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A. Training Details
A.1. Architecture Detals

The dual condition generator Gmix is a modification of DDPM [10] to incorporate two conditions. We insert two con-
ditions Xid and Xsty into the denoising U-Net ϵθ(Xt, t,Xid,Xsty). Conditioning images Xsty and Xid are mapped to
features using Esty and Eid, respectively. According to Eq. 6 of the main paper, the style information Esty(Xsty) is the
concatenation of style vectors at different k×k patch locations,

Esty(Xsty) := s =
[
s1, s2, ski ..., sk×k, s′

]
∈ R(k2+1)×C . (1)

On the other hand, ID information is a concatenation of features extracted from a trainable CNN (e.g. ResNet50 [9]), which
produces an intermediate feature Iid of shape R7×7×512and a feature vector fid of shape R512. Specifically,

Eid(Xid) := i = [Flatten(Iid),fid] + Pemb ∈ R50×C , (2)

where Flatten refers to removing the H×W spatial dimension and R50×C is from concatenating features of length 7∗7 and 1.
Pemb is a learnable position embedding for distinguishing each feature position for the subsequent cross-attention operation.
Detailed illustrations of Esty(Xsty) and Eid(Xid) are shown in Fig. 1. C for the channel dimension of Esty(Xsty) and
Eid(Xid) is 512.
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Figure 1. Left: An illustration of Xsty . The key property of Xsty is in restricting the information in Xsty from flowing freely to the
next layer. The fixed feature encoder Fs and the patch-wise spatial mean-variance operation destroy the detailed ID information while
preserving the style of an image. We create an output of size R(k2+1)×C . Right: A simple CNN based on ResNet50. We take intermediate
representation and the last feature vector and concatenate them together to create a output of size R50×C .
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Figure 2. Illustration of DDPM U-Net with conditioning operations highlighted. The red arrow indicates how the dual conditions are
injected into the intermediate features of U-Net using cross-attention layers. For clarity, up-sampling stages are not illustrated, but they are
symmetric to the down-sampling stages. On the right is a detailed illustration of the Residual Block with timestep and ID condition. temb

and fid from Eid are added together and used to scale the output of the Residual Block.

When Esty(Xsty) and Eid(Xid) is prepared, they together form (k2+1)+50 vectors of shape 512. These can be injected
into the U-Net ϵθ by following the convention of the DDPM based text-conditional image generators [18]. Specifically, cross
attention operation can be written as a modification of attention equation [22] with query Q, key K and value V with
additional query Qc, key Kc.

Attn(Q,K,V ) = SoftMax
(
QWq (KWk)

⊺

√
d

)
WvV , (3)

Cross-Attn(Q,K,V ,Kc,Vc) = SoftMax
(
QWq ([K,Kc]Wk)

⊺

√
d

)
Wv[V ,Vc], (4)

where Wq,Wk and Wv are learnable weights and [·] refers to concatenation operation. In our case, Q = K = V are
an arbitrary intermediate feature in the U-Net. And Kc = Vc are conditions generated by Esty(Xsty) and Eid(Xid),
concatenated together. This operation allows the model to update the intermediate features with the conditions if necessary.
We insert the cross-attention module in the last two DownSampling Residual Blocks in the U-Net, as shown in Fig. 2.

To increase the effect of Xid in the conditioning operation, we also add fid to the time-step embedding temb. As shown in
the right side of Fig. 2, the Residual Block in the U-Net modulates the intermediate features according to the scaling vector
provided by fid + temb. GNorm [25] refers to Group Normalization and SiLU refers to Sigmoid Linear Units [7]. Adding
fid to temb for the Residual Block allows more paths for Xid to change the output of U-Net.

A.2. Training Hyper-Parameters

The final loss for training the model end-to-end is LMSE + λLID with λ as a scaling parameter. We set λ = 0.05 to
compensate for the different scale between L2 and Cosine Similarity. All our input image sizes are 112×112, following the
convention of SoTA face recognition model datasets [5, 12, 30]. And our code is implemented in Pytorch.



B. More Experiment Results
B.1. Adding Real Dataset

We include additional experiment results that involve adding real images. Although the motivation of the paper is to use
an only-synthetic dataset to train a face recognition model, the performance comparison with an addition of a subset of the
real dataset has its merits; it shows 1) whether the synthetic dataset is complementary to the real dataset and 2) whether the
synthetic dataset can work as an augmentation for real images.

Tab. 1 shows the performance comparison between DigiFace [3] and our proposed DCFace when 1) a few real images are
added and 2) both synthetic datasets are combined. The performance gap for DigiFace is large, jumping from 86.37 to 92.67
on average when 2K real subjects with 20 images per subject are added. In contrast, ours show a relatively less dramatic
gain, 91.21 to 92.90 when few real images are added. This indicates that DigiFace [3] is quite different from the real images
and ours is similar to the real images. This is in-line with our expectation as we have created a synthetic dataset that tries to
mimic the style distribution of the training dataset, whereas DigiFace simulates image styles using 3D models.

B.2. Combining Multiple Synthetic Datasets

In the second to the last row of Tab. 1, when we combined the two synthetic datasets without the real images, the perfor-
mance is the highest, reaching 93.06 on average. This result indicates that different synthetic datasets can be complementary
when they are generated using different methods.

# Synthetic Imgs # Real Imgs LFW CFPFP CPLFW AGEDB CALFW AVG
Gap to
Real

DigiFace 1.2M (10K×72+100K×5) 0 96.17 89.81 82.23 81.10 82.55 86.37 8.72
DigiFace 1.2M (10K×72+100K×5) 2K×20 99.17 94.63 88.1 90.5 90.97 92.67 2.06

DCFace 1.2M (20K×50+40K×5) 0 98.58 88.61 85.07 90.97 92.82 91.21 3.61
DCFace 1.2M (20K×50+40K×5) 2K×20 98.97 94.01 86.78 91.80 92.95 92.90 1.82

DCFace+DigiFace (2.4M) 0 99.20 93.63 87.25 92.25 92.95 93.06 1.65

CASIA 0 0.5M 99.42 96.56 89.73 94.08 93.32 94.62 0

Table 1. Verification accuracies of FR models trained with synthetic datasets and subset of real datasets. In all settings, the backbone is set
to IR50 [5] model with AdaFace loss [16] for a fair comparison.



C. Analysis

C.1 Unique Subject Counts. In Fig. 3, we plot the number of unique subjects that can be sampled as we increase the
sample size. The blue curve shows that the number of unique samples that can be generated by a DDPM of our choice
does not saturate when we sample 200, 000 samples. At 200, 000 samples, the unique subjects are about 60, 000. And by
extrapolating the curve, we estimate the number might reach 80, 000 with more samples. Our DDPM of choice is trained
on FFHQ [15] dataset which contains 70, 000 unlabeled high-quality images. The orange line shows the number of unique
samples that are sufficiently different from the subjects in the CASIA-WebFace dataset. The green line shows the number
of unique samples left after filtering images that contain sunglasses. The flat region is due to the filtering stage reducing the
total candidates. The plot shows that DDPM trained on FFHQ dataset can sufficiently generate a large number of unique and
new samples that are different from CASIA-WebFace dataset. However, with more samples, eventually there is a limit to the
number of unique samples that can be generated. When the number of total generated samples is 100, 000, one additional
sample has approximately 24% chance of being unique, whereas, at 200, 000, the probability is 15%. The rate of sampling
another unique subject decreases with more samples. The model used for evaluating the uniqueness is IR101 [5] trained on
the WebFace4M [30] dataset. And we use the threshold of 0.3. We would like to note a typo in Sec. 3.3 of the main paper,
where the number of unique subjects should be corrected from 62, 570 to 42, 763.
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Figure 3. Plot of unique subject count as the number of samples from Gid is increased from 1000 to 200, 000. At 200, 000, one additional
sample has approximately 15% chance of being unique. And the rate decreases with more samples.

C.2 Feature Plot. In Fig. 4, we show the 2D t-SNE [21] plot of synthetic images generated by 3 different methods (Disco-
FaceGAN [6], DigiFace [3] and proposed DCFace). The red circles represent real images from CASIA-WebFace. We extract
the features from each image using a pre-trained face recognition model, IR101 [5] trained on WebFace4M [30]. We show
two settings we sample (a) 50 subjects with 1 image per subject and (b) 1 subject with 50 images per subject. Note that the
proximity of DCFace image features is closer to CASIA-WebFace image features, highlighted in a circle. For each setting,
we show the features extracted from an intermediate layer of IR101 and the last layer. As the layer becomes deeper, the
features become suitable for recognition, as shown in the last column of the figure.

Intermediate Layer Feature Last Layer Feature Intermediate Layer Feature Last Layer Feature

(b) 1 Subject 50 Images (Intra-class Dist.)(a) 50 Subject 1 Images (Inter-class Dist.)

Figure 4. (a) the t-SNE plot of features from synthetic and real datasets of 50 subjects per dataset. It shows how 50 randomly sampled
subjects from each dataset are distributed. The distribution between real (red) and DCFace (green) is the closest. (b) the t-SNE plot of
features from synthetic and real datasets of 1 subject per dataset with 50 images. We randomly sample 1 subject from each dataset. The
last layer features are well separated as the model is a face recognition model that separates the features of different subjects.



C.3 Comparison with Classifier Free Guidance.
When ϵ(xt, c) learns to use the condition c, the difference ϵ(xt, c)−ϵ(xt) can give further guidance during sampling to

increase the dependence on c. But, in our case, the ID condition is the fine-grained facial difference that is hard to learn with
MSE loss. Proposed Time-dependent ID loss, LID helps the model learn this directly. Row 3 vs 4 of Tab. 2 shows that LID is
more effective than CFG.

Conditions Train Loss Sampling FR.Perf ↑
1 CNN(Xid), CNN(Xsty) MSE + Guide 73.38

2 CNN(Xid), Esty(Xsty) MSE × 82.30
3 CNN(Xid), Esty(Xsty) MSE + Guide 84.05
4 CNN(Xid), Esty(Xsty) MSE+LID × 89.56

Table 2. Green Esty and LID indicates the novelty of our paper. For guidance, we adopt 10% condition masking during training and the
guidance scale of 3 during sampling. FR.Perf is an average of 5 face recognition performances as in the main paper.

Interestingly, with a large guidance scale, CFG becomes harmful. CFG decreases diversity as pointed out by [11]. We
observe that guidance with Xid leads to consistent ID but with little facial variation, the same phenomenon in DCFace with
grid-size 1x1 in Esty , in Tab. 2 (main). Good FR datasets need both large intra and inter-subject variability and we combine
Esty and LID to achieve this.

C.4 FID Scores. Note that our generated data is not high-res images like FFHQ when compared to how SynFace is similar
to FFHQ. (Tab. 3 row 5 vs 6). But, we point out that our aim is not to create HQ images but to create a database with realistic
inter/intra-subject variations. In that regard, we have successfully approximated the distribution of the popular FR training
dataset CASIA-WebFace (FID=13.67).

Generator Train Data Source (real/syn) Target (real) FID ↓
1 - CASIA (train) CASIA (val) 9.57

2 CASIA (train) DCFace CASIA (val) 13.67
3 FFHQ+3DMM SynFace CASIA (val) 38.48
4 3D Face Capture DIGIFACE1M CASIA (val) 71.65

5 CASIA (train) DCFace FFHQ (train+val) 35.45
6 FFHQ+3DMM SynFace FFHQ (train+val) 21.75
7 3D Face Capture DIGIFACE1M FFHQ (train+val) 68.67

Table 3. FID scores of synthetic vs real datasets. For synthetic datasets, we randomly sampled 10, 000 images. See Line 630 for Casia-
WebFace Train and Val set split. All images are aligend and cropped to 112×112 to be in accordance with CASIA-WebFace.

Having said this, we note FID is not comprehensive in evaluating labeled datasets. It cannot capture the label consistency
nor directly relate to the FR performance. As such, SynFace/DigiFace do not report FID. We propose U,D,C metrics that
enable holistic analysis of labeled datasets.

C.5 Does DCFace change gender?. DCFace combines XID and Xsty , while adhering to the subject ID as defined by a
pre-trained FR model. Factors weakly related to ID, such as age and hair style, can vary. Biometric ambiguity can occur due
to makeup, wig, weight change, etc. even in real life. The perceived gender may change, but changes such as hair are less
relevant to subject ID for the FR model.

C.6 Why DCFace is better in U,D,C metrics?. We note DCFace is not better in all U,D,C. Fig. 6 (main) shows SynFace
has the highest consistency (C). But, DCFace excels in the tradeoff between C and D. In other words, style similarity to
the real dataset (i.e. D) is lacking in other datasets and it is as important as ID consistency. As such, U,D,C metrics reveal
weak/strong points of synthetic datasets.



D. Visualizations

D.1. Time-step Visualizaton

Fig. 5 shows how DDPM generates output at each time-step. The far left column shows Xsty , the desired style of an
image. The far right column shows Xid, the desired ID image of choice. In early time-steps, the network reconstructs the
front-view image with an ID of Xid. And gradually, it interpolates the image into the desired style of Xsty . The gradual
transition can be in the pose, hair-style, expression, etc.

𝑿𝒊𝒅𝑿𝒔𝒕𝒚 𝒕 = 𝟏𝟎𝟎𝟎𝒕 = 𝟎

Figure 5. A plot of DCFace outputs at each time-step.

D.2. Interpolation

In Fig. 6, we show the plot of interpolation in Xsty . While keeping the same identity Xid, we take two style images
Xsty1 and Xsty2. We interpolate with α in αEstry(Xsty1) + (1 − α)Estry(Xsty2) with α increasing linearly from 0 to 1.
The interpolation is smooth, creating an intermediate pose and expression that did not exist before.

Figure 6. A plot of DCFace output with style interpolation.



E. Miscelaneous

Similarity threshold. Threshold=0.3 is based on FR evaluation model having a threshold of 0.3080 for verification with
TPR@FPR=0.01% : 97.17% on IJB-B [24]. FPR=0.01% is widely used in practice and the scale of similarity is (−1, 1). At
threshold=0.3, FFHQ has 200 (2%) more unique subjects than DDPM, signaling a similar level of uniqueness.
Style Extracting Model. We use the early layers of face recognition model for style extractor backbone. Our rationale for
adopting the early layers of the FR model, as opposed to that of the ImageNet-trained model is that the early layers extract
low-level features and we wanted features optimized with the face dataset. But, it is possible to take other models as long as
it generates low-level features.
Evaluation on Harder Datasets. We evaluate on harder datasets, IJB-B [24] (TPR@FPR=0.01%: 75.12) and TinyFace [4]
(Rank1: 41.66). We include this result for future works to evaluate on harder datasets.
Real and Generated Similarity Analysis. In addition to Fig.7 mathcing X̂id with CASIA-WebFace, matching all X̂0

(generated) images against CASIA-WebFace at threshold=0.3, we get 0.0026% FMR. This implies that only a small fraction
of CAISA-WebFace images are similar to the generated images.

F. Societal Concerns
We believe that the Machine Learning and Computer Vision community should strive together to minimize the negative

societal impact. Our work falls into the category of 1) image generation using generative models and 2) synthetic labeled
dataset generation. In the field of image generation, unfortunately, there are numerous well-known malicious applications of
generative models. Fake images can be used to impersonate high-profile figures and create fake news. Conditional image gen-
eration models make the malicious use cases easier to adapt to different use cases because of user controllability. Fortunately,
GAN-based generators produce subtle artifacts in the generated samples that allow the visual forgery detection [2, 8, 23, 26].
With the recent advance in DDPM, the community is optimistic about detecting forgeries in diffusion models [20]. It is
also known that proactive treatments on generated images increase the forgery detection performance [2], and as generative
models become more sophisticated, proactive measures may be advised whenever possible.

Synthetic dataset generation is, on the other hand, an effort to avoid infringing the privacy of individuals on the web.
Large-scale face dataset is collected without informed consent and only a few evaluation datasets such as IJB-S [14] has IRB
compliance for safe and ethical research. Collecting large-scale datasets with informed consent is prohibitively challenging
and the community uses web-crawled datasets for the lack of an alternative option. Therefore, efforts to create synthetic
datasets with synthetic subjects can be a practical solution to this problem. In our method, we still use real images to train
the generative models. We hope that research in synthetic dataset generation will eventually replace real images, not just in
the recognition task, but also in the generative tasks as well, removing the need for using real datasets in any form.

G. Implementation Details and Code
The code will be released at https://github.com/mk-minchul/dcface. For preprocessing the training data

CASIA-WebFace [12], we reference AdaFace [16] and use MTCNN [27] for alignment and cropping faces. For the backbone
model definition, TFace [1] and for evaluation of LFW [13], CFP-FP [19], CPLFW [28], AgeDB [17] and CALFW [29], we
use AdaFace repository [16].

https://github.com/mk-minchul/dcface
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