes data from both source (spoof) and target (live) domains,
and requires high accuracy in distinguishing two domains. Although the spoof traces



6 Y. Liu et al.

should be significantly different between the two domains, they solely are not perfect
hint for classification as the intensity of spoof traces varies from type to type. For
this objective, we additionally introduce an Early Spoof Regressor (ESR) to enhance
discriminativeness of the generator. ESR takes the bottleneck features F' and outputs a
0/1 map M € R*®6_ where 0 means live and 1 means spoof. Moreover, we purposely
make the encoder much heavier than the decoder, i.e., more channels and deeper layers.
This benefits the classification since ESR can better leverage the features learnt for spoof
trace disentanglement.

In the testing phase, we use the average of the output from ESR and the intensity of
spoof traces for classification:
Qo

score = —
2N?

M1 + ~Z 1G], ©)

1
2K?2 |
where « is the weight for the spoof trace, K =16 is the size of M, and N =256 is the
image size.

3.3 Reconstruction and Synthesis

There are two ways we can benefit from the spoof traces:

e Reconstruction: obtaining the live face counterpart from the input as T = T — G(T);
e Synthesis: obtaining a new spoof face by applying the spoof traces G(I;) disentan-
gled from face image I; to a live face I;.

Unlike the original spoof samples, the synthesized spoof come with the ground
truth traces, enabling a supervised training for the generator. However, spoof traces
may contain shape-dependent content associated with the original spoof face. Directly
combining them with a live face with different shape or pose may result in poor alignment
and strong visual implausibility. Therefore, the spoof trace should go through a geometric
correction before performing the synthesis. We propose an online 3D warping layer to
correct the shape discrepancy.

Online 3D Warping Layer First, the spoof traces for face ¢ can be expressed as:

Gi = G(L)[pol, “

where p, = {(0,0), (0,1), ..., (255,255) } € R256%256%2 enumerates pixel locations in
I;. To warp the spoof trace, a dense offset Ap,_,; € R**0*256%2 is required to indicate
the offset value from face ¢ to face j. The warped traces can be denoted as:

Gi%j = G(Iz)[Po + Apiﬂj]’ (5)

Since the offset Ap,_, ; is typically composed of fractional numbers, we implement the
bilinear interpolation to sample the fractional pixel locations. To obtain the offset Ap; _, ;,
previous methods in [11, 29] use offline face swapping and pre-computed dense offset
respectively, where both of them are non-differentiable as well as memory intensive. In
contrast, our warping layer is both differentiable and computationally efficient, which is
necessary for using it in training. During the data preparation, we use [30] to fit a SDMM
model and extract the 2D locations of () selected vertices for each face:

S = {('r07y0)7(x17y1)a-"a(mN7yN)} € IRQX2a (6)
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Fig. 4: 3D warping pipeline. (a) Given the corresponding dense offset, we warp the spoof trace
and add them to the target live face to create a new spoof. E.g. pixel (z,y) with offset (3, 5) is
warped to pixel(z + 3,y + 5) in the new image. (b) To obtain a dense offsets from the spare
offsets of the selected face shape vertices, Delaunay triangulation interpolation is adopted.

A sparse offset on the corresponding vertices can then be computed between face ¢ and j
as As;,; = s; —s;. We select = 140 vertices to cover the face region so that they
can represent non-rigid deformation, due to pose and expression. To convert the sparse
offset As;_, ; to the dense offset Ap,_, ;, we apply a triangulation interpolation:

Ap;_,; = Tri(py, si, A8i ), @)

where Tri(+) is the interpolation operation based on Delaunay triangulation, Since the
pixel values in the warped face are a linear combination of pixel values of the trian-
gulation vertices, this whole process is differentiable. This process is illustrated in
Fig. 4.

Creating “harder’” samples As mentioned above, the synthesized spoof can be lever-
aged to enable a supervised learning for the generator. Another advantage of the dis-
entangled representation {s,b,C, T} is that we can manipulate the spoof traces via
tuning these elements, such as diminishing or amplifying any certain element. While
diminishing one or a few elements in {s, b, C, T}, the synthesized spoof becomes “less
spoofed”, and thus closer to a live face since the spoof traces are weakened. Such spoof
data can be regarded as harder samples and may benefit the learning of the generator.
E.g., while removing the color distortion s from a replay spoof trace, the generator may
be forced to rely on other elements such as high-level texture patterns. In this work,
we randomly set one element from {s, b, C, T} to be zero when synthesizing a new
spoof face. Compared with other methods, such as brightness and contrast change [32],
reflection and blurriness effect [51], or 3D distortion [21], our approach can introduce
more realistic and effective data samples, as shown in Sec. 4.

3.4 Multi-scale Discriminators

Motivated by [48], we adopt three discriminators D1, D, and D3 at different resolutions
(i.e., 256, 128, and 64) in our GAN architecture. The faces in the original size are sent
to Dy, resized by a ratio of 2 and sent to D-, and resized by a ratio of 4 and sent to Ds.
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D+, working in the highest scale, focuses on the fine texture details. Do, working in the
middle scale, focuses more on the content pattern in C. D3, working in the lowest scale,
focuses on global elements since the higher-frequency detail in C and T might be erased
by resizing. For each discriminator, we adopt the structure of PatchGAN [23], which
essentially is a fully convolutional network. Fully convolutional networks are shown
to be effective to not only synthesize high-quality images [23, 48], but also tackle face
anti-spoofing problems [29]. Specifically, each discriminator consists of 7 conv and 3
downsampling layers. It outputs a 2-channel map, where each channel represents output
of one domain (i.e., live and spoof). The first channel compares the reconstructed live
samples with the real live samples, while the second channel compares the synthesized
spoof samples with real spoof samples.

3.5 Training Steps and Loss Functions

We utilize multiple loss functions in our three training steps. We will introduce them
first, followed by how they are used in the training steps.

ESR loss: For live faces, M should be zero, and for spoof faces as well as synthesized
spoof faces, M should be one. We apply the £-1 norm on this loss as:

1
Lesg = ﬁ([EiNL[HMiHJ + B, suslliML = 1[4]), ®)

where S denotes the domain of synthesized spoof faces and K =16 is the size of M.
Adpversarial loss for G: We employ the LSGANs [34] on reconstructed live and syn-

thesized spoof. It pushes the reconstructed live faces to domain £, and the synthesized
spoof faces to domain S:

Lo= Y A{Eins((DALi=Gi)=1)’] + Einr jus[(DA(L+Gji)— 1)7]}, )

n=1,2,3

where D} and D2 denote the first and second channel of discriminator D,,.
Adversarial loss for D: The adversarial loss pushes the discriminators to distinguish
between real live vs. reconstructed live, and real spoof vs. synthesized spoof:

Lp= Y {Eiwc[(D}(1)~1)*]+Eins[(D3(L;)~1)%]
n=1,2,3 (10)
+Eins[(DL (L —Gi(x)))?] + [E¢~L,j~S[Di(Ii‘*‘Gj%i))Q]}'

Regularizer loss: In Eq. 1, the task regularizes the intensity of spoof traces while
satisfying certain domain conditions. This regularizer loss is denoted as:

L = BExec[|GL)]3] + Eies[|G(X) 3], (11)

where 8 > 1 is a weight to further compress the traces of live faces to be zero.

Pixel loss: Synthesized spoof data come with ground truth spoof traces. Therefore we
can enable a supervised pixel loss for the generator to disentangle the exact spoof traces
that were added to the live faces:

Lp = Eior jusl|G([L + Gisi]) = [Gi=alll)s (12)
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Fig. 5: The three training steps of STDN. Each mini-batch includes the same number of live and
spoof samples.

where [-] is the stop_gradient operation. In this loss, we regard the traces G;_;
as ground truth, and the stop_gradient operation can prevent changing G;_,; to
minimize the loss.

Training steps and total loss: Shown in Fig. 5, each mini-batch has 3 training steps:
generator step, discriminator step, and extra supervision step. In the generator step, live
faces I, and spoof faces Iy, are fed to generator G(-) to disentangle the spoof traces.
The spoof traces are used to reconstruct the live counterpart i,,-vg and synthesize new
spoof ispoof. The generator is updated with respect to adversarial loss Lg, ESR loss Lggg,
and regularizer loss Lg:

L =oa1Lg + asLgsg + a3Lg. (13)

For the discriminator step, L., Lpoor L., and ispoof are fed into the discriminators
D, (-),n = {1,2,3}. The discriminators are supervised with adversarial loss Lp to
compete with the generator. For the extra supervision step, Ij;,, and ixp,mf are fed into the
generator with ground truth label and trace to enable pixel loss Lp and ESR loss Lggg:

L = ayLlgsg + asLp, (14)

where o -av5 are the weights to balance the multitask training. To note that, in the extra
supervision step, we send the original live faces I;;,, with iwouf for a balanced mini-batch,
which is important when computing the moving average in the batch normalization
layer. We execute all 3 steps in each minibatch iteration, but reduce the learning rate for
discriminator step by half.

4 Experiments

In this section, we first introduce the experiments setup, and then present the performance
in both the known spoof and unknown spoof scenarios. Next, we quantitatively evaluate
the spoof traces by performing a spoof medium classification, and conduct an ablation
study on each design in the proposed method. Finally, we provide visualization results
on the spoof trace disentanglement and new spoof synthesis.

4.1 Experimental Setup

Databases We conduct experiments on three major databases: Oulu-NPU [8], SiW [29],
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Protocol Method APCER (%) BPCER (%) ACER (%)
STASN([51] 1.2 2.5 1.9
1 Auxiliary [29] 1.6 1.6 1.6 Protocol Method APCER (%) BPCER (%) ACER (%)
DeSpoof [24] 1.2 1.7 1.5 Auxiliary[29] 3.6 3.6 3.6
Ours 0.8 1.3 1.1 | STASN[51] - - 1.0
Auxiliary [29] 2.7 2.7 2.7 Meta-FAS-DR[54] 0.5 0.5 0.5
5 GRADIANT [8] 3.1 1.9 2.5 Ours 0.0 0.0 0.0
STASN[51] 4.2 0.3 2.2 Auxiliary[29] 0.6+£07 06+£07 06=£0.7
Ours 2.3 1.6 1.9 5 Meta-FAS-DR[54] 0.3+ 0.3 0.3+0.3 0.3+0.3
DeSpoof [24] 4.0+18 38+12 36+1.6 STASN[51] - - 0.3+0.1
3 Auxiliary [29] 2.7+13 31+17 29%15 Ours 00+0.0 0.0+00 0.0+0.0
STASN([51] 47£39 09+12 28+16 STASN[51] - - 1214+1.5
Ours 1.6+16 40+54 28+33 3 Auxiliary[29] 83+£38 83£38 83+£38
Auxiliary [29] 9.3+5.6 104+£6.0 9.54+6.0 - Meta-FAS-DR[54] 8.0 5.0 7.4+57 7.7+53
4 STASN[51] 6.7+£10.6 83£84 T.5x47 Ours 83+£33 75+£33 79+£33
DeSpoof [24]  5.1+6.3 6.1£5.1 5.6%5.7
Ours 23436 52454 38+42 (b)
()
. . 3D Mask Makeup Partial Attacks
Metrics(%)  Replay Print Half Silic. Trans. Paper Manne. Ob. Im. Cos. Funny. Papergls. Paper Overall
ACER(%)
Auxiliary[29] 5.1 50 5.0 102 5.0 9.8 6.3 19.6 5.0 265 55 5.2 50 6.3
Ours 32 31 3.0 90 30 34 47 30 30 245 41 37 3.0 4.1
EER(%)
Auxiliary[29] 4.7 0.0 1.6 10.5 4.6 10.0 6.4 127 0.0 196 7.2 7.5 0.0 6.6
Ours 2.1 22 00 72 01 39 48 0.0 00 196 53 54 0.0 48
TDR @FDR=0.5(%)
Ours 90.1 76.1 80.771.5 62.3 74.4 85.0 100.0 100.0 33.8 49.6 30.6 97.7 70.4
(©

Table 1: Known spoof detection on: (a) OULU-NPU (b) SiW (¢) SiW-M Protocol 1.

and SiW-M [31]. Oulu-NPU and SiW include print/replay attacks, while SiW-M includes
13 spoof types. We follow all the testing protocols and compare with SOTA methods.
Similar to most prior works, we only use the face region for training and testing.
Evaluation metrics Two standard metrics are used in this work for comparison: EER
and APCER/BPCER/ACER. EER describes the theoretical performance and predeter-
mines the threshold for making decisions. APCER/BPCER/ACER[22] describe the
performance given a predetermined threshold. For EER/ACER, the lower the better. We
also report the True Detection Rate (TDR) at a given False Detection Rate (FDR). This
metric describes the spoof detection rate at a strict tolerance to live errors, which is
widely used to evaluate systems in real-world applications [2]. In this work, we report
TDR at FDR= 0.5%. For TDR, the higher the better.

Parameter setting STDN is implemented in Tensorflow with an initial learning rate of
le-4. We train in total 150, 000 iterations with a batch size of 8, and decrease the learning
rate by a ratio of 10 every 45,000 iterations. We initialize the weights with [0, 0.02]
normal distribution. {1, ag, ag, ay, a5, B} are set to be {1,100, 1e-3,50,1, led}. ag
is empirically determined from the training or validation set. We use open source face
alignment [10] and 3DMM fitting [30] to crop the face and provide 140 landmarks.

4.2 Anti-Spoofing for Known Spoof Types

Oulu-NPU [8] is a commonly used face anti-spoofing benchmark due to its high quality
and challenging testing. Shown in Tab. 1(a), our approach achieves the best performance
in all four protocols. Specifically, we demonstrate significant improvement in protocol
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3D Mask Makeup Partial Attacks

Half Silic. Trans. Paper Manne. Ob. Im. Cos. Fun. Papergls. Paper
APCER(%)
LBP+SVM [8] 19.1 15.4 40.8 20.3 70.3 0.0 4.6 96.9 35.311.3 53.3 58.5 0.6 32.8+29.8
Auxiliary[29] 23.7 7.3 27.7 182 97.8 83 16.2 100.0 18.0 16.3 91.8 72.2 04 3834374
DTL [31] 1.0 0.0 0.7 245 586 0.5 3.8 73.2 13.2124 17.0 17.0 0.2 17.1+£233
Ours 1.6 00 05 7.2 97 05 0.0 96.1 0.0 21.8 14.46.5 00 12.2+26.1
BPCER(%)
LBP+SVM [8] 22.1 21.5 21.9 21.4 20.7 23.1 229  21.7 125222 18.4 20.0 229 21.0£29
Auxiliary[29] 10.1 6.5 10.911.66.2 7.8 9.3 116 93 7.1 6.2 88 10.3 8.9+2.0
DTL [31] 18.6 11.9 29.3 12.8 134 85 23.0 11.5 9.6 16.0 21.5 22.6 16.8 16.6 6.2
Ours 14.0 14.6 13.6 18.6 181 8.1 134 10.3 9.2 17.2 27.0 35.5 11.2 16.2+7.6
ACER(%)
LBP+SVM [8] 20.6 18.4 31.3 21.4 45.5 11.6 13.8  59.3 23.916.7 35.9 39.2 11.7 26.9+£14.5
Auxiliary[29] 16.8 6.9 19.3 14.9 52.1 8.0 12.8 55.8 13.711.7 49.0 40.5 5.3 23.6+18.5
DTL [31] 9.8 6.0 15.0 18.7 36.0 45 134 481 114142 19.319.8 85 16.8+11.1
Ours 78 73 71 129139 43 6.7 53.2 4.6 19.5 20.7 21.0 56 14.2+13.2
EER(%)

LBP+SVM [8] 20.8 18.6 36.3 21.4 37.2 7.5 14.1 51.2 19.816.1 34.4 33.0 79 2454129
Auxiliary[29] 14.0 4.3 11.6 12.4246 7.8 10.0 72.3 10.19.4 214 18.6 4.0 17.0£17.7
DTL [31] 10.0 2.1 144 186 26.5 5.7 9.6 50.2 10.113.2 19.8 20.5 8.8 16.1+12.2

Methods Replay Print Average

Ours 76 3.8 84 138 145 53 44 354 00 193 21.0 208 1.6 12.0+10.0
TDR @FDR=0.5(%)
Ours 45.0 405 45.7 36.7 11.7 409 740 0.0 67.516.0 13.4 94 62.8 35.7 £ 23.9

Table 2: The evaluation on SiW-M Protocol II: unknown spoof detection. Bold indicates the best
score in each protocol. Red indicates protocols that our method improves over 50% than SOTA.

1 and protocol 4, reducing the ACER by 30% and 32% relative to the best prior work.
However, in protocol 3 and protocol 4, the performances of testing camera 6 are much
lower than those of cameras 1-5: the ACER for camera 6 are 9.5% and 8.6%, while the
average ACER for the other cameras are 1.7% and 3.1% respectively. Compared with
other cameras, we notice that camera 6 has stronger sensor noises and STDN recognizes
them as unknown spoof traces, which leads to an increasing BPCER. Separating sensor
noises from spoof traces can be an important future research topic.

SiW [29] is another recent high-quality database. It includes fewer capture cameras
but more spoof mediums and environment variations, such as pose, illumination, and
expression. The comparison on three protocols is shown in Tab. 1(b). We outperform
the previous works on the first two protocols and have a competitive performance on
protocol 3. Protocol 3 aims to test the performance of unknown spoof detection, where
the model is trained on one spoof attack (print or replay) and tested on the other. As
we can see from Fig. 8, the traces of print and replay are significantly different, which
would prevent the model from generalizing well.

SiW-M [31] contains a large diversity of spoof types, including print, replay, 3D mask,
makeup, and partial attacks. This allows us to have a comprehensive evaluation of the
proposed approach with different spoof attacks. To use SiW-M, we randomly split the
data into train/test set with a ratio of 60% and 40%, and the results are shown in Tab. 1(c).
Compared to one of the best anti-spoofing models [29], our method outperforms on all
spoof types as well as the overall performance, which demonstrates the superiority of
our anti-spoofing on known spoof attacks.
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i Predict . . X L
Label Predict Live  Print Replay mmvc Printl Print2  Replayl Replay2

Live 56(—4) 1(+1) 1(+1) 1(+1) 1(+1)

Live 60(+1) 0(—1) 0 Print1 0 43(+2) 11(+9) 3(-8) 3(-3)
Print 3(+3) 108(+20) 9(—23) Print2 0( ) 95—2;) 4(8(+:;7) 1(?) )22—1))
: . Replayl 1(—9) 2(—1) 3(+3 51(+38) 3(—28
Replay 1(—12) 11(+3)  108(+9) Replay2 1(-7) 2(-5) 2(+2) 3(-3) 52(+13)

Table 3: Confusion matrices of spoof mediums classification based on spoof traces. The left table
is 3-class classification, and the right is 5-class classification. The results are compared with the
previous method [24]. Green represents improvement over [24]. Red represents performance drop.

( “ ( - i Method APCER (%) BPCER (%) ACER (%)
' \ ] ﬂ (Q‘) ( ESR 0.8 43 26
1 D s | Rl ! ESR+GAN 15 2.7 21
4 \ \ ", T ESR+D-GAN 0.8 24 1.6
) _7“.&, ﬁ‘& = ESR+GAN+Lp 0.8 8.2 45
@ ® "© @ ESR+D-GAN+Lp 0.8 13 L1

Fig. 6: Live reconstruction comparison: (a) live, Table 4: Quantitative ablation study of com-
(b) spoof, (c) ESR+D-GAN, (d) ESR+GAN. ponents in our approach.

4.3 Anti-Spoofing for Unknown Spoof Types

Another important aspect of anti-spoofing model is to generalize to the unknown/unseen.
SiW-M comes with the testing protocol to evaluate the performance of unknown attack
detection. Shown in Tab. 2, STDN achieves significant improvement over the previous
best model by relatively 24.8% on the overall EER and 15.5% on the overall ACER.
This is especially noteworthy because DTL was specifically designed for detecting
unknown spoof types, while our proposed approach shines in both known and unknown
spoof detection. Specifically, we reduce the EERs of transparent mask, mannequin head,
impersonation makeup and partial paper attack relatively by 45.3%, 54.2%, 100.0%,
81.8%, respectively. Among all, obfuscation makeup is the most challenging one, where
we predict almost all the spoof samples as live. This is due to the fact that such makeup
looks very similar to the live faces, while being dissimilar to any other spoof types.
Once we obtain a few samples, our model can quickly recognize the spoof traces on the
eyebrow and cheek, and successfully detect the attack (0% in Tab. 1(c)). However, with
the TDR= 35.7% at FDR= 0.5%, the proposed method is still far from applicable in
practices when dealing with unknown spoof types, which warrant future research.

4.4 Spoof Traces Classification

To quantitatively evaluate the spoof trace disentanglement, we perform a spoof medium
classification on the disentangled spoof traces and report the classification accuracy. The
spoof traces should contain spoof medium-specific information, so that they can be used
for clustering without seeing the face. After STDN finishes training with only binary
labels, but not the spoof type label, we fix STDN and apply a simple CNN (i.e., AlexNet)
on the estimated spoof traces to do a supervised spoof medium classification. We follow
the same testing protocol in [24] in Oulu-NPU Protocol 1, and the results are shown
in Tab. 3. Our 3-class model and 5-class model can achieve classification accuracy of
92.0% and 83.3% respectively. Compared with the previous method [24], we show an
improvement of 10% on the 3-class model and 29% on the 5-class model. In addition,
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Fig. 7: Examples of spoof trace disentanglement on SiW-M. The (a)-(n) items are live, print, replay,
half mask, silicone mask, paper mask, transparent mask, obfuscation makeup, impersonation
makeup, cosmetic makeup, paper glasses, partial paper, funny eye glasses, and mannequin head.
The first column is the input face, the 2nd-4th columns are the spoof trace elements {s, b, C, T},
the 5th column is the overall spoof traces, and the last column is the reconstructed live.

we train the same CNN on the original images instead of the estimated spoof traces for
the same spoof medium classification task, and the classification accuracy can only reach
86.3% (3-class) and 80.6% (5-class). This further demonstrates that the estimated traces
do contain significant information to distinguish different spoof mediums.

4.5 Ablation Study

In this section, we show the importance of each design of our proposed approach on the
Oulu-NPU Protocol 1. Our baseline is the encoder with ESR (denoted as ESR), which
is a conventional regression model. To validate the effectiveness of GAN training, we
report the results from ESR with GAN. However the generator’s output of this model
is a single-layer spoof trace with the input size, instead of the proposed four elements.
To demonstrate the effectiveness of disentangled 4-element spoof trace, we change
the single layer to the proposed {s,b,C, T}, denoted as ESR+D-GAN. In addition,
we evaluate the effect of the training step 3 via enabling the pixel loss Lp on both
ESR+GAN and ESR+D-GAN. Our final approach is denoted as ESR+D-GAN+Lp.
Tab. 4 shows the results of comparison. The baseline model can achieve a decent
performance of ACER 2.6%. Adding GAN to the baseline can improve the ACER
from 2.6% to 2.1%, while adding D-GAN can improve to 1.6%. Moreover, ESR+D-
GAN can produce spoof traces with much higher quality than ESR+GAN, shown in
Fig. 6. In addition, if the bad-quality spoof samples are used in the training step 3, it
would increase the error rate from 2.1% to 4.5%. On the contrary, when feeding the
good-quality synthetic spoof samples to the generator, we can achieve a significant
improvement from 1.6% to 1.1%, which is the performance of the proposed method.
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Fig. 8: Examples of the spoof data synthesis. (a) The source spoof samples I;. (b) The disentangled

spoof traces G(I;). (c) The target live faces I;. (d) The synthesized spoof I; + G, ;.
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4.6 Visualization

As shown in Fig. 7, we successfully disentangle various spoof traces. E.g., strong color
distortion shows up in print/replay attacks (Fig. 7b-c). Moiré patterns in the replay attack
are well detected (Fig. 7¢). For makeup attacks (Fig. 7h-j), the fake eyebrows, lipstick,
artificial wax, and cheek shade are clearly detected. The folds and edges in paper-crafted
mask (Fig. 7f) are well detected. Although our method cannot provide a convincing
estimation for a few spoof types (e.g., funny eye glasses in Fig. 7m), the model effectively
focuses on the correct region and disentangles parts of the traces.

Additionally, we show some examples of spoof synthesis using the disentangled
spoof traces in Fig. 8. The spoof traces can be precisely transferred to a new face without
changing the identity of the target face. Thanks to the proposed 3D warping layer, the
geometric discrepancy between the source spoof trace and the target face is corrected
during the synthesis. These two figures demonstrate that our approach disentangles
visually convincing spoof traces that help face anti-spoofing.

5 Conclusions

This work proposes a network (STDN) to tackle a challenging problem of disentangling
spoof traces from faces. With the spoof traces, we reconstruct the live faces as well as
synthesize new spoofs. To correct the geometric discrepancy in synthesis, we propose
a 3D warping layer to deform the traces. The disentanglement not only improves the
SOTA of both known and unknown anti-spoofing, but also provides visual evidence to
support the model’s decision.
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