GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Monocular 3D Object Detection

Abhinav Kumar, Garrick Brazil, Xiaoming Liu
Michigan State University, East Lansing, MI, USA
[kumarab6, brazilga, liuxm]@msu.edu
https://github.com/abhi1kumar/groomed_nms

Abstract
Modern 3D object detectors have immensely benefited from the end-to-end learning idea. However, most of them use a post-processing algorithm called Non-Maximal Suppression (NMS) only during inference. While there were attempts to include NMS in the training pipeline for tasks such as 2D object detection, they have been less widely adopted due to a non-mathematical expression of the NMS. In this paper, we present and integrate GrooMeD-NMS – a novel Grouped Mathematically Differentiable NMS for monocular 3D object detection, such that the network is trained end-to-end with a loss on the boxes after NMS. We first formulate NMS as a matrix operation and then group and mask the boxes in an unsupervised manner to obtain a simple closed-form expression of the NMS. GrooMeD-NMS addresses the mismatch between training and inference pipelines and, therefore, forces the network to select the best 3D box in a differentiable manner. As a result, GrooMeD-NMS achieves state-of-the-art monocular 3D object detection results on the KITTI benchmark dataset performing comparably to monocular video-based methods.

1. Introduction
3D object detection is one of the fundamental problems in computer vision, where the task is to infer 3D information of the object. Its applications include augmented reality [2, 68], robotics [43, 74], medical surgery [70], and, more recently path planning and scene understanding in autonomous driving [17, 35, 46, 77]. Most of the 3D object detectors [17, 35, 44, 46, 77] are extensions of the 2D object detector Faster R-CNN [69], which relies on the end-to-end learning idea to achieve State-of-the-Art (SoTA) object detection. Some of these methods have proposed changing architectures [46, 76, 77] or losses [10, 18]. Others have tried incorporating confidence [12, 76, 77] or temporal cues [12].

Almost all of them output a massive number of boxes for each object and, thus, rely on post-processing with a greedy [65] clustering algorithm called Non-Maximal Suppression (NMS) during inference to reduce the number of false positives and increase performance. However, these works have largely overlooked NMS’s inclusion in training leading to an apparent mismatch between training and inference pipelines as the losses are applied on all boxes before NMS but not on final boxes after NMS (see Fig. 1(a)).
We also find that 3D object detection suffers a greater mismatch between classification and 3D localization compared to that of 2D localization, as discussed further in Sec. A3.2 of the supplementary and observed in [12,35,76]. Hence, our focus is 3D object detection.

Earlier attempts to include NMS in the training pipeline [31,32,65] have been made for 2D object detection where the improvements are less visible. Recent efforts to improve the correlation in 3D object detection involve calculating [77,79] or predicting [12,76] the scores via likelihood estimation [40] or enforcing the correlation explicitly [35]. Although this improves the 3D detection performance, improvements are limited as their training pipeline is not end to end in the absence of a differentiable NMS.

To address the mismatch between training and inference pipelines as well as the mismatch between classification and 3D localization, we propose including the NMS in the training pipeline, which gives a useful gradient to the network so that it figures out which boxes are the best-localized in 3D and, therefore, should be ranked higher (see Fig. 1(b)).

An ideal NMS for inclusion in the training pipeline should be not only differentiable but also parallelizable. Unfortunately, the inference-based classical NMS and SoftNMS [8] are greedy, set-based and, therefore, not parallelizable [65]. To make the NMS parallelizable, we first formulate the classical NMS as matrix operation and then obtain a closed-form mathematical expression using elementary matrix operations such as matrix multiplication, matrix inversion, and clipping. We then replace the threshold pruning in the classical NMS with its softer version [8] to get useful gradients. These two changes make the NMS GPU-friendly, and the gradients are backpropagated. We next group and mask the boxes in an unsupervised manner, which removes the matrix inversion and simplifies our proposed differentiable NMS expression further. We call this NMS as Grouped Mathematically Differentiable Non-Maximal Suppression (GrooMeD-NMS).

In summary, the main contributions of this work include:

- This is the first work to propose and integrate a closed-form mathematically differentiable NMS for object detection, such that the network is trained end-to-end with a loss on the boxes after NMS.
- We propose an unsupervised grouping and masking on the boxes to remove the matrix inversion in the closed-form NMS expression.
- We achieve SoTA monocular 3D object detection performance on the KITTI dataset performing comparably to monocular video-based methods.

2. Related Work

3D Object Detection. Recent success in 2D object detection [26,27,48,67,69] has inspired people to infer 3D information from a single 2D (monocular) image. However, the monocular problem is ill-posed due to the inherent scale/depth ambiguity [82]. Hence, approaches use additional sensors such as LiDAR [35,75,88], stereo [45,87] or radar [58,84]. Although LiDAR depth estimations are accurate, LiDAR data is sparse [33] and computationally expensive to process [82]. Moreover, LiDARs are expensive and do not work well in severe weather [82].

Hence, there have been several works on monocular 3D object detection. Earlier approaches [15,23,61,62] use hand-crafted features, while the recent ones are all based on deep learning. Some of these methods have proposed changing architectures [46,49,82] or losses [10,18]. Others have tried incorporating confidence [12,49,76,77], augmentation [80], depth in convolution [10,22] or temporal cues [12]. Our work proposes to incorporate NMS in the training pipeline of monocular 3D object detection.

Non-Maximal Suppression. NMS has been used to reduce false positives in edge detection [72], feature point detection [29,53,57], face detection [85], human detection [11,13,20] as well as SoTA 2D [26,48,67,69] and 3D detection [4,12,17,76,77,82]. Modifications to NMS in 2D detection [8,21,31,32,65], 2D pedestrian detection [42,51,73], 2D salient object detection [91] and 3D detection [76] can be classified into three categories – inference NMS [8,76], optimization-based NMS [3,21,42,73,86,91] and neural network based NMS [30–32,51,65].

The inference NMS [8] changes the way the boxes are pruned in the final set of predictions. [76] uses weighted averaging to update the z-coordinate after NMS. [73] solves quadratic unconstrained binary optimization while [3,42,81] and [91] use point processes and MAP based inference respectively. [21] and [86] formulate NMS as a structured prediction task for isolated and all object instances respectively. The neural network NMS use a multi-layer network and message-passing to approximate NMS [31,32,65] or to predict the NMS threshold adaptively [51]. [30] approximates the sub-gradients of the network without modelling NMS via a transitive relationship. Our work proposes a grouped closed-form mathematical approximation of the classical NMS and does not require multiple layers or message-passing. We detail these differences in Sec. 4.2.

3. Background

3.1. Notations

Let \(B = \{b_i\}_{i=1}^{n} \) denote the set of boxes or proposals \(b_i \) from an image. Let \(s = \{s_i\}_{i=1}^{n} \) and \(r = \{r_i\}_{i=1}^{n} \) denote their scores (before NMS) and rescores (updated scores after NMS) respectively such that \(r_i, s_i \geq 0 \forall i \). \(D \) denotes the subset of \(B \) after the NMS. Let \(O = [o_{ij}] \) denote the \(n \times n \) matrix with \(o_{ij} \) denoting the 2D Intersection over Union (IoU\(_{2D}\)) of \(b_i \) and \(b_j \). The pruning function \(p \) decides how to rescore a set of boxes \(B \) based on IoU\(_{2D}\) overlaps.
of its neighbors, sometimes suppressing boxes entirely. In other words, \(p(o_i) = 1 \) denotes the box \(b_i \) is suppressed while \(p(o_i) = 0 \) denotes \(b_i \) is kept in \(D \). The NMS threshold \(\mathcal{N}_t \) is the threshold for which two boxes need in order for the non-maximum to be suppressed. The temperature \(\tau \) controls the shape of the exponential and sigmoidal pruning functions \(p, \nu \) thresholds the rescores in GrooMeD and Soft-NMS [9] to decide if the box remains valid after NMS.

\(B \) is partitioned into different groups \(\mathcal{G} = \{ \mathcal{G}_k \} \). \(\mathcal{G}_k \) denotes the subset of \(B \) belonging to group \(k \). Thus, \(\mathcal{B}_{\mathcal{G}_k} = \{ b_i \} \forall b_i \in \mathcal{G}_k \) and \(\mathcal{B}_{\mathcal{G}_k} \cap \mathcal{B}_{\mathcal{G}_l} = \emptyset \forall k \neq l \). \(\mathcal{G}_k \) in the subscript of a variable denotes its subset corresponding to \(\mathcal{B}_{\mathcal{G}_k} \). Thus, \(s_{\mathcal{G}_k} \) and \(r_{\mathcal{G}_k} \) denote the scores and the rescores of \(\mathcal{B}_{\mathcal{G}_k} \) respectively. \(\alpha \) denotes the maximum group size.

\(v \) denotes the logical OR while \(|x| \) denotes clipping of \(x \) in the range \([0, 1]\). Formally,

\[
|x| = \begin{cases}
1, & x > 1 \\
0, & 0 \leq x \leq 1 \\
0, & x < 0
\end{cases}
\]

(1)

\(|s|\) denotes the number of elements in \(s \). \(\mathbf{I} \) in the subscript denotes the lower triangular version of the matrix without the principal diagonal. \(\odot \) denotes the element-wise multiplication. \(\mathbf{I} \) denotes the identity matrix.

3.2. Classical and Soft-NMS

NMS is one of the building blocks in object detection whose high-level goal is to iteratively suppress boxes which have too much IoU with a nearby high-scoring box. We first give an overview of the classical and Soft-NMS [8], which are greedy and used in inference. Classical NMS uses the idea that the score of a box having a high IoU2D overlap with any of the selected boxes should be suppressed to zero. That is, it uses a hard pruning \(p \) without any temperature \(\tau \). Soft-NMS makes this pruning soft via temperature \(\tau \). Thus, classical and Soft-NMS only differ in the choice of \(p \). We reproduce them in Alg. 1 using our notations.

4. GrooMeD-NMS

Classical NMS (Alg. 1) uses argmax and greedily calculates the rescore \(r_i \) of boxes \(B \) and, is thus not parallelizable or differentiable [65]. We wish to find its smooth approximation in closed-form for including in the training pipeline.

4.1. Formulation

4.1.1 Sorting

Classical NMS uses the non-differentiable hard argmax operation (Line 6 of Alg. 1). We remove the argmax by hard sorting the scores \(s \) and \(O \) in decreasing order (lines 2-3 of Alg. 2). We also try making the sorting soft. Note that we require the permutation of \(s \) to sort \(O \). Most soft sorting
methods [6,7,60,63] apply the soft permutation to the same vector. Only two other methods [19,64] can apply the soft permutation to another vector. Both methods use $O(n^2)$ computations for soft sorting [7]. We implement [64] and find that [41] is overly dependent on temperature τ to break out the ranks, and its gradients are too unreliable to train our model. Hence, we stick with the hard sorting of s and O.

4.1.2 NMS as a Matrix Operation

The rescoring process of the classical NMS is greedy set-based [65] and only considers overlaps with unsuppressed boxes. We first generalize this rescoring by accounting for the effect of all (suppressed and unsuppressed) boxes as

$$r_i \approx \max \left(s_i - \sum_{j=1}^{i-1} p(a_{ij}) r_j, 0 \right)$$

using the relaxation of logical OR \lor operator as $\sum [38,47]$. See Sec. A1 of the supplementary material for an alternate explanation of (2). The presence of r_j on the RHS of (2) prevents suppressed boxes from influencing other boxes hugely. When p outputs discretely as $\{0,1\}$ as in classical NMS, scores s_i are guaranteed to be suppressed to $r_i = 0$ or left unchanged $r_i = s_i$ thereby implying $r_i \leq s_i \forall i$. We write the rescoring r in a matrix formulation as

$$\begin{bmatrix} r_1 \\ r_2 \\ \vdots \\ r_n \end{bmatrix} \approx \max \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix},$$

with

$$\begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix} = \begin{bmatrix} s_1 \\ s_2 \\ \vdots \\ s_n \end{bmatrix} - \begin{bmatrix} 0 & 0 & \cdots & 0 \\ p(o_{21}) & 0 & \cdots & 0 \\ p(o_{31}) & p(o_{32}) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ p(o_{n1}) & p(o_{n2}) & \cdots & 0 \end{bmatrix} \begin{bmatrix} r_1 \\ r_2 \\ \vdots \\ r_n \end{bmatrix}.$$

The above two equations are written compactly as

$$r \approx \max (s - Pr, 0),$$

where P, called the Prune Matrix, is obtained when the pruning function p operates element-wise on O_L. Maximum operation makes (5) non-linear [41] and, thus, difficult to solve. However, to avoid recursion, we use

$$r \approx \left(I + P \right)^{-1} s,$$

as the solution to (5) with I being the identity matrix. Intuitively, if the matrix inversion is considered division in (6) and the boxes have overlaps, the rescoring are the scores divided by a number greater than one and are, therefore, lesser than scores. If the boxes do not overlap, the division is by one and rescoring equal scores.

Note that the $I + P$ in (6) is a lower triangular matrix with ones on the principal diagonal. Hence, $I + P$ is always full rank and, therefore, always invertible.

4.1.3 Grouping

We next observe that the object detectors output multiple boxes for an object, and a good detector outputs boxes wherever it finds objects in the monocular image. Thus, we cluster the boxes in an image in an unsupervised manner based on IoU2D overlaps to obtain the groups G. Grouping thus mimics the grouping of the classical NMS, but does not rescore the boxes. As clustering limits interactions to intra-group interactions among the boxes, we write (6) as

$$r_{\tilde{g}_k} \approx \left(I_{\tilde{g}_k} + P_{\tilde{g}_k} \right)^{-1} s_{\tilde{g}_k}.$$

This results in taking smaller matrix inverses in (7) than (6).

We use a simplistic grouping algorithm, i.e., we form a group \tilde{g}_k with boxes having high IoU2D overlap with the top-ranked box, given that we sorted the scores. As the group size is limited by α, we choose a minimum of α and the number of boxes in \tilde{g}_k. We next delete all the boxes of this group and iterate until we run out of boxes. Also, grouping uses IoU2D since we can achieve meaningful clustering in 2D. We detail this unsupervised grouping in Alg. 3.

4.1.4 Masking

Classical NMS considers the IoU2D of the top-scored box with other boxes. This consideration is equivalent to only keeping the column of O corresponding to the top box while assigning the rest of the columns to be zero. We implement this through masking of $P_{\tilde{g}_k}$. Let $M_{\tilde{g}_k}$ denote the binary mask corresponding to group \tilde{g}_k. Then, entries in the binary matrix $M_{\tilde{g}_k}$ in the column corresponding to the top-scored box are 1 and the rest are 0. Hence, only one of the columns in $M_{\tilde{g}_k} \odot P_{\tilde{g}_k}$ is non-zero. Now, $I_{\tilde{g}_k} + M_{\tilde{g}_k} \odot P_{\tilde{g}_k}$ is a Frobenius matrix (Gaussian transformation) and we, therefore, invert this matrix by simply subtracting the second term [28]. In other words, $(I_{\tilde{g}_k} + M_{\tilde{g}_k} \odot P_{\tilde{g}_k})^{-1} = I_{\tilde{g}_k} - M_{\tilde{g}_k} \odot P_{\tilde{g}_k}$. Hence, we simplify (7) further to get

$$r_{\tilde{g}_k} \approx \left(I_{\tilde{g}_k} - M_{\tilde{g}_k} \odot P_{\tilde{g}_k} \right) s_{\tilde{g}_k}. $$

Thus, masking allows to bypass the computationally expensive matrix inverse operation altogether.

We call the NMS based on (8) as Grouped Mathematically Differentiable Non-Maximal Suppression or GrooMeD-NMS. We summarize the complete GrooMeD-NMS in Alg. 2 and show its block-diagram in Fig. 1(c).
GrooMeD-NMS in Fig. 1(c) provides two gradients - one through s and other through O.

4.1.5 Pruning Function

As explained in Sec. 3.1, the pruning function p decides whether to keep the box in the final set of predictions D or not based on IoU_2 overlaps, i.e., $p(o_i) = 1$ denotes the box b_i is suppressed while $p(o_i) = 0$ denotes b_i is kept in D.

Classical NMS uses the threshold as the pruning function, which does not give useful gradients. Therefore, we considered three different functions for p: Linear, a temperature (τ)-controlled Exponential, and Sigmoidal function.

- **Linear** Pruning function [8] is $p(o) = o$.
- **Exponential** Exponential pruning function [8] is $p(o) = 1 - \exp \left(-\frac{o}{\tau} \right)$.
- **Sigmoidal** Sigmoidal pruning function is $p(o) = \sigma \left(\frac{N_i - o}{\tau} \right)$ with σ denoting the standard sigmoid. Sigmoidal function appears as the binary cross entropy relaxation of the subset selection problem [60].

We show these pruning functions in Fig. 2. The ablation studies (Sec. 5.4) show that choosing p as Linear yields the simplest and the best GrooMeD-NMS.

4.2. Differences from Existing NMS

Although no differentiable NMS has been proposed for the monocular 3D object detection, we compare our GrooMeD-NMS with the NMS proposed for 2D object detection, 2D pedestrian detection, 2D salient object detection, and 3D object detection in Tab. 1. No method described in Tab. 1 has a matrix-based closed-form mathematical expression of the NMS. Classical, Soft [8] and Distance-NMS [76] are used at the inference time, while GrooMeD-NMS is used during both training and inference. Distance-NMS [76] updates the z-coordinate of the box after NMS as the weighted average of the z-coordinates of top-κ boxes. QUBO-NMS [73], Point-NMS [42, 81], and MAP-NMS [91] are not used in end-to-end training. [3] proposes a trainable Point-NMS. The Structured-SVM based NMS [21, 86] rely on structured SVM to obtain the rescores.

<table>
<thead>
<tr>
<th>NMS</th>
<th>Train</th>
<th>Rescore</th>
<th>Prune</th>
<th>#Layers</th>
<th>Par</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classical</td>
<td>×</td>
<td>×</td>
<td>Hard</td>
<td>-</td>
<td>Ω(∥G∥)</td>
</tr>
<tr>
<td>Soft-NMS [8]</td>
<td>×</td>
<td>×</td>
<td>Soft</td>
<td>-</td>
<td>Ω(∥G∥)</td>
</tr>
<tr>
<td>Distance-NMS [76]</td>
<td>×</td>
<td>×</td>
<td>Hard</td>
<td>-</td>
<td>Ω(∥G∥)</td>
</tr>
<tr>
<td>QUBO-NMS [73]</td>
<td>×</td>
<td>Optimization</td>
<td>×</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Point-NMS [42, 81]</td>
<td>×</td>
<td>×</td>
<td>Point Process</td>
<td>×</td>
<td>-</td>
</tr>
<tr>
<td>Trainable Point-NMS [3]</td>
<td>✓</td>
<td>Point Process</td>
<td>×</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>MAP-NMS [91]</td>
<td>×</td>
<td>MAP</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Structured-NMS [21, 86]</td>
<td>×</td>
<td>SSVM</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Adaptive-NMS [51]</td>
<td>×</td>
<td>×</td>
<td>Hard > 1</td>
<td>Ω(∥G∥)</td>
<td></td>
</tr>
<tr>
<td>NN-NMS [31, 32, 65]</td>
<td>✓</td>
<td>Neural Network</td>
<td>×</td>
<td>> 1</td>
<td>Ω(1)</td>
</tr>
<tr>
<td>GrooMeD-NMS (Ours)</td>
<td>✓</td>
<td>Matrix</td>
<td>Soft</td>
<td>1</td>
<td>Ω(∥G∥)</td>
</tr>
</tbody>
</table>

Adaptive-NMS [51] uses a separate neural network to predict the classical NMS threshold N_t. The trainable neural network based NMS (NN-NMS) [31, 32, 65] use a separate neural network containing multiple layers and/or message-passing to approximate the NMS and do not use the pruning function. Unlike these methods, GrooMeD-NMS uses a single layer and does not require multiple layers or message passing. Our NMS is parallel up to group (denoted by \mathcal{G}). However, $|\mathcal{G}|$ is, in general, $<< |B|$ in the NMS.

4.3. Target Assignment and Loss Function

Target Assignment. Our method consists of M3D-RPN [10] and uses binning and self-balancing confidence [12]. The boxes’ self-balancing confidence are used as scores s, which pass through the GrooMeD-NMS layer to obtain the rescores r. The rescores signal the network if the best box has not been selected for a particular object.

We extend the notion of the best 2D box [65] to 3D. The best box has the highest product of IoU_{2D} and gIoU_{3D} [71] with ground truth g_i. If the product is greater than a certain threshold β, it is assigned a positive label. Mathematically,

$$
target(b_i) = \begin{cases}
1, & \text{if } \exists g_i \text{ s.t. } i = \text{argmax } q(b_j, g_i) \\
0, & \text{otherwise}
\end{cases}
$$

with $q(b_j, g_i) = \text{IoU}_{2D}(b_j, g_i) \left(\frac{1 + \text{gIoU}_{3D}(b_j, g_i)}{2} \right)$. gIoU_{3D} is known to provide signal even for non-intersecting boxes [71], where the usual IoU_{3D} is always zero. Therefore, we use gIoU_{3D} instead of regular IoU_{3D} for figuring out the best box in 3D as many 3D boxes have a zero IoU_{3D} overlap with the ground truth. For calculating gIoU_{3D}, we first calculate the volume V and hull volume V_{hull} of the 3D boxes. V_{hull} is the product of gIoU_{2D} in Birds Eye View (BEV), removing the rotations and hull of the Y dimension. gIoU_{3D} is then given by

$$
\text{gIoU}_{3D}(b_i, b_j) = \frac{V(b_i \cap b_j)}{V(b_i \cup b_j)} + \frac{V(b_i \cup b_j)}{V_{\text{hull}}(b_i, b_j)} - 1.
$$

Loss Function. Generally the number of best boxes is less than the number of ground truths in an image, as there could
be some ground truth boxes for which no box is predicted. The tiny number of best boxes introduces a far-heavier skew than the foreground-background classification. Thus, we use the modified AP-Loss [14] as our loss after NMS since AP-Loss does not suffer from class imbalance [14].

Vanilla AP-Loss treats boxes of all images in a mini-batch equally, and the gradients are back-propagated through all the boxes. We remove this condition and rank boxes in an image-wise manner. In other words, if the best boxes are correctly ranked in one image and are not in the second, then the gradients only affect the boxes of the second image. We call this modification of AP-Loss as Image-wise AP-Loss. In other words,

$$L_{\text{Image-wise}} = \frac{1}{N} \sum_{m=1}^{N} \text{AP}(r^{(m)}, \text{target}(B^{(m)})],$$

where $r^{(m)}$ and $B^{(m)}$ denote the scores and the boxes of the mth image in a mini-batch respectively. This is different from previous NMS approaches [30–32, 65], which use classification losses. Our ablation studies (Sec. 5.4) show that the Image-wise AP-Loss is better suited to be used after NMS than the classification loss.

Our overall loss function is thus given by $L = L_{\text{before}} + \lambda L_{\text{after}}$ where L_{before} denotes the losses before the NMS including classification, 2D and 3D regression as well as confidence losses, and L_{after} denotes the loss term after the NMS, which is the Image-wise AP-Loss with λ being the weight. See Sec. A2 of the supplementary material for more details of the loss function.

5. Experiments

Our experiments use the most widely used KITTI autonomous driving dataset [25]. We modify the publicly-available PyTorch [59] code of Kinematic-3D [12]. [12] uses DenseNet-121 [34] trained on ImageNet as the backbone and $n_b = 1,024$ using 3D-RPN settings of [10]. As [12] is a video-based method while GrooMeD-NMS is an image-based method, we use the best image model of [12] henceforth called Kinematic (Image) as our baseline for a fair comparison. Kinematic (Image) is built on M3D-RPN [10] and uses binning and self-balancing confidence.

Data Splits. There are three commonly used data splits of the KITTI dataset; we evaluate our method on all three.

Test Split: Official KITTI 3D benchmark [1] consists of 7,481 training and 7,518 testing images [25].

Val 1 Split: It partitions the 7,481 training images into 3,712 training and 3,769 validation images [12, 16, 77].

Val 2 Split: It partitions the 7,481 training images into 3,682 training and 3,799 validation images [89].

Training. Training is done in two phases - warmup and full [12]. We initialize the model with the confidence prediction branch from warmup weights and finetune using the self-balancing loss [12] and Image-wise AP-Loss [14] after our GrooMeD-NMS. See Sec. A3.1 of the supplementary material for more training details. We keep the weight λ at 0.05. Unless otherwise stated, we use p as the Linear function (this does not require τ) with $\alpha = 100$. N_t, τ and β are set to 0.4 [10, 12], 0.3 and 0.3 respectively.

Inference. We multiply the class and predicted confidence to get the box’s overall score in inference as in [36, 76, 83]. See Sec. 5.2 for training and inference times.

Evaluation Metrics. KITTI uses $\text{AP}_{\text{3D|R}}$ metric to evaluate object detection following [77, 79]. KITTI benchmark evaluates on three object categories: Easy, Moderate and Hard. It assigns each object to a category based on its occlusion, truncation, and height in the image space. The $\text{AP}_{\text{3D|R}}$ performance on the Moderate category compares different models in the benchmark [25]. We focus primarily on the Car class following [12].

5.1. KITTI Test 3D Object Detection

Tab. 2 summarizes the results of 3D object detection and BEV evaluation on KITTI Test Split. The results in Tab. 2 show that GrooMeD-NMS outperforms the baseline M3D-RPN [10] by a significant margin and several other SOTA methods on both the tasks. GrooMeD-NMS also outperforms augmentation based approach MoVi-3D [80] and depth-convolution based D4LCN [22]. Despite being an image-based method, GrooMeD-NMS performs competitively to the video-based method Kinematic (Video) [12], outperforming it on the most-challenging Hard set.

5.2. KITTI Val 1 3D Object Detection

Results. Tab. 3 summarizes the results of 3D object detection and BEV evaluation on KITTI Val 1 Split at two
None of the images or tables are clearly visible in the provided text. Please ensure that all images and tables are included in the text for a complete understanding.

Table 3: AP_{3D}^{R_{40}} and AP_{BEV}^{R_{40}} comparisons on KITTI Val 1 Cars. [Key: Best, Second Best].

<table>
<thead>
<tr>
<th>Method</th>
<th>IoU_{3D} ≥ 0.7</th>
<th>IoU_{3D} ≥ 0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AP_{3D}^{R_{40}}</td>
<td>AP_{BEV}^{R_{40}}</td>
</tr>
<tr>
<td></td>
<td>Easy Mod Hard</td>
<td>Easy Mod Hard</td>
</tr>
<tr>
<td>MonoODR [5]</td>
<td>12.50 7.34 4.98</td>
<td>19.49 11.51 8.72</td>
</tr>
<tr>
<td>MonoGRNet [66]</td>
<td>11.90 7.56 5.76</td>
<td>19.72 12.81 10.15</td>
</tr>
<tr>
<td>MonoDIS [70]</td>
<td>11.06 7.60 6.37</td>
<td>18.45 12.58 10.66</td>
</tr>
<tr>
<td>MoVi-3D [80]</td>
<td>14.28 11.13 9.68</td>
<td>22.36 17.87 15.73</td>
</tr>
<tr>
<td>MonoPair [18]</td>
<td>16.28 12.30 10.42</td>
<td>24.12 18.17 15.76</td>
</tr>
<tr>
<td>Kinematic (Image) [12]</td>
<td>18.28 13.55 10.13</td>
<td>25.72 18.82 14.48</td>
</tr>
<tr>
<td>Kinematic (Video) [12]</td>
<td>19.76 14.10 10.47</td>
<td>27.83 19.72 15.10</td>
</tr>
<tr>
<td>GrooMeD-NMS (Ours)</td>
<td>19.67 14.32 11.27</td>
<td>27.38 19.75 15.92</td>
</tr>
</tbody>
</table>

Table 4: AP_{3D}^{R_{40}} and AP_{BEV}^{R_{40}} comparisons with other NMS on KITTI Val 1 Cars (IoU_{3D} ≥ 0.7). [Key: C= Classical, S= Soft-NMS [8], D= Distance-NMS [76], G= GrooMeD-NMS.

<table>
<thead>
<tr>
<th>Method</th>
<th>Infer NMS</th>
<th>AP_{3D}^{R_{40}}</th>
<th>AP_{BEV}^{R_{40}}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Easy Mod Hard</td>
<td>Easy Mod Hard</td>
</tr>
<tr>
<td>Kinematic (Image)</td>
<td>C</td>
<td>18.28 13.55 10.13</td>
<td>25.72 18.82 14.48</td>
</tr>
<tr>
<td>Kinematic (Image)</td>
<td>D</td>
<td>18.25 13.53 10.11</td>
<td>25.71 18.82 14.48</td>
</tr>
<tr>
<td>Kinematic (Image)</td>
<td>G</td>
<td>18.26 13.51 10.10</td>
<td>25.67 18.77 14.44</td>
</tr>
<tr>
<td>GrooMeD-NMS</td>
<td>C</td>
<td>19.67 14.31 11.27</td>
<td>27.38 19.75 15.93</td>
</tr>
<tr>
<td>GrooMeD-NMS</td>
<td>S</td>
<td>19.67 14.31 11.27</td>
<td>27.38 19.75 15.93</td>
</tr>
<tr>
<td>GrooMeD-NMS</td>
<td>D</td>
<td>19.67 14.31 11.27</td>
<td>27.38 19.75 15.93</td>
</tr>
<tr>
<td>GrooMeD-NMS</td>
<td>G</td>
<td>19.67 14.32 11.27</td>
<td>27.38 19.75 15.92</td>
</tr>
</tbody>
</table>

Figure 3: Linear Scale

Figure 4: Log Scale

Figure 4: Score-IoU_{3D} plot after the NMS.

5.3. KITTI Val 2 3D Object Detection

Tab. 5 summarizes the results of 3D object detection and BEV evaluation on KITTI Val 2 Split at two IoU_{3D} thresholds.
Table 5: AP\textsubscript{3D} and AP\textsubscript{BEV} comparisons on KITTI Val 2 Cars. [Key: Best, *= Released, ↑ = Retrained].

<table>
<thead>
<tr>
<th>Method</th>
<th>IoU\textsubscript{3D} ≥ 0.7</th>
<th>IoU\textsubscript{3D} ≥ 0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AP\textsubscript{3D} R\textsubscript{40}(↑)</td>
<td>AP\textsubscript{BEV} R\textsubscript{40}(↑)</td>
</tr>
<tr>
<td></td>
<td>Easy Mod Hard</td>
<td>Easy Mod Hard</td>
</tr>
<tr>
<td>Kinematic (Image) [12]†</td>
<td>13.54 10.21 7.24</td>
<td>20.60 15.14 11.30</td>
</tr>
<tr>
<td>GrooMed-NMS (Ours)</td>
<td>14.72 10.87 7.07</td>
<td>22.03 16.05 11.93</td>
</tr>
</tbody>
</table>

Table 6: Ablation studies of our method on KITTI Val 1 Cars.

<table>
<thead>
<tr>
<th>Changed</th>
<th>From ——> To</th>
<th>IoU\textsubscript{3D} ≥ 0.7</th>
<th>IoU\textsubscript{3D} ≥ 0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AP\textsubscript{3D} R\textsubscript{40}(↑)</td>
<td>AP\textsubscript{BEV} R\textsubscript{40}(↑)</td>
<td>AP\textsubscript{3D} R\textsubscript{40}(↑)</td>
</tr>
<tr>
<td></td>
<td>Easy Mod Hard</td>
<td>Easy Mod Hard</td>
<td>Easy Mod Hard</td>
</tr>
<tr>
<td>Training</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No Warmup</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conf+NSM —> No Conf+No NMS</td>
<td>16.66 12.10 9.40</td>
<td>23.15 17.43 13.48</td>
<td>51.47 38.58 30.98</td>
</tr>
<tr>
<td>Conf+NSM —> Conf+No NMS</td>
<td>19.16 13.89 10.96</td>
<td>27.01 19.33 14.84</td>
<td>57.12 41.07 32.79</td>
</tr>
<tr>
<td>Conf+NSM —> No Conf+No NMS</td>
<td>15.02 11.21 8.83</td>
<td>21.07 16.27 12.77</td>
<td>48.01 36.18 29.96</td>
</tr>
<tr>
<td>Initialization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linear —> Exponential, τ = 1</td>
<td>12.81 9.26 7.10</td>
<td>17.07 12.17 9.25</td>
<td>29.58 20.42 15.88</td>
</tr>
<tr>
<td>Linear —> Exponential, τ = 0.5 [8]</td>
<td>18.63 13.85 10.98</td>
<td>27.52 20.14 15.76</td>
<td>56.64 41.01 32.79</td>
</tr>
<tr>
<td>Linear —> Exponential, τ = 0.1</td>
<td>18.34 13.79 10.88</td>
<td>27.26 19.71 15.90</td>
<td>56.98 41.16 32.96</td>
</tr>
<tr>
<td>Linear —> Sigmoidal, τ = 0.1</td>
<td>17.40 13.21 9.80</td>
<td>26.77 19.26 14.76</td>
<td>55.15 40.77 32.63</td>
</tr>
<tr>
<td>Group+Mask</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group+Mask —> No Group</td>
<td>18.43 13.91 11.08</td>
<td>26.53 19.46 15.83</td>
<td>55.93 40.98 32.78</td>
</tr>
<tr>
<td>Group+Mask —> Group+No Mask</td>
<td>18.99 13.74 10.24</td>
<td>26.71 19.21 14.77</td>
<td>55.21 40.69 32.55</td>
</tr>
<tr>
<td>Loss</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imagewise AP —> Vanilla AP</td>
<td>18.23 13.73 10.28</td>
<td>26.42 19.31 14.76</td>
<td>54.47 40.35 32.20</td>
</tr>
<tr>
<td>Imagewise AP —> BCE</td>
<td>16.34 12.74 9.73</td>
<td>22.40 17.46 13.70</td>
<td>52.46 39.40 31.68</td>
</tr>
<tr>
<td>Inference</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Class+Pred —> Class</td>
<td>18.26 13.36 10.49</td>
<td>25.39 18.64 15.12</td>
<td>52.44 38.99 31.37</td>
</tr>
<tr>
<td>Class+Pred —> Pred</td>
<td>17.51 12.84 9.55</td>
<td>24.55 17.85 13.69</td>
<td>52.78 37.48 29.37</td>
</tr>
<tr>
<td>—— GrooMed-NMS (best model)</td>
<td>19.67 14.32 11.27</td>
<td>27.38 19.75 15.92</td>
<td>55.62 41.07 32.89</td>
</tr>
</tbody>
</table>

5.4. Ablation Studies

Tab. 6 compares the modifications of our approach on KITTI Val 1 Cars. Unless stated otherwise, we stick with the experimental settings described in Sec. 5. Using a confidence head (Conf+No NMS) proves beneficial compared to the warmup model (No Conf+No NMS), which is consistent with the observations of [12, 76]. Further, GrooMed-NMS on classification scores (denoted by No Conf + NMS) is detrimental as the classification scores are not suited for localization [12, 35]. Training the warmup model and then finetuning also works better than training without warmup as in [12] since the warmup phase allows GrooMed-NMS to carry meaningful grouping of the boxes.

As described in Sec. 4.1.5, in addition to Linear, we compare two other functions for pruning function \(p \): Exponential and Sigmoidal. Both of them do not perform as well as the Linear \(p \) possibly because they have vanishing gradients close to overlap of zero or one. Grouping and masking both help our model to reach a better minimum. As described in Sec. 4.3, Imagewis AP loss is better than the Vanilla AP loss since it treats boxes of two images differently. Imagewise AP also performs better than the binary cross-entropy (BCE) loss proposed in [30–32, 65]. Using the product of self-balancing confidence and classification scores instead of using them individually as the scores to the NMS in inference is better, consistent with [36, 76, 83]. Class confidence performs worse since it does not have the localization information while the self-balancing confidence (Pred) gives the localization without considering whether the box belongs to foreground or background.

6. Conclusions

In this paper, we present and integrate GrooMed-NMS — a novel Grouped Mathematically Differentiable NMS for monocular 3D object detection, such that the network is trained end-to-end with a loss on the boxes after NMS. We first formulate NMS as a matrix operation and then do unsupervised grouping and masking of the boxes to obtain a simple closed-form expression of the NMS. GrooMed-NMS addresses the mismatch between training and inference pipelines and, therefore, forces the network to select the best 3D box in a differentiable manner. As a result, GrooMed-NMS achieves state-of-the-art monocular 3D object detection results on the KITTI benchmark dataset. Although our implementation demonstrates monocular 3D object detection, GrooMed-NMS is fairly generic for other object detection tasks. Future work includes applying this method to tasks such as LiDAR-based 3D object detection and pedestrian detection.
References

[42] Donghoon Lee, Geonho Cha, Ming-Hsuan Yang, and Songhwa Oh. Individualness and determinantal point processes for pedestrian detection. In ECCV, 2018. 1

[46] Peixuan Li, Huaici Zhao, Pengfei Liu, and Feidao Cao. RTM3D: Real-time monocular 3D detection from object keypoints for autonomous driving. In ECCV, 2020. 1, 2, 6

[48] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense object detection. In ICML, 2017. 1, 2, 3, 4, 5, 6, 8, 12

[49] Lijie Liu, Jiwen Lu, Chunjing Xu, Qi Tian, and Jie Zhou. Deep fitting degree scoring network for monocular 3D object detection. In CVPR Workshops, 2020. 6

[56] Fabian Manhardt, Wadim Kehl, and Adrien Gaidon. ROI-10D: Monocular lifting of 2D detection to 6 pose and metric shape. In CVPR, 2019. 6

[58] Frank Moosmann, Oliver Pink, and Christoph Stiller. Segmentation of 3D LiDAR data in non-flat urban environments using a local convexity criterion. In Intelligent Vehicles Symposium, 2009. 2

[61] Nadia Payet and Sinisa Todorovic. From contours to 3D object detection and pose estimation. In ICCV, 2011. 2

[64] Sebastian Prillo and Julian Eisenschlos. Softsort: A continuous relaxation for the argsort operator. In ICML, 2020. 4

[65] Sergey Prokudin, Daniel Kappler, Sebastian Nowozin, and Peter Gehler. Learning to filter object detections. In GCPR, 2017. 1, 2, 3, 4, 5, 6, 8, 12

[66] Zengyi Qin, Jinglu Wang, and Yan Lu. MonoGRNet: A geometric reasoning network for 3D object localization. In AAAI, 2019. 6, 7

[91] Jianming Zhang, Stan Sclaroff, Zhe Lin, Xiaohui Shen, Brian Price, and Radomir Mech. Unconstrained salient ob-