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Supplementary Material

Al. Detailed Explanation of NMS as a Matrix
Operation

The rescoring process of the classical NMS is greedy set-
based [65] and calculates the rescore for a box ¢ (Line 10 of
Alg. 1) as

ri=si [ (1—=ploi)), (12)

JjE€d<i

where d; is defined as the box indices sampled from d
having higher scores than box ¢. For example, let us con-
sider that d = {1,5,7,9}. Then, fori = 7, d; = {1,5}
while for ¢ = 1,d.; = ¢ with ¢ denoting the empty set.
This is possible since we had sorted the scores s and O
in decreasing order (Lines 2-3 of Alg. 2) to remove the
non-differentiable hard argmax operation of the classical
NMS (Line 6 of Alg. 1).

Classical NMS only takes the overlap with unsuppressed
boxes into account. Therefore, we generalize (12) by ac-
counting for the effect of all (suppressed and unsuppressed)
boxes as

i—1

T, = S; H (1 — p(Oij)T‘j) . (13)
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The presence of r; on the RHS of (13) prevents suppressed
boxes r; ~ 0 from influencing other boxes hugely. Let us
say we have a box by with a high overlap with an unsup-
pressed box b;. The classical NMS with a threshold prun-
ing function assigns ro = 0 while (13) assigns ry a small
non-zero value with a threshold pruning.

Although (13) keeps r; > 0, getting a closed-form re-
cursion in r is not easy because of the product operation.
To get a closed-form recursion with addition/subtraction in
r, we first carry out the polynomial multiplication and then
ignore the higher-order terms as

i—1
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j=1
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A S — Zp(oij)rj. (14)
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Dropping the s; in the second term of (14) helps us get
a cleaner form of (19). Moreover, it does not change the
nature of the NMS since the subtraction keeps the relation
r; < s; intact as p(o0;;) and r; are both between [0, 1].

We can also reach (14) directly as follows. Classical
NMS suppresses a box which has a high IoUyp overlap
with any of the unsuppressed boxes (r; ~ 1) to zero. We
consider any as a logical non-differentiable OR operation
and use logical OR \/ operator’s differentiable relaxation
as »_ [38,47]. We next use this relaxation with the other
expressionr < s.

When a box shows overlap with more than two unsup-

i—1
pressed boxes, the term > p(o0;;)r; > 1 in (14) or when
j=1
a box shows high overlap with one unsuppressed box, the
term s; < p(o;;)r;. In both of these cases, r; < 0. So,
we lower bound (14) with a max operation to ensure that
r; > 0. Thus,

i—1
r; A max | s; — Zp(oij)rj, 0]. (15)
j=1

‘We write the rescores r in a matrix formulation as
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We next write the above two equations compactly as
r ~ max(s — Pr,0), (18)

where P, called the Prune Matrix, is obtained by element-
wise operation of the pruning function p on O . Maximum



Table 7: Results on using Oracle NMS scores on APsp|r,, -APgev|r,, andAPsp|r,, of KITTI Val 1 Cars. [Key: Best]

NMS Scores AP3p| R4 (D

APBEy| Ry (1)

APop Ry (D

Oracle IoUsp 87.93 73.10 60.91

93.47 83.61 71.31

Easy Mod Hard | Easy Mod Hard | Easy Mod Hard
Kinematic (Image) | 18.29 13.55 10.13|25.72 18.82 14.48 | 93.69 84.07 67.14
Oracle IoUgp 9.36 9.93 6.40 | 12.27 10.43 8.72 |99.18 95.66 85.77

80.99 78.38 67.66

operation makes (18) non-linear [41] and, thus, difficult to
solve.

However, for a differentiable NMS layer, we need to
avoid the recursion. Therefore, we first solve (18) assuming
the max operation is not present which gives us the solution
r~(I+ P)f1 s. In general, this solution is not necessarily
bounded between 0 and 1. Hence, we clip it explicitly to
obtain the approximation

r A~ {(I—i—P)ilS—‘, (19)

which we use as the solution to (18).

A2. Loss Functions

We now detail out the loss functions used for training.
The losses on the boxes before NMS, Ly fore, is given
by [17]

Ebefore = ‘Cclass + £2D + bconf £3D

+ Aconf (1 = beonys)s (20)
where
Letass = CE(beass, gelass) (21)
Lop = —log(IoU(bap, gan)), (22)
L3p = Smooth-L1(bsp, gsp)
+ AaCE([bo,, bo, ], [96.,90.])-  (23)

beon ¢ 1s the predicted self-balancing confidence of each box
b, while by, and by, are its orientation bins [12]. g denotes
the ground-truth. A, is the rolling mean of most recent
L3p losses per mini-batch [12], while A, denotes the weight
of the orientation bins loss. CE and Smoooth-L1 denote
the Cross Entropy and Smooth L1 loss respectively. Note
that we apply 2D and 3D regression losses as well as the
confidence losses only on the foreground boxes.

As explained in Sec. 4.3, the loss on the boxes after
NMS, Lqfter, is the Imagewise AP-Loss, which is given
by

N
1
['afte'r‘ = Elmagewise = N E AP(r(m)7 target(B(m)))a
m=1

(24)

Let X be the weight of the L, f¢e, term. Then, our overall
loss function is given by

L= Ebefore + )\‘Cafter (25)

= ﬁclass + £2D + bconf £3D + Aconf(l -

+ AL rmagewise (26)
= CE(bclass: Jelass) — 10g(IoU(b2p, g2p))

+ beony Smooth-L1(bsp, gsp)

+ Aa beonf CE([be, , bo, |, (96,5 96,])

+ Aeonf (1 = beonf) + ALImagewise- 27)

We keep A\, = 0.35 following [12] and A = 0.05. Clearly,
all our losses and their weights are identical to [12] except

E[magewise'

A3. Additional Experiments and Results

We now provide additional details and results evaluating
our system’s performance.

A3.1. Training

Training images are augmented using random flipping
with probability 0.5 [12]. Adam optimizer [37] is used with
batch size 2, weight-decay 5x 10~* and gradient clipping of
1[10,12]. Warmup starts with a learning rate 4 x 103 fol-
lowing a poly learning policy with power 0.9 [12]. Warmup
and full training phases take 80k and 50k mini-batches re-
spectively for Val 1 and Val 2 Splits [12] while take 160k
and 100k mini-batches for Test Split.

A3.2. KITTI Val 1 Oracle NMS Experiments

As discussed in Sec. 1, to understand the effects of an
inference-only NMS on 2D and 3D object detection, we
conduct a series of oracle experiments. We create an ora-
cle NMS by taking the Val Car boxes of KITTT Val 1 Split
from the baseline Kinematic (Image) model before NMS
and replace their scores with their true IoUsp or loUsp with
the ground-truth, respectively. Note that this corresponds to
the oracle because we do not know the ground-truth boxes
during inference. We then pass the boxes with the oracle
scores through the classical NMS and report the results in
Tab. 7.

The results show that the APsp increases by a staggering
> 60 AP on Mod cars when we use oracle IoUsp as the
NMS score. On the other hand, we only see an increase
in APsp by =~ 11 AP on Mod cars when we use oracle
IoUyp as the NMS score. Thus, the relative effect of using
oracle IoUsp NMS scores on 3D detection is more signifi-
cant than using oracle IoUp NMS scores on 2D detection.



Table 8: APsp|r,, and APggv|r,, comparisons with other NMS during inference on KITTI Val 1 Cars.

Inference 10U3D 2 0.7 IOU3D 2 0.5
NMS AP3p R, (D APggv| R0 (D) AP3p Ry (1) APggv| R, (D)

Easy Mod Hard | Easy Mod Hard | Easy Mod Hard | Easy Mod Hard
Kinematic (Image) [12] Classical 18.28 13.55 10.13|25.72 18.82 14.48 | 54.70 39.33 31.25|60.87 44.36 34.48
Kinematic (Image) [12] Soft [8] 18.29 13.55 10.13(25.71 18.81 14.4854.70 39.33 31.26 [ 60.87 44.36 34.48
Kinematic (Image) [12] | Distance [76] | 18.25 13.53 10.11[25.71 18.82 14.48|54.70 39.33 31.26 | 60.87 44.36 34.48
Kinematic (Image) [12] | GrooMeD | 18.26 13.51 10.10|25.67 18.77 14.44|54.59 39.25 31.18 |60.78 44.28 34.40
GrooMeD-NMS Classical 19.67 14.31 11.27(27.38 19.75 15.93]55.64 41.08 32.91(61.85 44.98 36.31
GrooMeD-NMS Soft [8] 19.67 14.31 11.27(27.38 19.75 15.93]55.64 41.08 32.91(61.85 44.98 36.31
GrooMeD-NMS Distance [76] | 19.67 14.31 11.27|27.38 19.75 15.93|55.64 41.08 32.91|61.85 44.98 36.31
GrooMeD-NMS GrooMeD | 19.67 14.32 11.27|27.38 19.75 15.92|55.62 41.07 32.89|61.83 44.98 36.29

In other words, the mismatch is greater between classifica-
tion and 3D localization compared to the mismatch between
classification and 2D localization.

A3.3. KITTI Val 1 3D Object Detection

Comparisons with other NMS. We compare our
method with the other NMS—-classical, Soft [8] and
Distance-NMS [76] and report the detailed results in Tab. 8.
We use the publicly released Soft-NMS code and Distance-
NMS code from the respective authors. The Distance-
NMS model uses the class confidence scores divided by the
uncertainty in z (the most erroneous dimension in 3D lo-
calization [78]) of a box as the Distance-NMS [76] input.
Our model does not predict the uncertainty in z of a box
but predicts its self-balancing confidence (the 3D localiza-
tion score). Therefore, we use the class confidence scores
multiplied by the self-balancing confidence as the Distance-
NMS input.

The results in Tab. 8§ show that NMS inclusion in the
training pipeline benefits the performance, unlike [8], which
suggests otherwise. Training with GrooMeD-NMS helps
because the network gets an additional signal through the
GrooMeD-NMS layer whenever the best-localized box cor-
responding to an object is not selected. Moreover, Tab. 8
suggests that we can replace GrooMeD-NMS with the clas-
sical NMS in inference as the performance is almost the
same even at loUgp= 0.5.

How good is the classical NMS approximation?
GrooMeD-NMS uses several approximations to arrive at
the matrix solution (19). We now compare how good these
approximations are with the classical NMS. Interestingly,
Tab. 8 shows that GrooMeD-NMS is an excellent approx-
imation to the classical NMS as the performance does not
degrade after changing the NMS in inference.

A3.4. KITTI Val 1 Sensitivity Analysis

There are a few adjustable parameters for the GrooMeD-
NMS, such as the NMS threshold V¢, valid box threshold
v, the maximum group size o, the weight X for the L, s1er,
and 5. We carry out a sensitivity analysis to understand
how these parameters affect performance and speed, and

Table 9: AP3p|r,, and APggy|r,, variation with Nt on KITTI Val

1 Cars. [Key: Best]

AP3p| R, (M
Easy Mod Hard

APggv| R, (1)
Easy Mod Hard

Ny =0.3
Ny =04
Ny =0.5

17.49 13.32 10.54
19.67 14.32 11.27

19.65 13.93 11.09

26.07 18.94 14.61
27.38 19.75 15.92

26.15 19.15 14.71

Table 10: AP3pr,, and APggy|r,, variation with v on KITTI Val
1 Cars. [Key: Best]

AP3p| R, (D APBEy| Ry (1)
Easy Mod Hard | Easy Mod Hard
v=0.01]13.71 9.65 7.24 |17.73 12.47 9.36
v=0.1 |19.37 13.99 10.92]26.95 19.84 15.40
v=0.2 |19.65 14.31 11.24|27.35 19.73 15.89
v=0.3 |19.67 14.32 11.27]27.38 19.75 15.92
v=0.4 |19.67 14.33 11.28|27.38 19.76 15.93
v=0.5 |19.67 14.33 11.28|27.38 19.76 15.93
v=0.6 |19.67 14.33 11.29|27.39 19.77 15.95
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Figure 5: AP3p|r,, and APggy|r,, Variation with o on Moderate
Cars of KITTI Val 1 Split.

how sensitive the algorithm is to these parameters.
Sensitivity to NMS Threshold. We show the sensitivity
to NMS threshold /V; in Tab. 9. The results in Tab. 9 show
that the optimal N; = 0.4. This is also the N, in [10, 12].
Sensitivity to Valid Box Threshold. We next show the
sensitivity to valid box threshold v in Tab. 10. Our choice
of v = 0.3 performs close to the optimal choice.
Sensitivity to Maximum Group Size. Grouping has a
parameter group size («). We vary this parameter and report
AP3p|r,, and APggy|R,, at two different IoUsp thresholds
on Moderate Cars of KITTI Val 1 Split in Fig. 5. We note
that the best AP3p)g,, performance is obtained at o = 100
and we, therefore, set « = 100 in our experiments.
Sensitivity to Loss Weight. We now show the sensitiv-
ity to loss weight X in Tab. 11. Our choice of A = 0.05 is



Table 11: AP3p,r,, and APggy|r,, variation with A on KITTI Val

1 Cars. [Key: Best]

AP3p|R,0 (M
Easy Mod Hard

APggv| R0 (D)
Easy Mod Hard

A=0 19.16 13.89 10.96 | 27.01 19.33 14.84
A=0.05(19.67 14.32 11.27(27.38 19.75 15.92
A=0.1 |17.74 13.61 10.81|25.86 19.18 15.57
A=1 10.08 7.26 6.00 | 14.44 10.55 8.41

Table 12: AP3p,r,, and APggy|r,, variation with 3 on KITTI Val

1 Cars. [Key: Best]

AP3p R4 (1)
Easy Mod Hard

APgEy| Ry (D)
Easy Mod Hard

B#=0.1]18.09 13.64 10.21]26.52 19.50 15.74
£ =0.3]19.67 14.32 11.27|27.38 19.75 15.92
f=04]18.91 14.02 11.15|27.11 19.64 15.90
B8 =0.5]18.49 13.66 10.96 | 27.01 19.47 15.79

the optimal value.

Sensitivity to Best Box Threshold. We now show the
sensitivity to the best box threshold 3 in Tab. 12. Our choice
of 5 = 0.3 is the optimal value.

Conclusion. Our method has minor sensitivity to
Ny, a, A and 3, which is common in object detection. Our
method is not as sensitive to v since it only decides a box’s
validity. Our parameter choice is either at or close to the
optimal. The inference speed is only affected by a.. Other
parameters are used in training or do not affect inference
speed.

A3.5. Qualitative Results

We next show some qualitative results of models trained
on KITTI Val 1 Split in Fig. 6. We depict the predictions
of GrooMeD-NMS in image view on the left and the pre-
dictions of GrooMeD-NMS, Kinematic (Image) [12], and
ground truth in BEV on the right. In general, GrooMeD-
NMS predictions are more closer to the ground truth than
Kinematic (Image) [12].

A3.6. Demo Video of GrooMeD-NMS

We next include a short demo video of our GrooMeD-
NMS model trained on KITTI Val 1 Split. We run our
trained model independently on each frame of the three
KITTI raw [24] sequences - 2011_.10_03_DRIVE_0047,
20110929 _DRIVE_0026 and 2011_-09_26_DRIVE_0009.
None of the frames from these three raw sequences appear
in the training set of KITTI Val 1 Split. We use the camera
matrices available with the raw sequences but do not use
any temporal information. Overlaid on each frame of the
raw input videos, we plot the projected 3D boxes of the pre-
dictions and also plot these 3D boxes in the BEV. We set the
frame rate of this demo at 10 fps. The demo is also available
in HD at https://www.youtube.com/watch?v=
PWctKkyWrno. In the demo video, notice that the orien-
tation of the boxes are stable despite not using any temporal
information.
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Figure 6: Qualitative Results (Best viewed in color). We depict the predictions of GrooMeD-NMS in image view on the left and the
predictions of GrooMeD-NMS, Kinematic (Image) [12], and in BEV on the right. In general, GrooMeD-NMS predictions
are more closer to the than Kinematic (Image) [12].



