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ABSTRACT

In multimedia information retrieval, shot boundary
detection is a very active research topic. In order to
perform shot boundary detection, we propose an
algorithm for modeling temporal statistics using a novel
eigenspace updating method. The feature extracted from
the current frame is compared with a model trained from
features in the previous frames. A shot boundary is
detected if the new feature does not fit well to the existing
model. The model is based on principal component
analysis (PCA), or the eigenspace method, in which the
eigenspace can be updated to capture the non-stationary
statistics of the features. The experiment results show that
the proposed algorithm outperforms the traditional direct
differencing method.

1. INTRODUCTION

The increased availability and usage of digital video
have created a need for automated video content analysis
techniques. These include automatically detecting the
boundaries between video shots. A shot in a video
sequence refers to a contiguous recording of one or more
video frames depicting a continuous action in time and
space [1]. In a video database, the isolation of shots is of
interest because the shot level organization of video
sequences is considered appropriate for video browsing
and content based video retrieval [2].

Many researchers have proposed algorithms to perform
shot boundary detection based on certain features
extracted from video frames, such as pixel differences [3],
statistical differences [4], the histogram [5], compression
differences [6], etc. However, most of these approaches
focus on choosing the feature representation from adjacent
frames to detect shots boundaries. If there is a large
change between the feature of the current frame and that of
the previous frame, a shot boundary is detected. We call
this the direct differencing method. Not much prior work
has taken advantage of the temporal characteristics carried
by the video sequence. We propose to detect shot
boundaries by comparing the difference between the

current frame and a model trained from multiple previous
frames. Intuitively speaking, when there is a new shot
appears, the content of the new shot differs from that of
the previous shot, instead of only that of the previous
frame. By comparing the current frame with a model of
multiple previous frames, the detection scheme can be
more tolerant to the intra-variation within one shot, such as
the variation caused by the camera panning or object
motion. For example, Figure 1 illustrates the feature value
as a function of time in a video sequence. Mostly likely the
direct differencing method will incorrectly consider

1F , 2F and 4F as shot boundaries because there is a big

change in the feature value compared to the previous
frame, while the actual shot boundary, 3F , might be missed

since it does not show big change compared to its previous
frame. However, based on a model trained from multiple
previous frames, it is likely that we would not detect

1F , 2F or 4F , and we would detect 3F correctly as a shot

boundary because the model manifests the statistics of the
previous frames.

In this paper, we propose to model temporal statistics
using PCA, or the eigenspace method [7]. Once the
feature, such as the histogram, has been extracted from the
current frame, it will be compared with the eigenspace
model, which is trained from features in the previous
frames. A shot boundary is detected when the feature does
not fit well to the existing model, which is measured by the
difference between the current frame and the eigenspace.
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Figure 1 Illustration of shot boundary detection



The eigenspace method has been used in many fields,
such as data compression [8], feature extraction [9], and
object recognition [10]. Murakami and Kumar proposed the
first eigenspace updating algorithm [11] to train the
eigenspace on the fly as new samples come in.
Chandrasekaran et al. proposed another updating
algorithm based on Singular Value Decomposition (SVD)
[12]. However, both algorithms assume stationary feature
statistics. For the non-stationary case, the eigenspace
should be based more on the statistics of recent samples
and less on the statistics of older samples. In this paper, we
propose a novel algorithm to accomplish this.

The paper is organized as follows. The shot boundary
detection algorithm will be presented in Section 2. In
Section 3, we will introduce the proposed statistics
modeling method via eigenspace updating. In Section 4,
we compare the detection performance between our
algorithm and the traditional direct differencing method
using realistic test video sequences. The conclusion and
future work are presented in Section 5.

2. SHOT BOUNDARY DETECTION
ALGORITHM

In the shot boundary detection algorithm, when a new
frame nF becomes available, its histogram representation

nX is computed. Suppose we already train an eigenspace

based on histograms of the previous frames, ,..., 21 −− nn FF ,

using our modeling algorithm introduced in the next
section. Now the new histogram nX is projected into the

existing eigenspace via the following equation:
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The difference between nX and nX̂ ,
2ˆ

nnn XX −=ε , can

then be used to measure how well the current histogram

nX can fit to the eigenspace model.

If the current frame is the start frame of a new shot, we
will obtain a relatively large nε . Therefore, a particular

frame nF is detected as a shot boundary if nε is larger

than a pre-defined threshold.

3. MODELING OF TEMPORAL STATISTICS

We propose two algorithms for modeling temporal
statistics. When the dimension of the eigenspace is close
to the dimension of the feature space, we will perform
PCA based on updating a covariance matrix, which will be
introduced in Section 3.1. If the dimension of the
eigenspace is much smaller than the dimension of the
feature space, an algorithm based on updating an inner-
product matrix will be used, which is introduced in Section
3.2.

3.1 Updating the covariance matrix

Since PCA is to determine the eigenvectors given
samples in the feature space, the first step in PCA is to
estimate the mean and covariance of the samples. Let

nX denote the random process, where each nX is a d -

dimension feature vector. We estimate the mean, nM̂ , of

this random process at each time n as follows.
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where mα is called the decay parameter. It controls how

much the previous samples contribute to the estimation of
the current mean compared to the current sample. Assume
0< mα <1. The mean estimator can be formed as:
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which shows that based on the current sample and the
previous mean, we can obtain the new mean in a recursive
manner. How to choose mα mainly depends on the

knowledge of the random process. If the statistics of this
random process change fast, we will choose a smaller mα .

If the statistics change slowly, a larger mα will perform

better.

Similarly, the covariance matrix nĈ can be estimated

as follows:
T
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Here vα is also a decay parameter. Now we have nĈ at

time n , we can perform PCA for nĈ and obtain the

corresponding eigenvectors. We keep N eigenvectors
corresponding to the N largest eigenvalues. In the
recursive updating process, we only need to store the mean

vector nM̂ and the covariance matrix nĈ . All the

previous samples can then be thrown away.

3.2 Updating the inner-product matrix

If the dimension of the feature space d is large, it is very

inefficient to store and update the covariance matrix nĈ .



To solve this problem, we propose a modeling algorithm
based on updating the inner-product matrix.

Suppose at time n , we already have done PCA for the
random process till time 1−n . Thus we have eigenvectors
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where the eigenvalues, )(
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i
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decreasing order and the superscript indicates the order of
eigenvalues. By retaining only the first Q eigenvectors

(with the largest eigenvalues), we can approximate 1
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The criteria for choosing Q vary, and depend on

practical applications. Now we can use (4) to estimate the

mean at time n . By replacing 1
ˆ

−nC in (5) with (7), we can

obtain
T
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^
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An inner-product matrix can be formulated as
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Elements of nA can be described as follows:
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Since nA is a matrix with the size of 1+Q by 1+Q ,

smaller than nĈ , we can easily determine its eigenvectors

nψ , which satisfy
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Pre-multiplying (12) with nB , we obtain the

eigenvectors of nĈ as follows:
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We summarize the iterative modeling algorithm as
follows:

Initialization:
1. Given the first two samples 0X , 1X , estimate the

mean, 1M̂ , using (4), and construct the matrix

[ ])ˆ()ˆ( 11101 MXMXB v −−= α (14)

2. Based on (12) and (13), we can get the
eigenvector 1φ , and the eigenvalue 1λ .

Iterative updating:
1. Get a new sample nX .

2. Estimate the mean, nM̂ , at time n by (4), and

get nB from (9).

3. Form the matrix nA as in (11) and calculate its

eigenvectors nψ and eigenvalues nλ .

4. Sort the eigenvalues nλ , and retain Q

eigenvectors corresponding to the largest
eigenvalues.

5. Obtain the eigenvectors at time n using (13).
Due to the approximation in (7), among the Q

eigenvectors, typically the first few eigenvectors are more
precise than the others. Therefore, in practice if we want to
use N eigenvectors for shot boundary detection, we would
keep Q to be a number larger than N .

4. EXPERIMENTS

In this section, we compare the shot boundary detection
performance between our algorithm and the traditional
direct differencing algorithm. As a statistics modeling
method, our algorithm can be applied on any features that
are suitable for shot boundary detection. In other words,
the eigenspace can be used to model any features known in
literature, such as the histogram, DCT coefficients [13],
etc. In the following experiments we choose the histogram
as the feature to work on.

We collect four video sequences as the testing data,
which come from news videos and video recording of
meetings. The snapshots of the testing videos are shown in
Figure 2. Each frame is represented as a histogram with
256 bins, which is modeled using the algorithm introduced
in Section 3.2. The performance is expressed in terms of
recall and precision of shot boundary detection. By tuning
a threshold, we can generate a recall-precision curve for
each testing sequence. Given multiple recall-precision
curves, we can average the precision values at each
specific recall value, to obtain the recall-precision curve of
the whole system. The experiment results are shown in
Figure 3. Better detection performance is observed from
the whole range of recall values. Especially when the
recall value is closer to 1 or when the precision is
maximized, which are the operation points that most of the
systems prefer to work at, our algorithm has about 5~13%
better performance than the direct differencing method.



Figure 2 Snapshots of testing video sequences

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0 0.2 0.4 0.6 0.8 1
Recall

P
re

ci
si

on

Our statistic modeling method
Direct differencing method

Figure 3 Experiment results of shot boundary detection

5. CONCLUSION

We proposed to perform shot boundary detection by
modeling temporal statistics via eigenspace updating. The
experiment results showed superior performance of the
proposed algorithm compared to the traditional direct
differencing method.

There are several ways to extend our work. The first
way is that we can apply our algorithm in the reverse order
of the video sequence, i.e., using the current feature to
compare with the model trained from future frames.
Combining the information from the modeling of two

directions will improve the detection. The other way is
that for each frame, two statistics models can be built: one
for the previous frames, the other for the current and future
frames. Thus the difference between the parameters of two
models can be a useful cue for shot boundary detection.

Although we only show our algorithm in shot boundary
detection based on the histogram, our approach can be
applied to other features, such as DCT coefficients. It can
be used in other applications as well, such as the detection
of facial expression changes.
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