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Abstract. Modern neural networks use building blocks such as convo-
lutions that are equivariant to arbitrary 2D translations. However, these
vanilla blocks are not equivariant to arbitrary 3D translations in the
projective manifold. Even then, all monocular 3D detectors use vanilla
blocks to obtain the 3D coordinates, a task for which the vanilla blocks
are not designed for. This paper takes the first step towards convolutions
equivariant to arbitrary 3D translations in the projective manifold. Since
the depth is the hardest to estimate for monocular detection, this paper
proposes Depth EquiVarIAnt NeTwork (DEVIANT) built with existing
scale equivariant steerable blocks. As a result, DEVIANT is equivariant
to the depth translations in the projective manifold whereas vanilla net-
works are not. The additional depth equivariance forces the DEVIANT
to learn consistent depth estimates, and therefore, DEVIANT achieves
state-of-the-art monocular 3D detection results on KITTI and Waymo
datasets in the image-only category and performs competitively to meth-
ods using extra information. Moreover, DEVIANT works better than
vanilla networks in cross-dataset evaluation.

Keywords: Equivariance, Projective manifold, Monocular 3D detection

1 Introduction

Monocular 3D object detection is a fundamental task in computer vision, where
the task is to infer 3D information including depth from a single monocular
image. It has applications in augmented reality [2], gaming [63], robotics [65],
and more recently in autonomous driving [4,68] as a fallback solution for LiDAR.

Most of the monocular 3D methods attach extra heads to the 2D Faster-
RCNN [64] or CenterNet [102] for 3D detections. Some change architectures
[42, 45, 76] or losses [4, 13]. Others incorporate augmentation [71], or confidence
[5,45]. Recent ones use in-network ensembles [49,100] for better depth estimation.

Most of these methods use vanilla blocks such as convolutions that are equiv-
ariant to arbitrary 2D translations [6,61]. In other words, whenever we shift the
ego camera in 2D (See tu of Fig. 1), the new image (projection) is a translation of

https://github.com/abhi1kumar/DEVIANT


2 A. Kumar et al.

tx

tz

h

h′

h′tu

x

y

z

(a) Idea.

Depth Translation
= Ts(Corollary 1)

Depth Translation
= Ts

*

*

SES Convolution

Ts−1

(b) Depth Equivariance.

Fig. 1: (a) Idea. Vanilla CNN is equivariant to projected 2D translations tu, tv of the
ego camera. The ego camera moves in 3D in driving scenes which breaks this assump-
tion. We propose DEVIANT which is additionally equivariant to depth translations tz
in the projective manifold. (b) Depth Equivariance. DEVIANT enforces additional
consistency among the feature maps of an image and its transformation caused by the
ego depth translation. Ts=scale transformation, ∗=vanilla convolution.

Table 1: Equivariance comparisons.
[Key: Proj.= Projected, ax= axis]

3D Proj. 2D
Translation −� x−ax y−ax z−ax u-ax v-ax

(tx) (ty) (tz) (tu) (tv)

Vanilla CNN − − − ✓ ✓
Log-polar [106] − − ✓ − −
DEVIANT − − ✓ ✓ ✓
Ideal ✓ ✓ ✓ − −

the original image, and therefore, these
methods output a translated feature map.
However, in general, the camera moves in
depth in driving scenes instead of 2D (See
tz of Fig. 1). So, the new image is not
a translation of the original input image
due to the projective transform. Thus, us-
ing vanilla blocks in monocular methods
is a mismatch between the assumptions
and the regime where these blocks operate. Additionally, there is a huge gener-
alization gap between training and validation for monocular 3D detection (See
Tab. 14 in the supplementary). Modeling translation equivariance in the correct
manifold improves generalization for tasks in spherical [15] and hyperbolic [26]
manifolds. Monocular detection involves processing pixels (3D point projections)
to obtain the 3D information, and is thus a task in the projective manifold. More-
over, the depth in monocular detection is ill-defined [76], and thus, the hardest
to estimate [53]. Hence, using building blocks equivariant to depth translations
in the projective manifold is a natural choice for improving generalization and
is also at the core of this work (See Appendix A1.8).

Recent monocular methods use flips [4], scale [49,71], mosaic [3,77] or copy-
paste [43] augmentation, depth-aware convolution [4], or geometry [47,49,67,99]
to improve generalization. Although all these methods improve performance, a
major issue is that their backbones are not designed for the projective world. This
results in the depth estimation going haywire with a slight ego movement [103].
Moreover, data augmentation, e.g., flips, scales, mosaic, copy-paste, is not only
limited for the projective tasks, but also does not guarantee desired behavior [25].

To address the mismatch between assumptions and the operating regime of
the vanilla blocks and improve generalization, we take the first step towards
convolutions equivariant to arbitrary 3D translations in the projective mani-
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Table 2: Equivariances known in the literature.

Transformation −�
Translation Rotation Scale Flips Learned

Manifold

−
�

Euclidean Vanilla CNN [40]
Polar, Log-polar [31],

ChiralNets [96] Transformers [21]
Steerable [91] Steerable [29]

Spherical Spherical CNN [15] − − − −
Hyperbolic Hyperbolic CNN [26] − − − −
Projective Monocular Detector − − − −

fold. We propose Depth EquiVarIAnt NeTwork (DEVIANT) which is addition-
ally equivariant to depth translations in the projective manifold as shown in
Tab. 1. Building upon the classic result from [30], we simplify it under reason-
able assumptions about the camera movement in autonomous driving to get
scale transformations. The scale equivariant blocks are well-known in the lit-
erature [29, 32, 74, 104], and consequently, we replace the vanilla blocks in the
backbone with their scale equivariant steerable counterparts [74] to addition-
ally embed equivariance to depth translations in the projective manifold. Hence,
DEVIANT learns consistent depth estimates and improves monocular detection.

In summary, the main contributions of this work include:
• We study the modeling error in monocular 3D detection and propose depth

equivariant networks built with scale equivariant steerable blocks as a solution.
• We achieve state-of-the-art (SOTA) monocular 3D object detection results

on the KITTI and Waymo datasets in the image-only category and perform
competitively to methods which use extra information.

• We experimentally show that DEVIANT works better in cross-dataset evalu-
ation suggesting better generalization than vanilla CNN backbones.

2 Literature Review

Equivariant Neural Networks. The success of convolutions in CNN has led
people to look for their generalizations [17, 87]. Convolution is the unique solu-
tion to 2D translation equivariance in the Euclidean manifold [6, 7, 61]. Thus,
convolution in CNN is a prior in the Euclidean manifold. Several works explore
other group actions in the Euclidean manifold such as 2D rotations [16,19,55,88],
scale [34,54], flips [96], or their combinations [81,91]. Some consider 3D transla-
tions [90] and rotations [78]. Few [21,89,101] attempt learning the equivariance
from the data, but such methods have significantly higher data requirements [90].
Others change the manifold to spherical [15], hyperbolic [26], graphs [56], or
arbitrary manifolds [33]. Monocular 3D detection involves operations on pixels
which are projections of 3D point and thus, works in a different manifold namely
projective manifold. Tab. 2 summarizes all these equivariances known thus far.
Scale Equivariant Networks. Scale equivariance in the Euclidean manifold
is more challenging than the rotations because of its acyclic and unbounded
nature [61]. There are two major lines of work for scale equivariant networks.
The first [22,31] infers the global scale using log-polar transform [106], while the
other infers the scale locally by convolving with multiple scales of images [34] or
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filters [94]. Several works [29, 32, 74, 104] extend the local idea, using steerable
filters [24]. Another work [92] constructs filters for integer scaling. We compare
the two kinds of scale equivariant convolutions on the monocular 3D detection
task and show that steerable convolutions are better suited to embed depth
(scale) equivariance. Scale equivariant networks have been used for classification
[22,29,74], 2D tracking [73] and 3D object classification [22]. We are the first to
use scale equivariant networks for monocular 3D detection.
3D Object Detection. Accurate 3D object detection uses sparse data from
LiDARs [66], which are expensive and do not work well in severe weather [76]
and glassy environments. Hence, several works have been on monocular camera-
based 3D object detection, which is simplistic but has scale/depth ambiguity [76].
Earlier approaches [11, 23, 59, 60] use hand-crafted features, while the recent
ones use deep learning. Some change architectures [42,45,46,76] or losses [4,13].
Some use scale [49, 71], mosaic [77] or copy-paste [43] augmentation. Others
incorporate depth in convolution [4, 20], or confidence [5, 37, 45]. More recent
ones use in-network ensembles to predict the depth deterministically [100] or
probabilistically [49]. A few use temporal cues [5], NMS [36], or corrected camera
extrinsics [103] in the training pipeline. Some also use CAD models [10, 48] or
LiDAR [62] in training. Another line of work called Pseudo-LiDAR [50, 52, 57,
69, 83] estimates the depth first, and then uses a point cloud-based 3D object
detector. We refer to [51] for a detailed survey. Our work is the first to use scale
equivariant blocks in the backbone for monocular 3D detection.

3 Background

We first provide the necessary definitions which are used throughout this paper.
These are not our contributions and can be found in the literature [8, 30,90].
Equivariance. Consider a group of transformations G, whose individual mem-
bers are g. Assume Φ denote the mapping of the inputs h to the outputs y. Let the
inputs and outputs undergo the transformation T h

g and T y
g respectively. Then,

the mapping Φ is equivariant to the group G [90] if Φ(T h
g h) = T y

g (Φh),∀ g ∈ G.
Thus, equivariance provides an explicit relationship between input transforma-
tions and feature-space transformations at each layer of the neural network [90],
and intuitively makes the learning easier. The mapping Φ is the vanilla convolu-
tion when the T h

g = T y
g = Tt where Tt denotes the translation t on the discrete

grid [6,7,61]. These vanilla convolution introduce weight-tying [40] in fully con-
nected neural networks resulting in a greater generalization. A special case of
equivariance is the invariance [90] which is given by Φ(T h

g h) = Φh,∀ g ∈ G.
Projective Transformations. Our idea is to use equivariance to depth trans-
lations in the projective manifold since the monocular detection task belongs
to this manifold. A natural question to ask is whether such equivariants exist
in the projective manifold. [8] answers this question in negative, and says that
such equivariants do not exist in general. However, such equivariants exist for
special classes, such as planes. An intuitive way to understand this is to infer
the rotations and translations by looking at the two projections (images). For
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example, the result of [8] makes sense if we consider a car with very different
front and back sides as in Fig. 6. A 180◦ ego rotation around the car means the
projections (images) are its front and the back sides, which are different. Thus,
we can not infer the translations and rotations from these two projections. Based
on this result, we stick with locally planar objects i.e. we assume that a 3D ob-
ject is made of several patch planes. (See last row of Fig. 2b as an example). It is
important to stress that we do NOT assume that the 3D object such as car is
planar. The local planarity also agrees with the property of manifolds that mani-
folds locally resemble n-dimensional Euclidean space and because the projective
transform maps planes to planes, the patch planes in 3D are also locally planar.
We show a sample planar patch and the 3D object in Fig. 5 in the appendix.
Planarity and Projective Transformation. Example 13.2 from [30] links
the planarity and projective transformations. Although their result is for stereo
with two different cameras (K,K′), we substitute K=K′ to get Theorem 1.

Theorem 1. [30] Consider a 3D point lying on a patch plane mx+ny+oz+p=0,
and observed by an ego camera in a pinhole setup to give an image h. Let t=
(tx, ty, tz) and R=[rij ]3×3 denote a translation and rotation of the ego camera
respectively. Observing the same 3D point from a new camera position leads to
an image h′. Then, the image h is related to the image h′ by the projective
transformation

T : h(u− u0, v − v0) = (1)

h′

f
(
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m
p
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 ,

where f and (u0, v0) denote the focal length and principal point of the ego camera,
and (tx, ty, tz) = RT t.

4 Depth Equivariant Backbone

The projective transformation in Eq. (1) from [30] is complicated and also in-
volves rotations, and we do not know which convolution obeys this projective
transformation. Hence, we simplify Eq. (1) under reasonable assumptions to
obtain a familiar transformation for which the convolution is known.

Corollary 1. When the ego camera translates in depth without rotations (R =
I), and the patch plane is “approximately” parallel to the image plane, the image
h locally is a scaled version of the second image h′ independent of focal length,
i.e.

Ts : h(u− u0, v − v0) ≈ h′

(
u− u0
1+tz

o
p

,
v − v0
1+tz

o
p

)
. (2)
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(a) SES Convolution Output. (b) Receptive fields. (c) Log-polar SSIM.

Fig. 2: (a) Scale Equivariance. We apply SES convolution [74] with two scales on
a single channel toy image h. (b) Receptive fields of convolutions in the Euclidean
manifold. Colors represent different weights, while shades represent the same weight.
(c) Impact of discretization on log-polar convolution. SSIM is very low at small
resolutions and is not 1 even after upscaling by 4. [Key: Up= Upscaling]

where f and (u0, v0) denote the focal length and principal point of the ego camera,
and tz denotes the ego translation.

See Appendix A1.6 for the detailed explanation of Corollary 1. Corollary 1 says

Ts : h(u− u0, v − v0) ≈ h′
(
u− u0
s

,
v − v0
s

)
, (3)

where, s=1+tz
o
p denotes the scale and Ts denotes the scale transformation. The

scale s<1 suggests downscaling, while s>1 suggests upscaling. Corollary 1 shows
that the transformation Ts is independent of the focal length and that scale is a
linear function of the depth translation. Hence, the depth translation in the pro-
jective manifold induces scale transformation and thus, the depth equivariance
in the projective manifold is the scale equivariance in the Euclidean manifold.
Mathematically, the desired equivariance is [Ts(h) ∗ Ψ ] = Ts [h ∗ Ψs−1 ], where Ψ
denotes the filter (See Appendix A1.7). As CNN is not a scale equivariant (SE)
architecture [74], we aim to get SE backbone which makes the architecture equiv-
ariant to depth translations in the projective manifold. The scale transformation
is a familiar transformation and SE convolutions are well known [29,32,74,104].
Scale Equivariant Steerable (SES) Blocks. We use the existing SES blocks
[73, 74] to construct our Depth EquiVarIAnt NeTwork (DEVIANT) backbone.
As [73] does not construct SE-DLA-34 backbones, we construct our DEVIANT
backbone as follows. We replace the vanilla convolutions by the SES convolutions
[73] with the basis as Hermite polynomials. SES convolutions result in multi-scale
representation of an input tensor. As a result, their output is five-dimensional
instead of four-dimensional. Thus, we replace the 2D pools and batch norm (BN)
by 3D pools and 3D BN respectively. The Scale-Projection layer [74] carries a
max over the extra (scale) dimension to project five-dimensional tensors to four
dimensions (See Fig. 9 in the supplementary). Ablation in Sec. 5.2 confirms that
BN and Pool (BNP) should also be SE for the best performance.
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The SES convolutions [29, 74, 104] are based on steerable-filters [24]. Steer-
able approaches [29] first pre-calculate the non-trainable multi-scale basis in
the Euclidean manifold and then build filters by the linear combinations of the
trainable weights w (See Fig. 9). The number of trainable weights w equals the
number of filters at one particular scale. The linear combination of multi-scale
basis ensures that the filters are also multi-scale. Thus, SES blocks bypass grid
conversion and do not suffer from sampling effects.

We show the convolution of toy image h with a SES convolution in Fig. 2a. Let
Ψs denote the filter at scale s. The convolution between downscaled image and
filter T0.5(h) ∗ Ψ0.5 matches the downscaled version of original image convolved
with upscaled filter T0.5(h ∗ Ψ1.0). Fig. 2a (right column) shows that the output
of a CNN exhibits aliasing in general and is therefore, not scale equivariant.
Log-polar Convolution: Impact of Discretization. An alternate way to
convert the depth translation tz of Eq. (2) to shift is by converting the images
to log-polar space [106] around the principal point (u0, v0), as

h(ln r, θ) ≈ h′
(
ln r − ln

(
1+tz

o

p

)
, θ

)
, (4)

with r =
√
(u−u0)2+(v− v0)2, and θ = tan−1

(
v−v0
u−u0

)
. The log-polar transfor-

mation converts the scale to translation, so using convolution in the log-polar
space is equivariant to the logarithm of the depth translation tz. We show the
receptive field of log-polar convolution in Fig. 2b. The log-polar convolution uses
a smaller receptive field for objects closer to the principal point, while a larger
field away from the principal point. We implemented log-polar convolution and
found that its performance (See Tab. 11) is not acceptable, consistent with [74].
We attribute this behavior to the discretization of pixels and loss of 2D transla-
tion equivariance. Eq. (4) is perfectly valid in the continuous world (Note the use
of parentheses instead of square brackets in Eq. (4)). However, pixels reside on
discrete grids, which gives rise to sampling errors [38]. We discuss the impact of
discretization on log-polar convolution in Sec. 5.2 and show it in Fig. 2c. Hence,
we do not use log-polar convolution for the DEVIANT backbone.
Comparison of Equivariances for Monocular 3D Detection. We now
compare equivariances for monocular 3D detection task. An ideal monocular
detector should be equivariant to arbitrary 3D translations (tx, ty, tz). However,
most monocular detectors [36, 49] estimate 2D projections of 3D centers and
the depth, which they back-project in 3D world via known camera intrinsics.
Thus, a good enough detector shall be equivariant to 2D translations (tu, tv) for
projected centers as well as equivariant to depth translations (tz).

Existing detector backbones [36, 49] are only equivariant to 2D translations
as they use vanilla convolutions that produce 4D feature maps. Log-polar back-
bones is equivariant to logarithm of depth translations but not to 2D transla-
tions. DEVIANT uses SES convolutions to produce 5D feature maps. The extra
dimension in 5D feature map captures the changes in scale (for depth), while
these feature maps individually are equivariant to 2D translations (for projected
centers). Hence, DEVIANT augments the 2D translation equivariance (tu, tv)
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of the projected centers with the depth translation equivariance. We emphasize
that although DEVIANT is not equivariant to arbitrary 3D translations in the
projective manifold, DEVIANT does provide the equivariance to depth transla-
tions (tz) and is thus a first step towards the ideal equivariance. Our experiments
(Sec. 5) show that even this additional equivariance benefits monocular 3D de-
tection task. This is expected because depth is the hardest parameter to esti-
mate [53]. Tab. 1 summarizes these equivariances. Moreover, Tab. 10 empirically
shows that 2D detection does not suffer and therefore, confirms that DEVIANT
indeed augments the 2D equivariance with the depth equivariance. An idea sim-
ilar to DEVIANT is the optical expansion [95] which augments optical flow with
the scale information and benefits depth estimation.

5 Experiments

Our experiments use the KITTI [28], Waymo [75] and nuScenes datasets [9]. We
modify the publicly-available PyTorch [58] code of GUP Net [49] and use the
GUP Net model as our baseline. For DEVIANT, we keep the number of scales
as three [73]. DEVIANT takes 8.5 hours for training and 0.04s per image for
inference on a single A100 GPU. See Appendix A2.2 for more details.

Evaluation Metrics. KITTI evaluates on three object categories: Easy, Mod-
erate and Hard. It assigns each object to a category based on its occlusion,
truncation, and height in the image space. KITTI uses AP3D|R40

percentage
metric on the Moderate category to benchmark models [28] following [68,70].

Waymo evaluates on two object levels: Level 1 and Level 2. It assigns each
object to a level based on the number of LiDAR points included in its 3D box.
Waymo uses APH3D percentage metric which is the incorporation of heading
information in AP3D to benchmark models. It also provides evaluation at three
distances [0, 30), [30, 50) and [50,∞) meters.

Data Splits. We use the following splits of the KITTI,Waymo and nuScenes:

• KITTI Test (Full) split : Official KITTI 3D benchmark [1] consists of 7,481
training and 7,518 testing images [28].

• KITTI Val split : It partitions the 7,481 training images into 3,712 training
and 3,769 validation images [12].

• Waymo Val split : This split [62,80] contains 52,386 training and 39,848 valida-
tion images from the front camera. We construct its training set by sampling
every third frame from the training sequences as in [62,80].

• nuScenes Val split: It consists of 28,130 training and 6,019 validation images
from the front camera [9]. We use this split for evaluation [67].

5.1 KITTI Test Monocular 3D Detection

Cars. Tab. 3 lists out the results of monocular 3D detection and BEV evaluation
on KITTI Test cars. Tab. 3 results show that DEVIANT outperforms the GUP
Net and several other SOTA methods on both tasks. Except DD3D [57] and
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Table 3: Results on KITTI Test cars at IoU3D ≥0.7. Previous results are from the
leader-board or papers. We show 3 methods in each Extra category and 6 methods in
the image-only category. [Key: Best, Second Best]

Method Extra
AP3D|R40

[%]( −�) APBEV|R40
[%]( −�)

Easy Mod Hard Easy Mod Hard

AutoShape [48] CAD 22.47 14.17 11.36 30.66 20.08 15.59
PCT [80] Depth 21.00 13.37 11.31 29.65 19.03 15.92
DFR-Net [105] Depth 19.40 13.63 10.35 28.17 19.17 14.84
MonoDistill [14] Depth 22.97 16.03 13.60 31.87 22.59 19.72
PatchNet-C [69] LiDAR 22.40 12.53 10.60 − − −
CaDDN [62] LiDAR 19.17 13.41 11.46 27.94 18.91 17.19
DD3D [57] LiDAR 23.22 16.34 14.20 30.98 22.56 20.03
MonoEF [103] Odometry 21.29 13.87 11.71 29.03 19.70 17.26
Kinematic [5] Video 19.07 12.72 9.17 26.69 17.52 13.10

GrooMeD-NMS [36] − 18.10 12.32 9.65 26.19 18.27 14.05
MonoRCNN [67] − 18.36 12.65 10.03 25.48 18.11 14.10
MonoDIS-M [68] − 16.54 12.97 11.04 24.45 19.25 16.87
Ground-Aware [47] − 21.65 13.25 9.91 29.81 17.98 13.08
MonoFlex [100] − 19.94 13.89 12.07 28.23 19.75 16.89
GUP Net [49] − 20.11 14.20 11.77 − − −
DEVIANT (Ours) − 21.88 14.46 11.89 29.65 20.44 17.43

Table 4: Results on KITTI Test cyclists and pedestrians (Cyc/Ped) at IoU3D≥
0.5. Previous results are from the leader-board or papers. [Key: Best, Second Best]

Method Extra
Cyc AP3D|R40

[%]( −�) Ped AP3D|R40
[%]( −�)

Easy Mod Hard Easy Mod Hard

DDMP-3D [79] Depth 4.18 2.50 2.32 4.93 3.55 3.01
DFR-Net [105] Depth 5.69 3.58 3.10 6.09 3.62 3.39
MonoDistill [14] Depth 5.53 2.81 2.40 12.79 8.17 7.45
CaDDN [62] LiDAR 7.00 3.41 3.30 12.87 8.14 6.76
DD3D [57] LiDAR 2.39 1.52 1.31 13.91 9.30 8.05
MonoEF [103] Odometry 1.80 0.92 0.71 4.27 2.79 2.21

MonoDIS-M [68] − 1.17 0.54 0.48 7.79 5.14 4.42
MonoFlex [100] − 3.39 2.10 1.67 11.89 8.16 6.81
GUP Net [49] − 4.18 2.65 2.09 14.72 9.53 7.87

DEVIANT (Ours) − 5.05 3.13 2.59 13.43 8.65 7.69

MonoDistill [14], DEVIANT, an image-based method, also outperforms other
methods that use extra information.

Cyclists and Pedestrians. Tab. 4 lists out the results of monocular 3D detec-
tion on KITTI Test Cyclist and Pedestrians. The results show that DEVIANT
achieves SOTA results in the image-only category on the challenging Cyclists,
and is competitive on Pedestrians.

5.2 KITTI Val Monocular 3D Detection

Cars. Tab. 5 summarizes the results of monocular 3D detection and BEV evalua-
tion on KITTI Val split at two IoU3D thresholds of 0.7 and 0.5 [13,36]. We report
the median model over 5 runs. The results show that DEVIANT outperforms
the GUP Net [49] baseline by a significant margin. The biggest improvements
shows up on the Easy set. Significant improvements are also on the Moderate
and Hard sets. Interestingly, DEVIANT also outperforms DD3D [57] by a large
margin when the large-dataset pretraining is not done (denoted by DD3D−).



10 A. Kumar et al.

Table 5: Results on KITTI Val cars. Comparison with bigger CNN backbones in
Tab. 16. [Key: Best, Second Best, −= No pretrain]

Method Extra
IoU3D ≥ 0.7 IoU3D ≥ 0.5

AP3D|R40
[%]( −�) APBEV|R40

[%]( −�) AP3D|R40
[%]( −�) APBEV|R40

[%]( −�)
Easy Mod Hard Easy Mod Hard Easy Mod Hard Easy Mod Hard

DDMP-3D [79] Depth 28.12 20.39 16.34 − − − − − − − − −
PCT [80] Depth 38.39 27.53 24.44 47.16 34.65 28.47 − − − − − −
MonoDistill [14] Depth 24.31 18.47 15.76 33.09 25.40 22.16 65.69 49.35 43.49 71.45 53.11 46.94
CaDDN [62] LiDAR 23.57 16.31 13.84 − − − − − − − − −
PatchNet-C [69] LiDAR 24.51 17.03 13.25 − − − − − − − − −
DD3D (DLA34) [57] LiDAR − − − 33.5 26.0 22.6 − − − − − −
DD3D−(DLA34) [57] LiDAR − − − 26.8 20.2 16.7 − − − − − −
MonoEF [103] Odometry 18.26 16.30 15.24 26.07 25.21 21.61 57.98 51.80 49.34 63.40 61.13 53.22
Kinematic [5] Video 19.76 14.10 10.47 27.83 19.72 15.10 55.44 39.47 31.26 61.79 44.68 34.56

MonoRCNN [67] − 16.61 13.19 10.65 25.29 19.22 15.30 − − − − − −
MonoDLE [53] − 17.45 13.66 11.68 24.97 19.33 17.01 55.41 43.42 37.81 60.73 46.87 41.89
GrooMeD-NMS [36] − 19.67 14.32 11.27 27.38 19.75 15.92 55.62 41.07 32.89 61.83 44.98 36.29
Ground-Aware [47] − 23.63 16.16 12.06 − − − 60.92 42.18 32.02 − − −
MonoFlex [100] − 23.64 17.51 14.83 − − − − − − − − −
GUP Net (Reported) [49] − 22.76 16.46 13.72 31.07 22.94 19.75 57.62 42.33 37.59 61.78 47.06 40.88
GUP Net (Retrained) [49] − 21.10 15.48 12.88 28.58 20.92 17.83 58.95 43.99 38.07 64.60 47.76 42.97

DEVIANT (Ours) − 24.63 16.54 14.52 32.60 23.04 19.99 61.00 46.00 40.18 65.28 49.63 43.50

(a) Linear Scale (b) Log Scale

Fig. 3: AP3D at different depths and IoU3D thresholds on KITTI Val Split.

Table 6: Cross-dataset evaluation of the KITTI Val model on KITTI Val and
nuScenes frontal Val cars with depth MAE (

−
� ). [Key: Best, Second Best]

Method
KITTI Val nuScenes frontal Val

0−20 20−40 40−∞ All 0−20 20−40 40−∞ All

M3D-RPN [4] 0.56 1.33 2.73 1.26 0.94 3.06 10.36 2.67
MonoRCNN [67] 0.46 1.27 2.59 1.14 0.94 2.84 8.65 2.39
GUP Net [49] 0.45 1.10 1.85 0.89 0.82 1.70 6.20 1.45

DEVIANT 0.40 1.09 1.80 0.87 0.76 1.60 4.50 1.26

AP3D at different depths and IoU3D thresholds. We next compare the
AP3D of DEVIANT and GUP Net in Fig. 3 at different distances in meters and
IoU3D matching criteria of 0.3−�0.7 as in [36]. Fig. 3 shows that DEVIANT is
effective over GUP Net [49] at all depths and higher IoU3D thresholds.

Cross-Dataset Evaluation. Tab. 6 shows the result of our KITTI Val model
on the KITTI Val and nuScenes [9] frontal Val images, using mean absolute
error (MAE) of the depth of the boxes [67]. More details are in Appendix A3.1.
DEVIANT outperforms GUP Net on most of the metrics on both the datasets,
which confirms that DEVIANT generalizes better than CNNs. DEVIANT per-
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Table 7: Scale Augmentation vs Scale Equivariance on KITTI Val cars. [Key:
Best, Eqv= Equivariance, Aug= Augmentation]

Method
Scale Scale IoU3D ≥ 0.7 IoU3D ≥ 0.5
Eqv Aug AP3D|R40

[%]( −�) APBEV|R40
[%]( −�) AP3D|R40

[%]( −�) APBEV|R40
[%]( −�)

Easy Mod Hard Easy Mod Hard Easy Mod Hard Easy Mod Hard

GUP Net [49] 20.82 14.15 12.44 29.93 20.90 17.87 62.37 44.40 39.61 66.81 48.09 43.14
✓ 21.10 15.48 12.88 28.58 20.92 17.83 58.95 43.99 38.07 64.60 47.76 42.97

DEVIANT ✓ 21.33 14.77 12.57 28.79 20.28 17.59 59.31 43.25 37.64 63.94 47.02 41.12
✓ ✓ 24.63 16.54 14.52 32.60 23.04 19.99 61.00 46.00 40.18 65.28 49.63 43.50

Table 8: Comparison of Equivariant Architectures on KITTI Val cars. [Key:
Best, Eqv= Equivariance, †= Retrained]

Method Eqv
IoU3D ≥ 0.7 IoU3D ≥ 0.5

AP3D|R40
[%]( −�) APBEV|R40

[%]( −�) AP3D|R40
[%]( −�) APBEV|R40

[%]( −�)
Easy Mod Hard Easy Mod Hard Easy Mod Hard Easy Mod Hard

DETR3D† [85] Learned 1.94 1.26 1.09 4.41 3.06 2.79 20.09 13.80 12.78 26.51 18.49 17.36
GUP Net [49] 2D 21.10 15.48 12.88 28.58 20.92 17.83 58.95 43.99 38.07 64.60 47.76 42.97
DEVIANT 2D+Depth 24.63 16.54 14.52 32.60 23.04 19.99 61.00 46.00 40.18 65.28 49.63 43.50

Table 9: Comparison with Dilated Convolution on KITTI Val cars. [Key: Best]

Method Extra
IoU3D≥ 0.7 IoU3D≥ 0.5

AP3D|R40
[%]( −�) APBEV|R40

[%]( −�) AP3D|R40
[%]( −�) APBEV|R40

[%]( −�)
Easy Mod Hard Easy Mod Hard Easy Mod Hard Easy Mod Hard

D4LCN [20] Depth 22.32 16.20 12.30 31.53 22.58 17.87 − − − − − −
DCNN [97] − 21.66 15.49 12.90 30.22 22.06 19.01 57.54 43.12 38.80 63.29 46.86 42.42
DEVIANT − 24.63 16.54 14.52 32.60 23.04 19.99 61.00 46.00 40.18 65.28 49.63 43.50

forms exceedingly well in the cross-dataset evaluation than [4,49,67]. We believe
this happens because [4,49,67] rely on data or geometry to get the depth, while
DEVIANT is equivariant to the depth translations, and therefore, outputs con-
sistent depth. So, DEVIANT is more robust to data distribution changes.
Alternatives to Equivariance. We now compare with alternatives to equiv-
ariance in the following paragraphs.
(a) Scale Augmentation. A withstanding question in machine learning is the
choice between equivariance and data augmentation [25]. Tab. 7 compares scale
equivariance and scale augmentation. GUP Net [49] uses scale-augmentation and
therefore, Tab. 7 shows that equivariance also benefits models which use scale-
augmentation. This agrees with Tab. 2 of [74], where they observe that both
augmentation and equivariance benefits classification on MNIST-scale dataset.
(b) Other Equivariant Architectures. We now benchmark adding depth
(scale) equivariance to a 2D translation equivariant CNN and a transformer
which learns the equivariance. Therefore, we compare DEVIANT with GUP
Net [49] (a CNN), and DETR3D [85] (a transformer) in Tab. 8. As DETR3D does
not report KITTI results, we trained DETR3D on KITTI using their public
code. DEVIANT outperforms GUP Net and also surpasses DETR3D by a large
margin. This happens because learning equivariance requires more data [90]
compared to architectures which hardcode equivariance like CNN or DEVIANT.
(c) Dilated Convolution. DEVIANT adjusts the receptive field based on the
object scale, and so, we compare with the dilated CNN (DCNN) [97] and D4LCN
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(a) At blocks (depths) of backbone. (b) Varying scaling factors.

Fig. 4: Log Equivariance Error (∆) comparison for DEVIANT and GUP Net at (a)
different blocks with random image scaling factors (b) different image scaling factors
at depth 3. DEVIANT shows lower scale equivariance error than vanilla GUP Net [49].

[20] in Tab. 9. The results show that DCNN performs sub-par to DEVIANT.
This is expected because dilation corresponds to integer scales [92] while the
scaling is generally a float in monocular detection. D4LCN [20] uses monocular
depth as input to adjust the receptive field. DEVIANT (without depth) also
outperforms D4LCN on Hard cars, which are more distant.

(d) Other Convolutions. We now compare with other known convolutions in
literature such as Log-polar convolution [106], Dilated convolution [97] convolu-
tion and DISCO [72] in Tab. 11. The results show that the log-polar convolution
does not work well, and SES convolutions are better suited to embed depth
(scale) equivariance. As described in Sec. 4, we investigate the behavior of log-
polar convolution through a small experiment. We calculate the SSIM [86] of
the original image and the image obtained after the upscaling, log-polar, inverse
log-polar, and downscaling blocks. We then average the SSIM over all KITTI
Val images. We repeat this experiment for multiple image heights and scaling
factors. The ideal SSIM should have been one. However, Fig. 2c shows that SSIM
does not reach 1 even after upscaling by 4. This result confirms that log-polar
convolution loses information at low resolutions resulting in inaccurate detection.

Next, the results show that dilated convolution [97] performs sub-par to DE-
VIANT. Moreover, DISCO [72] also does not outperform SES convolution which
agrees with the 2D tracking results of [72].

(e) Feature Pyramid Network (FPN). Our baseline GUP Net [49] uses
FPN [44] and Tab. 5 shows that DEVIANT outperforms GUP Net. Hence, we
conclude that equivariance also benefits models which use FPN.

Comparison of Equivariance Error. We next quantitatively evaluate the
scale equivariance of DEVIANT vs. GUP Net [49], using the equivariance er-
ror metric [74]. The equivariance error ∆ is the normalized difference between
the scaled feature map and the feature map of the scaled image, and is given

by ∆ = 1
N

∑N
i=1

||Tsi
Φ(hi)−Φ(Tsi

hi)||22
||Tsi

Φ(hi)||22
, where Φ denotes the neural network, Tsi is

the scaling transformation for the image i, and N is the total number of images.
The equivariance error is zero if the scale equivariance is perfect. We plot the log
of this error at different blocks of DEVIANT and GUP Net backbones and also
plot at different downscaling of KITTI Val images in Fig. 4. The plots show that
DEVIANT has low equivariance error than GUP Net. This is expected since the
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Table 10: 3D and 2D detection on KITTI Val cars.

Method
IoU ≥ 0.7 IoU ≥ 0.5

AP3D|R40
[%]( −�) AP2D|R40

[%]( −�) AP3D|R40
[%]( −�) AP2D|R40

[%]( −�)
Easy Mod Hard Easy Mod Hard Easy Mod Hard Easy Mod Hard

GUP Net [49] 21.10 15.48 12.88 96.78 88.87 79.02 58.95 43.99 38.07 99.52 91.89 81.99
DEVIANT (Ours) 24.63 16.54 14.52 96.68 88.66 78.87 61.00 46.00 40.18 97.12 91.77 81.93

Table 11: Ablation studies on KITTI Val cars.

Change from DEVIANT : IoU3D ≥ 0.7 IoU3D ≥ 0.5

Changed From −−�To
AP3D|R40

[%]( −�) APBEV|R40
[%]( −�) AP3D|R40

[%]( −�) APBEV|R40
[%]( −�)

Easy Mod Hard Easy Mod Hard Easy Mod Hard Easy Mod Hard

SES−�Vanilla 21.10 15.48 12.88 28.58 20.92 17.83 58.95 43.99 38.07 64.60 47.76 42.97
Convolution SES−�Log-polar [106] 9.19 6.77 5.78 16.39 11.15 9.80 40.51 27.62 23.90 45.66 31.34 25.80

SES−�Dilated [97] 21.66 15.49 12.90 30.22 22.06 19.01 57.54 43.12 38.80 63.29 46.86 42.42
SES−�DISCO [72] 20.21 13.84 11.46 28.56 19.38 16.41 55.22 39.76 35.37 59.46 43.16 38.52

Downscale 10% −� 5% 24.24 16.51 14.43 31.94 22.86 19.82 60.64 44.46 40.02 64.68 49.30 43.49
α 10% −� 20% 22.19 15.85 13.48 31.15 23.01 19.90 61.24 44.93 40.22 67.46 50.10 43.83

BNP SE−� Vanilla 24.39 16.20 14.36 32.43 22.53 19.70 62.81 46.14 40.38 67.87 50.23 44.08

Scales 3 −� 1 23.20 16.29 13.63 31.76 23.23 19.97 61.90 46.66 40.61 67.37 50.31 43.93
3 −� 2 24.15 16.48 14.55 32.42 23.17 20.07 61.05 46.34 40.46 67.36 50.32 44.07

— DEVIANT (best) 24.63 16.54 14.52 32.60 23.04 19.99 61.00 46.00 40.18 65.28 49.63 43.50

feature maps of the proposed DEVIANT are additionally equivariant to scale
transformations (depth translations). We also visualize the equivariance error for
a validation image and for the objects of this image in Fig. 12 in the supplemen-
tary. The qualitative plots also show a lower error for the proposed DEVIANT,
which agrees with Fig. 4. Fig. 12a shows that equivariance error is particularly
low for nearby cars which also justifies the good performance of DEVIANT on
Easy (nearby) cars in Tabs. 3 and 5.
Does 2D Detection Suffer? We now investigate whether 2D detection suffers
from using DEVIANT backbones in Tab. 10. The results show that DEVIANT
introduces minimal decrease in the 2D detection performance. This is consistent
with [73], who report that 2D tracking improves with the SE networks.
Ablation Studies. Tab. 11 compares the modifications of our approach on
KITTI Val cars based on the experimental settings of Sec. 5.
(a) Floating or Integer Downscaling? We next investigate the question that
whether one should use floating or integer downscaling factors for DEVIANT.We
vary the downscaling factors as (1+2α, 1+α, 1) and therefore, our scaling factor

s=
(

1
1+2α ,

1
1+α , 1

)
. We find that α of 10% works the best. We again bring up

the dilated convolution (Dilated) results at this point because dilation is a scale
equivariant operation for integer downscaling factors [92] (α = 100%, s = 0.5).
Tab. 11 results suggest that the downscaling factors should be floating numbers.
(b) SE BNP. As described in Sec. 4, we ablate DEVIANT against the case
when only convolutions are SE but BNP layers are not. So, we place Scale-
Projection [74] immediately after every SES convolution. Tab. 11 shows that
such a network performs slightly sub-optimal to our final model.
(c) Number of Scales. We next ablate against the usage of Hermite scales.
Using three scales performs better than using only one scale especially on Mod
and Hard objects, and slightly better than using two scales.
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Table 12: Results on Waymo Val vehicles. [Key: Best, Second Best]

AP3D [%]( −�) APH3D [%]( −�)IoU3D Difficulty Method Extra
All 0-30 30-50 50-∞ All 0-30 30-50 50-∞

CaDDN [62] LiDAR 5.03 14.54 1.47 0.10 4.99 14.43 1.45 0.10
PatchNet [50] in [80] Depth 0.39 1.67 0.13 0.03 0.39 1.63 0.12 0.03

PCT [80] Depth 0.89 3.18 0.27 0.07 0.88 3.15 0.27 0.07
0.7 Level 1 M3D-RPN [4] in [62] − 0.35 1.12 0.18 0.02 0.34 1.10 0.18 0.02

GUP Net (Retrained) [49] − 2.28 6.15 0.81 0.03 2.27 6.11 0.80 0.03
DEVIANT (Ours) − 2.69 6.95 0.99 0.02 2.67 6.90 0.98 0.02

CaDDN [62] LiDAR 4.49 14.50 1.42 0.09 4.45 14.38 1.41 0.09
PatchNet [50] in [80] Depth 0.38 1.67 0.13 0.03 0.36 1.63 0.11 0.03

PCT [80] Depth 0.66 3.18 0.27 0.07 0.66 3.15 0.26 0.07
0.7 Level 2 M3D-RPN [4] in [62] − 0.33 1.12 0.18 0.02 0.33 1.10 0.17 0.02

GUP Net (Retrained) [49] − 2.14 6.13 0.78 0.02 2.12 6.08 0.77 0.02
DEVIANT (Ours) − 2.52 6.93 0.95 0.02 2.50 6.87 0.94 0.02

CaDDN [62] LiDAR 17.54 45.00 9.24 0.64 17.31 44.46 9.11 0.62
PatchNet [50] in [80] Depth 2.92 10.03 1.09 0.23 2.74 9.75 0.96 0.18

PCT [80] Depth 4.20 14.70 1.78 0.39 4.15 14.54 1.75 0.39
0.5 Level 1 M3D-RPN [4] in [62] − 3.79 11.14 2.16 0.26 3.63 10.70 2.09 0.21

GUP Net (Retrained) [49] − 10.02 24.78 4.84 0.22 9.94 24.59 4.78 0.22
DEVIANT (Ours) − 10.98 26.85 5.13 0.18 10.89 26.64 5.08 0.18

CaDDN [62] LiDAR 16.51 44.87 8.99 0.58 16.28 44.33 8.86 0.55
PatchNet [50] in [80] Depth 2.42 10.01 1.07 0.22 2.28 9.73 0.97 0.16

PCT [80] Depth 4.03 14.67 1.74 0.36 4.15 14.51 1.71 0.35
0.5 Level 2 M3D-RPN [4] in [62] − 3.61 11.12 2.12 0.24 3.46 10.67 2.04 0.20

GUP Net (Retrained) [49] − 9.39 24.69 4.67 0.19 9.31 24.50 4.62 0.19
DEVIANT (Ours) − 10.29 26.75 4.95 0.16 10.20 26.54 4.90 0.16

5.3 Waymo Val Monocular 3D Detection

We also benchmark our method on the Waymo dataset [75] which has more
variability than KITTI. Tab. 12 shows the results on Waymo Val split. The
results show that DEVIANT outperforms the baseline GUP Net [49] on multi-
ple levels and multiple thresholds. The biggest gains are on the nearby objects
which is consistent with Tabs. 3 and 5. Interestingly, DEVIANT also outperforms
PatchNet [50] and PCT [80] without using depth. Although the performance of
DEVIANT lags CaDDN [62], it is important to stress that CaDDN uses LiDAR
data in training, while DEVIANT is an image-only method.

6 Conclusions

This paper studies the modeling error in monocular 3D detection in detail and
takes the first step towards convolutions equivariant to arbitrary 3D translations
in the projective manifold. Since the depth is the hardest to estimate for this
task, this paper proposes Depth EquiVarIAnt NeTwork (DEVIANT) built with
existing scale equivariant steerable blocks. As a result, DEVIANT is equivariant
to the depth translations in the projective manifold whereas vanilla networks are
not. The additional depth equivariance forces the DEVIANT to learn consistent
depth estimates and therefore, DEVIANT achieves SOTA detection results on
KITTI and Waymo datasets in the image-only category and performs compet-
itively to methods using extra information. Moreover, DEVIANT works better
than vanilla networks in cross-dataset evaluation. Future works include applying
the idea to Pseudo-LiDAR [83], and monocular 3D tracking.
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