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A1. Implementation Details

Images are cropped using the detector bounding boxes
provided by the dataset and resized to 256 × 256. Images
with no detector bounding box are initialized by adding
5% uniform noise to the location of each edge of the tight
bounding box around the landmarks, as in [7].

Training. We modified the PyTorch [58] code for DU-
Net [72], keeping the number of U-nets K = 8 as in [72].
Unless otherwise stated, we use the 2D Laplacian likeli-
hood (12) as our landmark location likelihood, and there-
fore we use (13) as our final loss function. All U-nets have
equal weights λi = 1 in (14). For all datasets, visibility
vj = 1 is assigned to unoccluded landmarks (those that
are not labeled as occluded) and to landmarks that are la-
beled as externally occluded. Visibility vj=0 is assigned to
landmarks that are labeled as self-occluded and landmarks
whose labels are missing.

Training images for 300-W Split 1 are augmented ran-
domly using scaling (0.75 − 1.25), rotation (−30◦,−30◦)
and color jittering (0.6, 1.4) as in [72], while those
from 300-W Split 2, AFLW-19, WFLW-98 and MERL-
RAV datasets are augmented randomly using scaling (0.8−
1.2), rotation (−50◦, 50◦), color jittering (0.6, 1.4), and
random occlusion, as in [7].

The RMSprop optimizer is used as in [7, 72], with batch
size 24. Training from scratch takes 100 epochs and starts
with learning rate 2.5 × 10−4, which is divided by 5, 2,
and 2 at epochs 30, 60, and 90 respectively [72]. When
we initialize from pretrained weights, we finetune for 50
epochs using the LUVLi loss: 20 with learning rate 10−4,
followed by 30 with learning rate 2×10−5. We consider the
model saved in the last epoch as our final model.

Testing. Whereas heatmap based methods [7, 68, 72]
adjust their pixel output with a quarter-pixel offset in the
direction from the highest response to the second highest
response, we use the spatial mean as the landmark loca-
tion without carrying out any adjustment nor shifting the
heatmap even by a quarter of a pixel. We do not need to
implement a sub-pixel shift, because our spatial mean over
the ReLUed heatmaps already performs sub-pixel location
prediction.
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the heatmap pixel with a function σ.

A2. Additional Experiments and Results
We now provide additional results evaluating our sys-

tem’s performance in terms of both localization and uncer-
tainty estimation.

A2.1. System Trained on 300-W

A2.1.1 Training

For Split 1, we initialized using the pre-trained DU-Net
model available from the authors of [72], then fine-tuned on
the 300-W training set (Split 1) using our proposed archi-
tecture and LUVLi loss. For Split 2, for the experiments in
which we pre-trained on 300W-LP-2D, we pre-trained from
scratch on 300W-LP-2D using heatmaps (using the original
DU-Net architecture and loss). We then fine-tuned on the
300-W training set (Split 2) using our proposed architecture
and LUVLi loss.

A2.1.2 Comparison with KDN [13]

To compare directly with Chen et al. [13], in Figure 6
we plot normalized mean error (NME) vs. predicted un-
certainty (rank, from smallest to largest), as in Figure 1
of [13]. (We obtained the predicted uncertainty and NME
data of [13] from the authors.) The figure shows that for our
method as well as for [13], there is a strong trend that higher
predicted uncertainties correspond to larger location errors.
However, the errors of our method are significantly smaller
than the errors produced by [13].

A2.1.3 Verifying Predicted Uncertainty Distributions

For every image, for each landmark j, our network predicts
a mean µKj and a covariance matrix ΣKj . We can view
this as our network predicting that a human labeler of that
image will effectively select the landmark location pj for



Figure 6: Average NME vs sorted uncertainty, averaged
across landmarks in an image.

Figure 7: Scatter plot of transformed ground-truth loca-
tions, p′j = Σ−0.5Kj (pj − µKj), for 300-W Test (Split 2).
The histograms (orange) of their x and y coordinates are
very close to the the marginal pdf (black curves) of the Stan-
dard Laplacian distribution P (z′|0, I).

that image from the Laplacian distribution from (12) with
mean µKj and covariance ΣKj :
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(17)
If we had multiple labels (e.g., ground-truth landmark lo-
cations from multiple human labelers) for a single land-
mark in one image, then it would be straightforward to

evaluate how well our method’s predicted probability dis-
tribution matches the distribution of labeled landmark loca-
tions. Unfortunately, face alignment datasets only have a
single ground-truth location for each landmark in each im-
age. This makes it difficult, but not impossible, to evaluate
how well the human labels for images in the test set fit our
method’s predicted uncertainty distributions. We propose
the following method for verifying the predicted probabil-
ity distributions.

Suppose we transform the ground-truth location of a
landmark, pj , using the predicted mean and covariance for
that landmark as follows:

p′j = Σ−0.5Kj (pj − µKj). (18)
If our method’s predictions are correct, then from (17),
pj ∼ P (z|µKj ,ΣKj). Hence, p′j is drawn from the trans-
formed distribution P (z′), where z′ = Σ−0.5Kj (z− µKj):

p′j ∼ P (z′|0, I) =
e−
√
3z′T z′

2π/3
. (19)

After this simple transformation (transforming the labeled
ground-truth location pj of each landmark using its pre-
dicted mean and covariance), we have transformed our net-
work’s prediction about pj into a prediction about p′j that is
much easier to evaluate, because the distribution in (19) is
simply a standard 2D Laplacian distribution—it no longer
depends on the predicted mean and covariance.

Thus, our method predicts that after the transforma-
tion (18), every ground-truth landmark location p′j is drawn
from the same standard 2D Laplacian distribution (19).
Now that we have an entire population of transformed la-
bels that our model predicts are all drawn from the same
distribution, it is easy to verify whether the labels fit our
model’s predictions. Figure 7 shows a scatter plot of the
transformed locations, p′j , for all landmarks in all test im-
ages of 300-W (Split 2). We plot the histogram of the
marginalized landmark locations (x- or y-coordinate of p′j)
in orange above and to the right of the plot, and overlay the
marginal pdf of the standard Laplacian (19) in black. The
excellent match between the transformed landmark loca-
tions and the standard Laplacian distribution indicates that
our model’s predicted uncertainty distributions are quite ac-
curate. Since Kullback-Leibler (KL) divergence is invariant
to affine transformations like the one in (18), we can evalu-
ate the KL-divergence (printed at the top of the scatterplot)
between the standard 2D Laplacian distribution (19) and the
distribution of the transformed landmark locations (using
their 2D histograms) as a numerical measure of how well
the predictions of our model fit the distribution of labeled
locations.



A2.1.4 Relationship to Variation Among Human
Labelers on Multi-PIE

We test our Split 2 model on 812 frontal face images of
all subjects from the Multi-PIE dataset [31], then compute
the mean of the uncertainty ellipses predicted by our model
across all 812 images. To compute the mean, we first nor-
malize the location of each landmark using the inter-ocular
distance, as in [63], and also normalize the covariance ma-
trix by the square of the inter-ocular distance. We then take
the average of the normalized locations across all faces to
obtain the mean landmark location. The covariance ma-
trices are averaged across all faces using the log-mean-
exponential technique. The mean location and covariance
matrix of each landmark (averaged across all faces) is then
used to plot the results which are shown on the right in Fig-
ure 8.

We compare our model predictions with Figure 5 of [63],
shown on the left of Figure 8. To create that figure, [63]
tasked three different human labelers with annotating the
same frontal face images from the Multi-PIE database of
80 different subjects in frontal pose with neutral expression.
For each landmark, they plotted the the covariance of the la-
bel locations across the three labelers using an ellipse. Note
the similarity between our model’s predicted uncertainties
(on the right of Figure 8 and the covariance across human
labelers (on the left of Figure 8), especially around the eyes,
nose, and mouth. Around the outside edge of the face, note
that our model predicts that label locations will vary primar-
ily in the direction parallel to the edge, which is precisely
the pattern observed across human labelers.

Figure 8: Variation across three human labelers [63] (left)
versus uncertainties computed by our proposed method on
frontal images of Multi-PIE dataset (right).

A2.1.5 Sample Uncertainty Ellipses on Multi-PIE

To illustrate how the predicted uncertainties output by our
method vary across different subjects from Multi-PIE, in
Figure 9 we overlay our model’s mean uncertainty predic-
tions (in blue, copied from right side of Figure 8) with our

model’s predicted uncertainties of some of the individual
Multi-PIE face images (in various colors). To simplify the
figure, we plot all landmarks except for the eyes, nose, and
mouth.

Figure 9: Our model’s uncertainty predictions for some
individual frontal face images from the Multi-PIE dataset
(various colors), overlaid with the mean uncertainty predic-
tions across all frontal Multi-PIE faces (blue, copied from
Figure 8).

A2.1.6 Laplacian vs. Gaussian Likelihood

We have described two versions of our model: one whose
loss function (13) uses a 2D Laplacian probability distribu-
tion (12), and another whose loss function (11) uses a 2D
Gaussian probability distribution (10). We now discuss the
question of which of these two models performs better.

The numerical comparisons are shown in Table 11. The
numbers in the first two columns of the table were also pre-
sented in the ablation studies table, Table 10.

Comparing the Predicted Locations. If we consider
only the errors of the predicted landmark locations, the first
two columns of Table 11 show that the Laplacian model is
slightly better: The Laplacian model has a smaller value of
NMEbox and a larger value of AUC7

box.
Comparing the Predicted Uncertainties. To compare

the two models’ predicted uncertainties as well as their pre-
dicted locations, we consider the probability distributions
over landmark locations that are predicted by each model.
We want to know which model’s predicted probability dis-
tributions better explain the ground-truth locations of the
landmarks in the test images. In other words, we want
to know which model assigns a higher likelihood to the
ground-truth landmark locations (i.e., which model yields
a lower negative log-likelihood on the test data). We com-
pute the negative log-likelihood of the ground-truth loca-
tions pj from the last hourglass using (13) for the Lapla-



Table 11: Comparison of our model with Laplacian likeli-
hood vs. with Gaussian likelihood, on 300-W Test (Split 2).
[Key: (↑) = higher is better;(↓) = lower is better ]

Likelihood NMEbox(%) (↓) AUC7
box(%) (↑) NLL (↓)

Laplacian 2.10 70.1 0.51
Gaussian 2.13 69.8 0.66

Table 12: NMEvis
box comparisons on MERL-RAV dataset.

[Key: Best]
Metric (%) Method All Frontal Half-Profile Profile

NMEvis
box(↓) DU-Net [72] 2.27 1.91 2.77 3.10

LUVLi (Ours) 1.84 1.75 1.99 2.03

NMEbox(↓) DU-Net [72] 1.99 1.89 2.50 1.92
LUVLi (Ours) 1.61 1.74 1.79 1.25

cian model and (11) for the Gaussian model. The results, in
the last column of Table 11, show that the Laplacian model
gives a lower negative log-likelihood. In other words, the
ground-truth landmark locations have a higher likelihood
under our Laplacian model. We conclude that the learned
Laplacian model explains the human labels better than the
learned Gaussian model.

A2.2. WFLW Face Alignment

Data Splits and Implementation Details. The training
set consists of 7,500 images, while the test set consists of
2,500 images. In Table 13, we report results on the entire
test set (All), which we also reported in Table 7. In Ta-
ble 13, we additionally report results on several subsets of
the test set: large head pose (326 images), facial expression
(314 images), illumination (698 images), make-up (206 im-
ages), occlusion (736 images), and blur (773 images). The
images are cropped using the detector bounding boxes pro-
vided by [68] and resized to 256× 256.

We first train the images with the heatmaps on proxy
ground-truth heatmaps, then finetune using our proposed
LUVLi loss. NMEinter-ocular, AUC10

inter-ocular, and FR10
inter-ocular

are used as evaluation metrics, as in [20, 68, 79]. We report
AUC and FR with cutoff 10% as in [20, 68, 79].

Results of Facial Landmark Localization. Table 13
compares our method’s landmark localization results with
those of other state-of-the-art methods on the WFLW
dataset. Our method performs performs in the top two meth-
ods on all the metrics. Importantly, all of the other methods
only predict landmark locations–they do not predict the un-
certainty of their estimated landmark locations. Not only
does our method place in the top two on all three landmark
localization metrics, but our method also accurately predicts
its own uncertainty of landmark localization.

A2.3. MERL-RAV Face Alignment

We next define a modified version of the evaluation met-
ric NME that may be more appropriate for face images

with extreme head pose. Whereas NME as defined in (15)
divides by the total number of landmarks Np, the modi-
fied NME instead divides by the number of visible land-
marks. This metric, which we call NMEvis, computes the
mean across only the visible (unoccluded and externally oc-
cluded) landmarks:

NMEvis(%) =
1∑
j

vj

Np∑
j=1

vj
‖pj − µKj‖2

d
× 100, (20)

If all of the facial landmarks are visible, then this reduces to
our previous definition of NME (15).

We define NMEvis
box as the special case of NMEvis in

which the normalization d is set to the geometric mean
of the width and height of the ground-truth bounding box(√
wbbox · hbbox

)
, as in NMEbox [7, 14, 86]. Results for

all head poses on MERL-RAV dataset using the metric
NMEvis

box are shown in Table 12. We also repeat the
NMEbox numbers from Table 8. Clearly, the NMEvis

box and
NMEbox numbers are very close for the frontal subsets but
are different for half-profile and profile subsets. This is be-
cause half-profile and (especially) profile face images have
fewer visible landmarks (more self-occluded landmarks),
which causes the denominator in (20) to be smaller for these
images.

A2.4. Additional Qualitative Results

In Figure 10, we show example results on images from
four datasets on which we tested.

A2.5. Video Demo of LUVLi

We include a short demo video of our LUVLi model that
was trained on our new MERL-RAV dataset. The video
demonstrates our method’s ability to predict landmarks’
visibility (i.e., whether they are self-occluded) as well as
their locations and uncertainty. We take a simple face video
of a person turning his head from frontal to profile pose and
run our method on each frame independently. Overlaid on
each frame of video, we plot each estimated landmark loca-
tion in yellow, and plot the predicted uncertainty as a blue
ellipse. To indicate the predicted visibility of each land-
mark, we modulate the transparency of the landmark (of the
yellow dot and blue ellipse). Landmarks whose predicted
visibility is close to 1 are shown as fully opaque, while land-
marks whose predicted visibility is close to zero are fully
transparent (are not shown). Landmarks with intermediate
predicted visibilities are shown as partially transparent.

In the video, notice that as the face approaches the profile
pose, points on the far edge of the face begin to disappear,
because the method correctly predicts that they are not vis-
ible (are self-occluded) when the face is in profile pose.



Table 13: NMEinter-ocular and AUC10
inter-ocular comparison between our proposed method and the state-of-the-art landmark

localization methods on the WFLW dataset.
[Key: Best, Second best; (w/DA) = uses more data; (w/B) = uses boundary; (↓) = smaller is better; (↑) = larger is better]

Metric Method All Head Pose Expression Illumination Make-up Occlusion Blur

NMEinter-ocular(%) (↓)

CFSS [88] 9.07 21.36 10.09 8.30 8.74 11.76 9.96
DVLN [82] 10.84 46.93 11.15 7.31 11.65 16.30 13.71

LAB (w/B) [81] 5.27 10.24 5.51 5.23 5.15 6.79 6.32
Wing [27] 5.11 8.75 5.36 4.93 5.41 6.37 5.81

DeCaFA (w/DA) [20] 4.62 8.11 4.65 4.41 4.63 5.74 5.38
HR-Net [68] 4.60 7.94 4.85 4.55 4.29 5.44 5.42

AVS [59] 4.39 8.42 4.68 4.24 4.37 5.60 4.86
AWing [79] 4.36 7.38 4.58 4.32 4.27 5.19 4.96

LUVLi (Ours) 4.37 7.56 4.77 4.30 4.33 5.29 4.94

AUC10
inter-ocular(↑)

CFSS [88] 0.366 0.063 0.316 0.385 0.369 0.269 0.303
DVLN [82] 0.456 0.147 0.389 0.474 0.449 0.379 0.397

LAB (w/B) [81] 0.532 0.235 0.495 0.543 0.539 0.449 0.463
Wing [27] 0.554 0.310 0.496 0.541 0.558 0.489 0.492

DeCaFA (w/DA) [20] 0.563 0.292 0.546 0.579 0.575 0.485 0.494
AVS [59] 0.591 0.311 0.549 0.609 0.581 0.517 0.551

AWing [79] 0.572 0.312 0.515 0.578 0.572 0.502 0.512
LUVLi (Ours) 0.577 0.310 0.549 0.584 0.588 0.505 0.525

FR10
inter-ocular(%) (↓)

CFSS [88] 20.56 66.26 23.25 17.34 21.84 32.88 23.67
DVLN [82] 10.84 46.93 11.15 7.31 11.65 16.30 13.71

LAB (w/B) [81] 7.56 28.83 6.37 6.73 7.77 13.72 10.74
Wing [27] 6.00 22.70 4.78 4.30 7.77 12.50 7.76

DeCaFA(w/DA) [20] 4.84 21.40 3.73 3.22 6.15 9.26 6.61
AVS [59] 4.08 18.10 4.46 2.72 4.37 7.74 4.40

AWing [79] 2.84 13.50 2.23 2.58 2.91 5.98 3.75
LUVLi (Ours) 3.12 15.95 3.18 2.15 3.40 6.39 3.23

A2.6. Examples from our MERL-RAV Dataset

Figure 11 shows several sample images from our MERL-
RAV dataset. The ground-truth labels are overlaid on the
images. On each image, unoccluded landmarks are shown
in green, externally occluded landmarks are shown in red,
and self-occluded landmarks are indicated by black circles
in the face schematic to the right of the image.
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Figure 10: Results of our LUVLi face alignment on example face images from four face datasets. Top row: 300-W. Second
row: AFLW-19. Third row: WFLW. Bottom row: MERL-RAV. Ground-truth (green) and predicted (yellow) landmark
locations are shown. The estimated uncertainty of the predicted location of each landmark is shown in blue (Error ellipse
for Mahalanobis distance 1). In the MERL-RAV images (bottom row), the predicted visibility of each landmark controls its
transparency. In particular, the predicted locations of landmarks with predicted visibility close to zero (such the points on the
far side of the profile face in the third image of the bottom row) are 100% transparent (not shown).



Figure 11: Sample images from our MERL-RAV dataset with unoccluded landmarks shown in green, externally occluded
landmarks shown in red, and self-occluded landmarks indicated by black circles in the face schematic on the right of each
image.


