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Abstract

In the supplementary section, we provide additional in-
sights of our results with SoTA methods, show evidences of
boundary outliers on KITTI semi-dense ground-truth and
its effect on depth completion performance, and discuss our
data generation process in KITTI and Virtual KITTI used for
our ablation study in the main paper.

1. Relative Error Maps
It is worthwhile to examine where our method has lower

errors in comparison with majority of the SoTA methods
which use MSE. For this purpose, we choose the MultiStack
method [1] for comparison. we calculate the difference of
error maps of Absolute Error, A(i), and Squared Error, S(i),
of two methods respectively to show the gains of our method
over MultiStack [1]. The error differences are calculated by
the following equation:

A(i) = |d̂M (i)− dt(i)| − |d̂T (i)− dt(i)|, (1)

S(i) = |d̂M (i)− dt(i)|2 − |d̂T (i)− dt(i)|2, (2)

where d̂M and d̂T are depth estimates of MultiStack [1]
and TWISE respectively. A(i) and S(i) are Absolute Error
Difference and Squared Error Difference of pixel i on two
competing methods respectively. For a particular pixel, when
A(i) and S(i) is (+)ve, TWISE is performing better then
MultiStack and vice-versa for (−)ve values. We note that the
errors are evaluated only where there are valid ground-truth
pixels.

As shown in Fig. 1, our method wins in substantially
more pixels than losing. Errors in our method often comes
from few pixels at boundary regions, when a FG depth is
erroneously chosen over a BG depth/vice versa; we term
them as outliers e.g., see depth error at the traffic sign pixels,
edge of tree-trunk etc close to/at the boundary. These outliers
with large depth errors are strongly weighted by the RMSE
metric, leading to our worse performance on that metric.

(a)

(b)

Figure 1: Difference of TWISE vs MultiStack [1] in (a) Absolute
Error (AE) and (b) Squared Error (SE) respectively. The red indi-
cates the most gain of ours over [1], marked by ’o’; while the blue
is vice-versa, marked by ’x’. Zoom in for details.

To further our analysis, we do a statistical evaluation on
200 samples of the validation set (chosen every 5 samples
from KITTI’s 1, 000 validation set) to confirm that TWISE
has better depth estimate on most pixels compared to Multi-
Stack [1] except for few erroneous pixels (outliers) at bound-
aries (see Fig. 1).
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Figure 2: (a) Magenta is a histogram of absolute error differ-
ences A(i) for A(i) > 0 (where MultiStack errors > TWISE
errors) and green is a histogram of |A(i)| for A(i) < 0
(where TWISE errors > MultiStack errors). (b) Correspond-
ing histograms for squared pixel error differences S(i).

We do a histogram binning of A(i) for pixels where
A(i) > 0 (Multistack > TWISE is equivalent to perfor-



Area MAE RMSE TMAE TRMSE
Inside Object 196.1 752.3 138.6 327.3
Edge Pixels 731.6 2396.9 304.4 454.6

Whole Image 215.1 880.9 144.6 254.3

Table 1: Error metrics for different image regions on TWISE.

mance gain of TWISE over MultiStack) and of |A(i)| for
pixels where A(i) < 0 (TWISE > MultiStack is equiva-
lent to performance gain of MultiStack over TWISE). There
histograms are plotted together in Fig. 2(a). Analogous
histograms are plotted for the squared error difference, S(i),
in Fig. 2(b). These histograms show that TWISE has less
error than Multi-Stack [1] for most pixels (∼ 2.70 ∗ 106)
compared to just (∼ 6, 100) pixels where Multi-stack bests
TWISE. The average image in this set has 13, 500 pixels
where TWISE is better versus 31 pixels where MultiStack is
better.

Figure 3: Color images (top) and depth error maps in 0−5m
(bottom).

The reason for large RMSE errors in TWISE is believed to
be caused by the outliers (erroneous FG/BG depth selection
by TWISE) closer to object boundaries. The outliers are
penalized heavily by RMSE metric as opposed to floating
depth pixels estimated by MultiStack; as a result, our depth
estimate suffers in that metric. As representative examples in
Fig. 3, the error maps show depth errors around the boundary,
and missing thin objects like poles. The reasoning can be
further enhanced by the Tab. 1. In this analysis, we leverage
GT semantics provided by KITTI semantic segmentation
dataset. In 140 images, FG objects are poles, boundaries,
traffic signs, vehicle, person and the rest as background. For
each image, we label all pixels where whose distances to
object boundareis are less than 3 pixels as edge pixels and the
remaining as inside object pixels. Tab. 1 validates substantial
larger errors are around boundary.

While outliers can be caused by wrong estimation of fore-
ground/background depth, another important source of out-
liers is incorrect labelling of ground-truth depths in KITTI.
As a result, loss functions that are more sensitive to outliers

(i.e. MSE loss) can be negatively influenced by the pres-
ence of noise. We highlight the noisy ground-truth labels in
KITTI in the next section.

2. Outlier Errors and Analysis on KITTI Semi-
Dense GT

In this section we show some evidence of outliers (noisy
ground-truth depth) on boundaries of objects in KITTI’s
semi-dense GT.

Uhrig [2] proposed an approach [2] to generate large-
scale semi-dense GT data (85k training images) on realistic
outdoor scenes suitable for neural network training. Al-
though the approach is scalable on any dataset, it creates
noisy ground-truth depth. Uhrig’s [2] analysis shows that
the semi-dense GT has larger errors on dynamic objects and
large-range pixels. Additionally, we show that it also con-
tains incorrect depth labels on some boundaries of objects.
In both (a) and (b) of Fig. 4, we show zoomed in views of
how foreground and background depths that are incorrectly
spread across the boundaries of the poles, traffic signs, trees
etc. of color images.

Our analysis shows that the outliers in the semi-dense GT
are caused by a variety of reasons;

• Noisy rotation R, and translation t obtained from
the IMU sensor

• Timing synchronization between camera trigger and
time taken to spin one lidar revolution

• Consistency Check on Stereo-Global Matching al-
gorithm which introduce boundary artifacts

• Accumulation of lidar points from dynamic objects.

In order to evaluate the depth quality of semi-dense GT,
Uhrig [2] used the manually cleaned training set of 2015
KITTI stereo benchmark as reference data. The depth eval-
uation is done in pixel units. We realize that it is equally
important to evaluate the semi-dense ground-truth depths in
metric units to notice the effect of boundary outliers on semi-
dense ground-truth depth metric performance. We translate
the error in pixel units to error in metric units in Tab. 2, by
converting the ground-truth disparity to depth using KITTI’s
provided intrinsics. It shows the noisy semi-dense ground-
truth depths suffering from boundary noise and dynamic
objects can also have significant errors in metric units. It is
also a possible indication that lowering the RMSE error in
semi-dense GT might result in learning the noise inherent in
semi-dense ground-truth.

3. Sparse Patterns in KITTI
In the main paper, we show the improved generalizability

of TWISE over other SoTA methods in terms of sparsity. In
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Figure 4: Semi-dense GT depths overlaid on color images. Zoom-in views show foreground/background depths are incorrectly
spread (dilated/constricted) across boundaries of poles, traffic signs etc. visible in color images.

MAE
(in pixel)

RMSE
(in pixel)

KITTI
Outliers*

MAE
(in cm)

RMSE
(in cm)

0.35 0.84 0.31 38.6 94.1

Table 2: Relation between Disparity Error and Depth Error
in metric units (cm). Note that KITTI Outliers are defined
by: > 3 pix disparity error and 5% error.
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Figure 5: KITTI sparse patterns of (a) 64R, (b) 32R, (c)
16R, and (d) 8R subsampled lidar respectively overlaid on a
color image.

this section, we explain how sparsity is created from 64R
lidar in KITTI. Ma et al. [3] reported improved performance
with uniform subsampling from KITTI’s ground-truth data.
But in real scenarios, sparse sensors such as lidar often gen-

erate non-uniform, structured patterns. We simulate lower
resolution lidars by subsampling 32R, 16R, 8R rows from
64R lidar (depth acquisition sensor used by KITTI). The
different sparse patterns can be seen in Fig. 5. We subsam-
ple the points based on selecting a subset of evenly spaced
rows of 64R raw data provided by KITTI (split based on
the azimuth angle in the lidar space) and then projecting the
points into the image.

4. Network Architecture
In the main paper, we mentioned that we used the network

of Li et al. [1] as a backbone network for TWISE. The only
modification we made are at the last layer of the network,
where we used three channels representing d1 (foreground
estimate), d2 (background estimate), and σ (see Fig. 7). We
repeat this strategy in the hourglass networks in all the three
multi-resolution levels. Please see [1] for more details of the
network.

5. Additional VKITTI Resutls
5.1. VKITTI Results on Different Weathers

The high-resolution color features is an important cue for
FG/BG selection in TWISE. We also analyze the effect of dif-
ferent weather conditions that can deteriorate high-resolution
boundary cues from color in Tab. 3. In this study, we found
that model trained on ’clone’ set is evaluated on different
weather conditions in VKITTI.T The performance is largely
maintained, with minor degradations in fog and rain. It
shows although the low-quality RGB (low contrast, shadows,
fog, rain etc) might create ambiguity and the blending coef-
ficient fail to correctly select FG/BG, it is possible to detect
boundary information using sufficient training examples.

5.2. Creating Semi-Dense and Sparse Depth from
Dense VKITTI GT

In the main paper, we performed an ablation study on
Virtual KITTI [4] (VKITTI) using semi-dense and sparse
samples created from dense VKITTI depth maps. We created
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Figure 6: Visual examples of (a) sparse depth, (c) semi-dense depth and (e) dense depth of virtual KITTI. (b) and (d) shows
sparse depth and semi-dense GT of KITTI respectively (shown for comparison with VKITTI data).

Hour Glass Network

S𝐷𝑛

𝐹𝐷𝑛

𝜎𝑛−1
𝐵𝐺𝑛−1
𝐹𝐺𝑛−1

Figure 7: Incorporating 3-channel at the output of the Hour-
glass network used in [1]. SDn and FDn are the sparse
inputs and fused depth obtained from FGn, BGn, and σn

at multi resolution scale n respectively.

RGB Mode MAE RMSE TMAE TRMSE
Clone 12.71 126.40 5.22 16.67

Morning 12.99 130.90 5.17 16.60
Fog 13.19 131.97 5.15 16.74

Sunset 12.77 129.50 5.10 16.50
Rainy 13.08 132.09 5.17 16.67

OverCast 12.48 126.82 5.08 16.47

Table 3: VKITTI Results on different weather conditions

semi-dense VKITTI to simulate outlier noise similar to that
existing in real KITTI dataset. In this section, we discuss
the data generation process in detail and show some visual
examples of how the sparse depth/semi-dense compares with
sparse/semi-dense gt of KITTI dataset in Fig. 6.

The dense ground-truth depth maps from VKITTI con-
tains accurate depth on object discontinuities. Using this as
a reference, we subsampled the ground-truth depth maps. In-
stead of uniformly subsampling the GT depth, we subsample

Dataset R, t Outliers% Pix. Coverage% MAE (cm) RMSE (cm)
KITTI IMU 4.4 16 38.6 94.1

VKITTI Clean R, t 3.0 20 19.3 128.96
Noisy R, t 4.1 18 29.3 145.18

Table 4: Comparison of VKITTI semi-dense errors with
KITTI semi-dense GT errors. Higher errors in RMSE in
the VKITTI dataset is due to dense depth pixels at far-away
points, contrary to KITTI’s stereo benchmark data which is
sparse.

the lidar in the azimuth-elevation coordinates to make the
input sparse depth resemble structured patterns found in orig-
inal lidar (see (a) and (b) of Fig. 6). The subsampled depth
from the left camera is then projected to the right camera,
and vice versa to simulate lidar points projected onto images
in real-world scenes. For supervision, GT depth beyond 90m
are suppressed to simulate lidar points with no returns (see
(e) of Fig. 6). In addition to supervision using clean ground-
truth present, we also perform supervision on Semi-Dense
GT of VKITTI (Fig. 10 of the main paper) created by simu-
lating outliers existing in original KITTI dataset [2]. In the
KITTI dataset, semi-dense GT is created by accumulating
lidar points from +/− 5 frames from the reference frame.
We follow the similar procedure as followed by [2] when cre-
ating semi-dense GT. Additionally, we add Gaussian noise
to model noisy R, t from the IMU sensor to simulate noisy
semi-dense GT. Refer to Fig. 6 for a comparison between
semi-dense VKITTI and semi-dense KITTI (see (c) and (d)
of Fig. 6).



5.3. Relation to KITTI GT by Outliers

We define outliers as pixels having depth errors greater
than 1m, contrary to KITTI outliers in Tab. 2 which define er-
rors in pixel units. Evaluated on KITTI’s 2015 stereo bench-
mark depth data, we found outliers of KITTI’s semi-dense
ground-truth at 4.4% of the inlier depths. We created out-
liers in semi-dense VKITTI by introducing Gaussian noise
in VKITTI’s extrinsics. See Tab. 4 for a metric comparison
with outliers. Tab. 4 shows that, as we add noisy in R, t, the
semi-dense GT of VKITTI is more comparable to KITTI
semi-dense GT.

6. Video
We provide a video in the supplementary material. The

video shows point-cloud rendered from estimated depth
maps of TWISE and MultiStack [1]. It shows point-
cloud generated from MultiStack contains significantly more
mixed depth pixels (compare the floating depth pixels in the
pointclouds) compared to TWISE.
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