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Abstract

Computer vision approaches for retail applications can pro-
vide value far beyond the common domain of loss preven-
tion. Gaining insight into the movement and behaviors of
shoppers is of high interest for marketing, merchandizing,
store operations and data mining. Of particular interest is
the process of purchase decision making. What catches a
customers attention? What products go unnoticed? What
does a customer look at before making a final decision? To-
wards this goal we presents a system that detects and tracks
both the location and gaze of shoppers in retail environ-
ments. While networks of standard overhead store cameras
are used for tracking the location of customers, small in-
shelf cameras are used for estimating customer gaze. The
presented system operates robustly in real-time and can be
deployed in a variety of retail applications.

1. Introduction
In the presence of ever-growing competition and shrinking
margins, retailers are increasingly interested in understand-
ing the behaviors and purchase decision processes of their
customers. Traditionally this information can only be ob-
tained through labor intensive direct observation of shop-
pers or indirectly via focus groups or specialized experi-
ments in controlled environments. In contrast, computer
vision has the potential to gain insight into such questions
without this traditional overhead. Previous work has been
presented in the past that could address some of the needs
in this sector [8, 11] by tracking the location and reaching
events of shoppers. In this work, we present an approach
to determining what shoppers are looking at. This is impor-
tant for gauging customers level of interest, or lack thereof,
in certain products, displays for promotions.
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ment of Justice. The opinions, findings, and conclusions or recommen-
dations expressed in this publication are those of the authors and do not
necessarily reflect the views of the Department of Justice.

The presented system consists of two main components.
One component is responsible for detecting and tracking the
location of shoppers from ceiling mounted in-store cameras.
The cameras can be monocular and do not have to be down-
ward facing. The shopper tracking system is based on the
work in [12], which is a fast approach to performing person
detection in calibrated surveillance cameras. The second
component is responsible for estimating the gaze direction
of shoppers from in-shelf cameras. The gaze estimation
is performed mainly by fitting Active Appearance Models
(AAM) to a facial image. AAM are composed of an appear-
ance model and a shape model. After fitting is performed,
the resulting shape coefficients are used to estimate the head
gaze in terms of horizontal and vertical rotation.

2. Related Work
Several approaches for tracking shoppers in retail environ-
ments have been presented in the past. Haritaoglu et. al
[8] utilized downward looking stereo cameras to track the
location and reaching actions of shoppers. Stereo has the
advantage of being able to easily separate shoppers from
shopping carts, but requires dedicated stereo sensors that
are somewhat uncommon in the retail environment. An ap-
proach for counting shoppers using stereo was presented in
[2]. Krahnstoever et. al [11] used a wide-baseline stereo
system for tracking the interactions between shoppers and
products using a head and hand location tracker. The system
also utilized RFID information to detect and track the mo-
tion of products. Mustafa et. al [14] used a moving edges
based approach to tracking store associates and their dollies
entering or leaving the back-end storage rooms of a store.
Shopper attentiveness relative to billboards was investigated
in [9] where face and eye detectors are used to determine if
customers waiting in line are watching a certain billboard.
In comparison, our gaze estimation utilizes the enhanced
AAM, which have a long history in the vision community
for their ability of fitting to non-rigid objects [5, 6, 1]. With
the sophistical shape model fitting, this work aims at per-
forming a more detailed analysis with regard to the shopper

1



gaze and has the goal of determining within a few inches of
what a shopper is looking at in a retail shelf.

3. Customer Location
The shopper tracking back-end is an efficient multi-camera
multi-target tracker based on the work in [12]. It relies on
fully calibrated camera views to constrain the location and
scale of subjects, which helps in locating people even under
crowded conditions. The tracker follows a detect and track
paradigm, where the process of person detection and target
tracking are kept separate.

3.1. Detection
The target detector utilizes segmentation information from
a foreground background segmentation front-end as well
as image content to determine at every frame an estimate
of the most likely configuration of targets that could have
generated the given imagery. We define X = {Xj =
(xj , yj), j = 0, . . . , Nt} to be a configuration of targets
with ground plane locations (xj , yj). Each target is asso-
ciated with size and height information. In addition, we
assume that each target is composed of several parts. Let
Ok denote the part k of the target when a target configura-
tion X is projected into the image, a label image O[i] = ki

can be generated where at each image location i part ki is
visible. If no part is visible we assume O[i] = BG, a spe-
cial background label. We now define the probability of the
foreground image F at time t as

p(Ft|X) =
∏
all k

 ∏
{i|O[i]=k}

p(Ft[i]|O[i])


∏

{i|i∈BG}

p(Ft[i]|i ∈ BG), (1)

where Ft[i] is discretized probability of seeing foreground
at image location i. The above probability can be rewritten
as a log likelihood where constant contributions from the
background BG can be factored out during optimization.
The above equation can be simplified to

L(Ft|X) =
∑

{i|O[i] 6=BG}

hO[i](Ft[i]). (2)

where hk(p) is a histogram of likelihood ratios for part k
given foreground pixel probabilities p. The goal of the per-
son detection task is to find the most likely target configu-
ration X that maximizes Eq.(2). However, to allow real-
time execution, several simplifications and optimizations
are made: First, the projected ellipsoids are approximated
by their bounding boxes. The bounding boxes are subdi-
vided into one or several parts and separate body part la-
bels are assigned to the top, middle and bottom third of

the bounding box. Targets can only be located at discrete
ground plane locations in the camera view, which allows us
to precompute the bounding boxes required for the evalu-
ation of Eq.(2). Despite these assumptions, the maximum
of Eq.(2) can not be found using exhaustive search since
it is exponentially expensive in the number of visible tar-
gets, which is furthermore unknown. We adopt a greedy
approximation: By starting with the empty scene, we iter-
atively add targets to the ground plane in a way that yields
the greatest increase in the data likelihood at every step. To
achieve real-time performance, we make further simplify-
ing assumptions [12] which allow the precomputation of
many relevant quantities and the bulk of the target detec-
tion algorithm is spent on selecting locally optimal targets
from the set of possible ground locations followed by a spa-
tial pruning of non-selected neighboring targets that are af-
fected by the local choice.

3.2. Tracking

The tracking approach used in this work is centered around
the person detection framework described above. At ev-
ery step, detections are projected into the ground plane and
supplied to a centralized tracker that sequentially processes
the locations of these detections from all available camera
views. Tracking of extended targets in the imagery is hence
reduced to tracking 2D point locations in the ground plane,
which can be performed very efficiently. The central tracker
may operate on a physically separate processing node, con-
nected to the processing units that perform detection via a
network connection. It may receive detections that are out
of order from the different camera views due to network
delays. Detections are time stamped according to a syn-
chronous clock, buffered and time re-ordered by the cen-
tral tracker before processing. Tracking is performed by
a JPDAF algorithm [3, 16] that has excellent performance
characteristics in cluttered environments. The JPDAF algo-
rithm improves previous approaches that are based on gen-
eral nearest neighbor based assignment strategies. The de-
scribed tracking approach is computationally very efficient
and hence suited for tracking a large number of targets in
many camera views simultaneously. If further accuracy is
desired, MHT [7] or Bayesian multi-target trackers [10] can
be employed, but one has to trade off accuracy and scalabil-
ity for efficiency.

4. Customer Gaze
This section will start by providing a brief overview of the
Active Appearance Model (AAM) training and fitting pro-
cess, and then we will introduce the model enhancement,
which improves the robustness of fitting AAM to retail data.
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Figure 1: The mean shape and first 8 shape bases of the
shape model. Note the 5th and 6th shape basis model the
horizontal and vertical rotation.

4.1. AAM
An AAM applied to faces is a two-stage model of both fa-
cial shape and appearance designed to fit the faces of dif-
ferent persons at different orientations. The shape model
describes the distribution of the locations of a set of land-
mark points. Principle Components Analysis (PCA) is used
to reduce the dimensionality of the shape space while cap-
turing the major modes of variation across the training set
population.

The AAM shape model includes a mean face shape that
is the average of all face shapes in the training set and a set
of eigenvectors. The mean face shape is the canonical shape
and is used as the frame of reference for the AAM appear-
ance model. Each training image is warped to the canonical
shape frame of reference. All faces are presented as if they
have the same shape. With shape variation now removed,
the variation in appearance of the faces is modeled in this
second stage, again using PCA to select a set of appearance
eigenvectors for dimensionality reduction.

The complete trained AAM can synthesize face images
that vary continuously over appearance and shape. For our
purposes, the AAM is fit to a new face as it appears in
a video frame. This is accomplished by solving for the
face shape and appearance parameters (eigen-coefficients)
such that the model-synthesized face matches the face in the
video frame warped with the shape parameters. In our sys-
tem, we employ the Simultaneous Inverse Compositional
(SIC) algorithm [1] to solve the fitting problem.

While both shape parameters and appearance parameters
need to be estimated to fit the model to a new face, only
the resulting shape parameters are used for gaze estimation.
Due to the fact that facial images with various head poses
are used in the AAM training, the resulting shape model of
the AAM has a strong correlation with the head pose. As
shown in Figure 1, the 5th shape basis corresponds to the
horizontal rotation and the 6th shape basis corresponds to
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Figure 2: The diagram of AAM enhancement scheme. Iter-
ative face modeling and model fitting are performed using
the training images.

vertical head rotation. Since we know the ground-truth head
pose of each training facial image, we can learn the mapping
from the (5th and 6th) shape coefficient to the (horizonal
and vertical) head poses.

4.2. AAM Enhancement
One requirement for AAM training is to manually position
the facial landmarks for all training images. This is a time-
consuming operation and is error-prone due both to the ac-
curacy limitations of a manual operation, and also to differ-
ent interpretations as to the correct landmark locations. It is
obvious that the labeling error affects face modeling.

To tackle the problem of labeling error, we utilize an
AAM enhancement scheme [13], whose diagram is shown
in Figure 2. Starting with a set of training images and man-
ual labels, an AAM is trained using the above method. Then
the AAM is fit to the same training images using the SIC al-
gorithm, where the manual labels are used as the initial lo-
cation for fitting. This fitting yields new landmark positions
for the training images. This process is iterated. This new
landmark set is used for face modeling again, followed by
model fitting using the new AAM. The iteration continues
until there is no significant difference between the landmark
locations of the current iteration and the previous iteration.
In the face modeling of each iteration, the basis vectors for
both the appearance and shape models are chosen such that
98% and 99% of the energy are preserved, respectively.

A number of benefits are observed by using the model
enhancement. First, instantaneous labeling error can be cor-
rected given that people do not make consistent labeling er-
rors. Second, the appearance bases are visually sharper af-
ter enhancement thanks to the better alignment. Third, both
the appearance and shape models use fewer basis vectors
to represent the same amount of variation. Hence, a more
compact AAM will improve not only the fitting speed, but
also the fitting robustness.

4.3. System Implementation
To train a generic AAM, we collect a set of 400 images
from two public available databases, including the ND1
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Figure 3: Examples of the face dataset: ND1 database (left)
and FERET database (right).

database [4] and the FERET database [15]. Figure 3 shows
sample images from these two databases. All 400 images
come from different subjects and this insures that the trained
AAM can cover the shape and appearance variation of a rel-
ative large population. Hence, the AAM can be used to fit
to facial image from an unseen subject. Model enhance-
ment is applied to the AAM trained with the manual labels.
The final AAM after enhancement has 10 shape bases and
51 appearance bases defined in the mean shape space with
2966 pixels.

The gaze estimation system operates in two modes, face
detection mode and face fitting mode. The face detection
capability is provided by the Pittsburgh Pattern Recognition
(PPR). The fitting mode is activated when the face detec-
tion locates both eyes and the face likelihood score is above
a predefined threshold. The eye locations are used to de-
termine the initial landmarks for the fitting module. The
system switches back to the detection mode when the fit-
ting confidence is below a certain threshold. It is expected
that given a video sequence, most of the time the system op-
erates under the face fitting mode, where the resulting shape
coefficient of each frame are continuously mapped into the
head gaze.

5. Results
5.1. Shopper Tracking
We show the tracking of customers in a small cafeteria
checkout area that contains a number of food and coffee
selections as well as non-food items. The camera for this
particular application is mounted at a height of about 3 me-
ters under the ceiling. A second camera is located near the
greeting card display to track the gaze and attention of shop-
pers looking at the shelf.

Figure 4 shows the tracker following a customer in the
cafeteria section. The tracker can comfortably handle oc-
clusions, clutter and light changes. The available projective

geometry of the camera allows the system to revisualize the
store activity from a top down view, for example in CAD or
schematic drawings of the store (see Figure 5).

Figure 5: Top Down View The system tracks shoppers us-
ing calibrated cameras. This enables convenient visualiza-
tion of shopper location and motion paths in map-based top
down views.

Once customers are detected in front of the instrumented
greeting card display, the gaze estimation system acquires
the face and begins estimating the direction of attention.

5.2. Customer Gaze
A camera in the retail shelf captures video of subjects stand-
ing in front of the shelf. Figure 6 shows the face model
fitting and gaze estimation for some frames in the video se-
quence. The fitting is performed in real time. Reliable face
fitting is observed most of the time. If fitting failure occurs,
the face detection module quickly detects the face and re-
initialize the model fitting. Note that both subjects appear
in the video sequence are not part of the database used to
train the AAM.

Once gaze estimation is performed for each frame, there
are a number of ways to analyze the shopper’s attention,
such as the gaze heatmap and the trajectory map. For ex-
ample, Figure 7 is a heatmap generated from the gaze esti-
mation of the above video sequence. The redness indicates
how much attention the shoppers has on a particular prod-
uct. Figure 8 shows the gaze trajectory of two subjects in
the above video sequence.

Our system has been implemented using C++. Great care
and third-party computation analysis software have been
utilized to optimize the implementation and speed up the
fitting module. At this moment, for a 2D AAM with 10
shape basis vectors and 51 appearance basis vectors (there
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Figure 4: Shopper Tracking The system is able to track shoppers reliable from ceiling mounted oblique camera angles.

Figure 6: Gaze Estimation The system is able to estimate various head gazes.

Figure 7: Gaze Heatmap The gaze heatmap generated from
the gaze estimation of 2000+ video frames.

Figure 8: Trajectory map The gaze trajectory map of two
subjects generated from the gaze estimation.

are 2966 elements per basis vectors), our experiments indi-
cate that the fitting module can comfortably run in real-time
(more than 25 frames per second) on a conventional desk-
top.

6. Conclusion

We described a system that can track both the global move-
ments as well as local attention cues of customers in re-
tail stores. A multi-view multi-target tracking system op-
erates from oblique camera angles to track the location of
the shoppers while an active appearance model-based face
tracker is used for tracking the gaze direction of individu-
als. The proposed system enables a variety of video based
analytic for retail stores. For example, the system can an-
swer queries regarding the number and location of shop-
pers. Over time, one can determine which sections of a
store are visited frequently and which sections are not. The
gaze direction supplies information regarding what prod-
ucts or items are noticed by shoppers. This is important in-
formation for retailers since there is the difference between
a product that goes unnoticed and a product that is noticed
but ignored. These two problems will have to be solved
in different ways – the former by changing the location of
the product and the latter by changing the design, quality
or advertising of the product. Future work will extend the
proposed system to larger scale environments and provide
more detailed quantitative analysis regarding the analytical
capabilities that the presented system will enable. All the
components of the system operate in real-time and perform
well under a variety of typical retail environments.
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