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Abstract

As an emerging topic in face recognition, designing
margin-based loss functions can increase the feature mar-
gin between different classes for enhanced discriminabil-
ity. More recently, the idea of mining-based strategies is
adopted to emphasize the misclassified samples, achieving
promising results. However, during the entire training pro-
cess, the prior methods either do not explicitly emphasize
the sample based on its importance that renders the hard
samples not fully exploited; or explicitly emphasize the ef-
fects of semi-hard/hard samples even at the early training
stage that may lead to convergence issue. In this work, we
propose a novel Adaptive Curriculum Learning loss (Cur-
ricularFace) that embeds the idea of curriculum learning
into the loss function to achieve a novel training strategy for
deep face recognition, which mainly addresses easy sam-
ples in the early training stage and hard ones in the later
stage. Specifically, our CurricularFace adaptively adjusts
the relative importance of easy and hard samples during
different training stages. In each stage, different samples
are assigned with different importance according to their
corresponding difficultness. Extensive experimental results
on popular benchmarks demonstrate the superiority of our
CurricularFace over the state-of-the-art competitors.

1. Introduction
The success of Convolutional Neural Networks (CNNs)

on face recognition can be mainly credited to: enormous
training data, network architectures, and loss functions. Re-
cently, designing effective loss functions that enhance dis-
criminative power is pivotal for training deep face CNNs.

Current state-of-the-art (SOTA) face recognition meth-
ods mainly adopt softmax-based classification loss. Since
the learned features with the original softmax is not suf-
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Figure 1. Different training strategies for modulating negative
cosine similarities of hard samples (i.e., the mis-classified sam-
ples) in ArcFace [8], MV-Arc-Softmax [31] and our Curricular-
Face. Left: The modulation coefficients I(t, cos θj) for negative
cosine similarities of hard samples in different methods, where t
is an adaptively estimated parameter and θj denotes the angle be-
tween the hard sample and the non-ground truth j-class center.
Right: The corresponding hard samples’ negative cosine similari-
tiesN(t, cos θj) = I(t, cos θj) cos θj+c after modulation, where
c indicates a constant. On one hand, during early training stage
(e.g., t is close to 0), hard sample’s negative cosine similarities are
usually reduced, and thus leads to smaller hard sample loss than
the original one. Therefore, easier samples are relatively empha-
sized; during later training stage (e.g., t is close to 1), the hard
sample’s negative cosine similarities are enhanced, and thus leads
to larger hard sample loss. On the other hand, in the same training
stage, we modulate the hard samples’ negative cosine similarities
with cos θj . Specifically, the smaller the angle θj is, the larger
the modulation coefficient should be.

ficiently discriminative for the practical face recognition
problem [14], which means that the testing identities are
usually disjoint from the training set, several margin-based
variants have been proposed to enhance features’ discrim-
inative power. For example, explicit margin, i.e., Cos-
Face [30], Sphereface [14], ArcFace [8], and implicit mar-
gin, i.e., Adacos [38], supplement the original softmax
function to enforce greater intra-class compactness and
inter-class discrepancy, which result in more discriminate
features. However, these margin-based loss functions do
not explicitly emphasize each sample according to its im-
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portance.
As demonstrated in [5, 10], hard sample mining is also

a critical step to further improve the final accuracy. As a
commonly-used hard sample mining method, OHEM [26]
focuses on the large-loss samples in one mini-batch, in
which the percentage of hard samples is empirically de-
cided and easy samples are completely discarded. Focal
loss [16] is a soft mining variant that rectifies the loss func-
tion to a elaborately designed form, in which two hyper-
parameters should be tuned with a lot of efforts to decide the
weights of each sample and hard samples are emphasized
by reducing the weights of easy samples. Recently, Triplet
loss [23] and MV-Arc-Softmax [31] are motivated by inte-
grating both margin and mining into one framework. Triplet
loss adopts a semi-hard mining strategy to obtain semi-hard
triplets and enlarges the margin between triplet samples.
MV-Arc-Softmax [31] clearly defines hard samples as mis-
classified samples and emphasizes them by increasing the
weights of their negative cosine similarities with a preset
constant. In a nutshell, mining-based loss functions explic-
itly emphasize the effects of semi-hard or hard samples [23].

However, there are drawbacks in training strategies of
both margin- and mining-based loss functions. The general
softmax-based loss function can be formulated as follows:

L = − log
esT (cos θyi )

e
sT (cos θyi )+

∑n
j=1,j 6=yi

e
sN(t,cos θj)

,
(1)

where T (cos θyi) and N(t, cos θj) = I(t, cos θj) cos θj + c
are the functions to define the positive and negative cosine
similarities, respectively. I(t, cos θj) denotes the modula-
tion coefficients of negative cosine similarities and c is a
constant. For margin-based methods, mining strategy is ig-
nored and thus the difficultness of each sample is not ex-
ploited, which may lead to convergence issues when using a
large margin on small backbones, e.g., MobileFaceNet [6].
As shown in Fig. 1, the modulation coefficients I(·) for the
negative cosine similarities are fixed as a constant of 1 in Ar-
cFace for all samples during the entire training process. For
mining-based methods, over-emphasizing hard samples in
early training stage may hinder the model to converge. MV-
Arc-Softmax emphasizes hard samples by modulating the
negative cosine similarity asN(t, cos θj) = t cos θj+ t−1,
i.e., I(t, cos θj) = t, where t is a manually defined con-
stant. As MV-Arc-Softmax claimed, t plays a key role in the
model convergence property and a slight larger value (e.g.,
>1.4) may cause the model difficult to converge. Thus t
needs to be carefully tuned.

In this work, we propose a novel adaptive curriculum
learning loss, termed CurricularFace, to achieve a novel
training strategy for deep face recognition. Motivated by
the nature of human learning that easy cases are learned
first and then come the hard ones [2], our CurricularFace in-
corporates the idea of Curriculum Learning (CL) into face

recognition in an adaptive manner, which differs from the
traditional CL in two aspects. First, the curriculum con-
struction is adaptive. In traditional CL, the samples are
ordered by the corresponding difficultness, which are often
defined by a prior and then fixed to establish the curriculum.
In CurricularFace, the samples are randomly selected in
each mini-batch, while the curriculum is established adap-
tively via mining the hard samples online, which shows the
diversity in samples with different importance. Second, the
importance of hard samples are adaptive. On one hand,
the relative importance between easy and hard samples is
dynamic and could be adjusted in different training stages.
On the other hand, the importance of each hard sample in
current mini-batch depends on its own difficultness.

Specifically, the mis-classified samples in mini-batch are
chosen as hard samples and weighted by adjusting the mod-
ulation coefficients I(t, cosθj) of cosine similarities be-
tween the sample and the non-ground truth class center vec-
tors, i.e., negative cosine similarity cosθj . To achieve the
goal of adaptive curricular learning in the entire training,
we design a novel coefficient function I(·) that is deter-
mined by two factors: 1) the adaptively estimated parameter
t that utilizes moving average of positive cosine similari-
ties between samples and the corresponding ground-truth
class center to unleash the burden of manually tuning; and
2) the angle θj that defines the difficultness of hard samples
to achieve adaptive assignment. To sum up, the contribu-
tions of this work are:

• We propose an adaptive curriculum learning loss for
face recognition, which automatically emphasizes easy
samples first and hard samples later. To the best of our
knowledge, it is the first work to introduce the idea of
adaptive curriculum learning for face recognition.

• We design a novel modulation coefficient function I(·)
to achieve adaptive curriculum learning during train-
ing, which connects positive and negative cosine sim-
ilarity simultaneously without the need of manually
tuning any additional hyper-parameter.

• We conduct extensive experiments on popular facial
benchmarks, which demonstrate the superiority of our
CurricularFace over the SOTA competitors.

2. Related Work
Margin-based loss function. Loss design is pivotal for
large-scale face recognition. Current SOTA deep face
recognition methods mostly adopt softmax-based classifi-
cation loss [28]. Since the learned features with the original
softmax loss are not guaranteed to be discriminative enough
for practical face recognition problem [14], margin-based
losses [18, 14, 8] are proposed. Though the margin-based
loss functions are verified to obtain good performance, they



do not take the difficultness of each sample into consider-
ation, while our CurricularFace emphasizes easy samples
first and hard samples later, which is more reasonable and
effective.

Mining-based loss function. Though some mining-based
loss function such as Focal loss [16], Online Hard Sample
Mining (OHEM) [26] are prevalent in the field of object de-
tection, they are rarely used in face recognition. OHEM fo-
cuses on the large-loss samples in one mini-batch, in which
the percentage of the hard samples is empirically deter-
mined and easy samples are completely discarded. Focal
loss emphasizes hard samples by reducing the weights of
easy samples, in which two hyper-parameters should be
manually tuned. The recent work, MV-Arc-Softmax [31]
fuses the motivations of both margin and mining into one
framework for deep face recognition. They define hard
samples as misclassified samples and enlarge the weights
of hard samples with a preset constant. Our method differs
from MV-Arc-Softmax in three aspects: 1) We do not al-
ways emphasize hard samples, especially in the early train-
ing stages. 2) We assign different weights for hard sam-
ples according to their corresponding difficultness. 3) We
adaptively estimate the additional hyper-parameter t with-
out manual tuning.

Curriculum Learning. Learning from easier samples
first and harder samples later is a common strategy in Cur-
riculum Learning (CL) [2, 42]. The key problem in CL is
to define the difficultness of each sample. For example, [1]
takes the negative distance to the boundary as the indicator
for easiness in classification. However, the ad-hoc curricu-
lum design in CL turns out to be difficult to implement in
different problems. To alleviate this issue, [12] designs a
new formulation, called Self-Paced Learning (SPL), where
examples with lower losses are considered to be easier and
emphasized during training. The key differences between
our CurricularFace with SPL are: 1) Our method focuses
on easier samples in the early training stage and emphasizes
hard samples in the later stage. 2) Our method proposes a
novel function N(·) for negative cosine similarities, which
achieves not only adaptive assignment on modulation coef-
ficients I(·) for different samples in the same training stage,
but also adaptive curriculum learning strategy in different
stages.

3. The Proposed CurricularFace
3.1. Preliminary Knowledge on Loss Function

The original softmax loss is formulated as follows:

L = − log
eWyixi+byi∑n
j=1 e

Wjxi+bj
, (2)

where xi ∈ Rd denotes the deep feature of i-th sample
which belongs to the yi class, Wj ∈ Rd denotes the j-th
column of the weight W ∈ Rd×n and bj is the bias term.
The class number and the embedding feature size are n and
d, respectively. In practice, the bias is usually set to bj = 0
and the individual weight is set to ||Wj ||= 1 by l2 normal-
ization. The deep feature is also normalized and re-scaled
to s. Thus, the original softmax can be modified as follows:

L = − log
es(cos θyi )

es(cos θyi ) +
∑n
j=1,j 6=yi e

s(cos θj)
. (3)

Since the learned features with original softmax loss may
not be discriminative enough for practical face recognition
problem, several variants are proposed and can be formu-
lated in a general form:

L = −G(p(xi)) log
esT (cos θyi )

esT (cos θyi ) +
∑n
j=1,j 6=yi e

sN(t,cos θj),
(4)

where p(xi) = esT (cos θyi
)

esT (cos θyi
)+

∑n
j=1,j 6=yi

esN(t,cos θj)
is the

predicted ground truth probability and G(p(xi)) is an
indicator function. T (cos θyi) and N(t, cos θj) =
I(t, cos θj) cos θj+c are the functions to modulate the pos-
itive and negative cosine similarities, respectively, where c
is a constant, and I(t, cos θj) denotes the modulation co-
efficients of negative cosine similarities. In margin-based
loss function, e.g., ArcFace, G(p(xi)) = 1, T (cos θyi) =
cos(θyi + m), and N(t, cos θj) = cos θj . It only modi-
fies the positive cosine similarity of each sample to enhance
the feature discrimination. As shown in Fig. 1, the modula-
tion coefficients I(·) of each sample’s negative cosine sim-
ilarities are fixed as 1. The recent work, MV-Arc-Softmax
emphasizes hard samples by increasing I(t, cos θj) for hard
samples. That is, G(p(xi)) = 1 and N(t, cos θj) is formu-
lated as follows:

N(t, cosθj ) =

{
cos θj , T (cos θyi)− cos θj ≥ 0

t cos θj + t− 1, T (cos θyi)− cos θj < 0.

(5)
If a sample is defined to be easy, its negative cosine sim-
ilarity is kept the same as the original one, cos θj ; if
as a hard sample, its negative cosine similarity becomes
t cos θj+t−1. That is, as shown in Fig. 1, I(·) is a constant
and determined by a preset hyper-parameter t. Meanwhile,
since t is always larger than 1, t cos θj + t− 1 > cos θj al-
ways holds true, which means the model always focuses on
hard samples, even in the early training stage. However, the
parameter t is sensitive that a large pre-defined value (e.g.,
> 1.4) may lead to convergence issue.

3.2. Adaptive Curricular Learning Loss

Next, we present the details of our proposed adaptive
curriculum learning loss, which is the first attempt to intro-



Algorithm 1: CurricularFace
Input: The deep feature of i-th sample xi with its label yi,

last fully-connected layer parameters W , cosine
similarity cos θj of two vectors, embedding network
parameters Θ, learning rate λ, and margin m

iteration number k ← 0, parameter t← 0, m← 0.5;
while not converged do

if cos(θyi +m) ≥ cos θj then
N(t, cos θj) = cos θj ;

else
N(t, cos θj) = (t(k) + cos θj) cos θj ;

end
T (cos θyi) = cos(θyi +m);
Compute the loss L by Eq. 10;
Compute the gradients of xi and Wj by Eq. 8;
Update the parameters W and Θ by:
W (k+1) = W (k) − λ(k) ∂L

∂W
,

Θ(k+1) = Θ(k) − λ(k) ∂L
∂xi

∂xi
∂Θ(k) ;

k ← k + 1;
Update the parameter t by Eq. 9;

end
Output: W , Θ.

duce adaptive curriculum learning into deep face recogni-
tion. The formulation of our loss function is also contained
in the general form, where G(p(xi)) = 1, positive and neg-
ative cosine similarity functions are defined as follows:

T (cos θyi) = cos(θyi +m), (6)

N(t, cosθj ) =

{
cos θj , T (cos θyi)− cos θj ≥ 0

cos θj(t+ cos θj), T (cos θyi)− cos θj < 0.

(7)
It should be noted that the positive cosine similarity can
adopt any margin-based loss functions and here we adopt
ArcFace as an example. As shown in Fig. 1, the modula-
tion coefficient I(t, θj) of hard sample negative cosine sim-
ilarity depends on both the value of t and θj . In the early
training stage, learning from easy samples is beneficial to
model convergence. Thus, t should be close to zero and
I(·) = t + cos θj is smaller than 1. Therefore, the weights
of hard samples are reduced and easy samples are empha-
sized relatively. As training goes on, the model gradually
focuses on the hard samples, i.e., the value of t shall in-
crease and I(·) is larger than 1. Thus, the hard samples are
emphasized with larger weights. Moreover, within the same
training stage, I(·) is monotonically decreasing with θj so
that harder sample can be assigned with larger coefficient
according to its difficultness. The value of the parameter t
is automatically estimated in our CurricularFace, otherwise
it may require lots of efforts for manual tuning.

Optimization. Next, we show our CurricularFace can be
easily optimized by the conventional stochastic gradient de-

Early Stage

Later Stage

Figure 2. The adaptive parameter t (red line) and gradient
modulation coefficients M of ours (green area) and MV-Arc-
Softmax (blue line) in training. Since the number of mined hard
samples reduces as training progresses, the green area, i.e., the
range of M values, is relatively smooth in early stage and exhibits
burrs in later stage.

scent. Assuming xi denotes the deep feature of i-th sam-
ple which belongs to the yi class, the input of the proposed
function is the logit fj , where j denotes the j-th class.

In the forwarding process, when j = yi, it is the same as
the ArcFace, i.e., fj = sT (cos θyi), T (cos θyi) = cos(θyi+
m). When j 6= yi, it has two cases, if xi is an easy sample,
it is the the same as the original softmax, i.e., fj = s cos θj .
Otherwise, it will be modulated as fj = sN(t, cos θj),
where N(t, cos θj) = (t + cos θj) cos θj . In the backward
propagation process, the gradients w.r.t. xi and Wj can also
be divided into three cases and computed as follows:

∂L

∂xi
=


∂L
∂fyi

(s
sin(θyi+m)

sin θyi
)Wyi , j = yi

∂L
∂fj

sWj , j 6= yi, easy
∂L
∂fj

s(2 cos θj + t)Wj j 6= yi, hard

∂L

∂Wj
=


∂L
∂fyi

(s
sin(θyi+m)

sin θyi
)xi, j = yi

∂L
∂fj

sxi, j 6= yi, easy
∂L
∂fj

s(2 cos θj + t)xi j 6= yi, hard

(8)

Based on the above formulations, we can find the gradient
modulation coefficients of hard samples are determined by
M(·) = 2 cos θj + t, which consists of two parts, the neg-
ative cosine similarity cos θj and the value of t. As shown
in Fig. 2, on the one hand, the coefficients increase with the
adaptive estimation of t (described in the next subsection)
to emphasize hard samples. On the other hand, these co-
efficients are assigned with different importance according
to their corresponding difficultness (cos θj). Therefore, the
values of M in Fig. 2 are plotted as a range at each training
iteration. However, the coefficients are fixed to be 1 and a
constant t in ArcFace and MV-Arc-Softmax, respectively.



(77%,0.28)(80%,0.33)

(108%,0.28)(120%,0.30) (100%,0.24)

(86%,0.43)

A

A

B C

C B

Figure 3. Illustrations on (ratio between our loss and ArcFace,
maximum cosθj) in different training stages. Top: Early training
stage. Bottom: Later training stage.

Adaptive Estimation of t. It is critical to determine ap-
propriate values of t in different training stages. Ideally the
value of t can indicate the model training stages. We em-
pirically find the average of positive cosine similarities is a
good indicator. However, mini-batch statistic-based meth-
ods usually face an issue: when many extreme data are sam-
pled in one mini-batch, the statistics can be vastly noisy
and the estimation will be unstable. Exponential Moving
Average (EMA) is a common solution to address this is-
sue [13]. Specifically, let r(k) be the average of the positive
cosine similarities of the k-th batch and be formulated as
r(k) =

∑
i cos θyi , we have:

t(k) = αr(k) + (1− α)t(k−1), (9)

where t0 = 0, α is the momentum parameter and set to
0.99. With the EMA, we avoid the hyper-parameter tuning
and make the modulation coefficients of hard sample nega-
tive cosine similarities I(·) adaptive to the current training
stage. To sum up, the loss function of our CurricularFace is
formulated as follows:

L = − log
es cos(θyi+m)

es cos(θyi+m) +
∑n
j=1,j 6=yi e

sN(t(k),cos θj)
, (10)

whereN(t(k), cos θj) is defined in Eq. 7. The entire training
process is summarized in Algorithm 1.

Fig. 3 illustrates how the loss changes from ArcFace to
our CurricularFace during training. Here are some obser-
vations: 1) As we excepted, hard samples (B and C) are
suppressed in early training stage but emphasized later. 2)
The ratio is monotonically increasing with cosθj , since the
larger cosθj is, the harder the sample is. 3) The positive
cosine similarity of a perceptual-well image is often large.
However, during the early training stage, the negative co-
sine similarities of the perceptual-well image (A) may also
be large so that it could be classified as the hard one.

Table 1. The decision boundaries of popular loss functions.

Loss Decision Boundary

Softmax cos θyi = cos θj
SphereFace cos(mθyi) = cos θj
CosFace cos θyi −m = cos θj
ArcFace cos(θyi +m) = cos θj
MV-Arc-Softmax cos(θyi +m) = cos θj (easy)

cos(θyi +m) = t cos θj + t− 1 (hard)
CurricularFace (Ours) cos(θyi +m) = cos θj (easy)

cos(θyi +m) = (t+ cos θj) cos θj(hard)

𝑾𝒚𝒊

𝑾𝒋

𝑾𝒚𝒊

𝑾𝒋

𝑾𝒚𝒊

𝑾𝒋

Early 
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Figure 4. Blue line, red line, green line and purple line denote the
decision boundary of Softmax, ArcFace, MV-Arc-Softmax, and
ours, respectively. m denotes the angular margin added by Ar-
cFace. d denotes the additional margin of MV-Arc-Softmax and
ours. In MV-Arc-Softmax, d = (t − 1) cos θj + t − 1. In ours,
d = (t+ cos θj − 1) cos θj .

3.3. Discussions with SOTA Loss Functions

Comparison with ArcFace and MV-Arc-Softmax. We
first discuss the difference between our CurricularFace and
the two competitors, ArcFace and MV-Arc-Softmax, from
the perspective of the decision boundary in Tab. 1. Arc-
Face introduces a margin function T (cos θyi) = cos(θyi +
m) from the perspective of the positive cosine similarity.
As shown in Fig. 4, its decision condition changes from
cos θyi = cos θj (i.e., blue line) to cos(θyi +m) = cos θj
(red line) for each sample. MV-Arc-Softmax introduces
additional margin from the perspective of negative cosine
similarity for hard samples, and the decision boundary be-
comes cos(θyi +m) = t cos θj + t − 1 (green line). Con-
versely, we adaptively adjust the weights of hard samples in
different training stages. The decision condition becomes
cos(θyi + m) = (t + cos θj) cos θj (purple line). During
training, the decision boundary for hard samples changes
from one purple line (early stage) to another (later stage),
which emphasizes easy samples first and hard samples later.

Comparison with Focal Loss. Focal loss is formulated
as: G(p(x)) = α(1 − p(xi))β , where α and β are modu-
lating factors to be tuned manually. The definition of hard
samples in Focal loss is ambiguous, since it focuses on rela-
tively hard samples by reducing the weight of easier samples
during entire training process. In contrast, the definition of
hard samples in our CurricularFace is more clear, i.e., mis-
classified samples. Meanwhile, the weights of hard samples
are adaptively determined in different training stages.



Table 2. Verification performance (%) of different values of t.
Methods (%) LFW CFP-FP

t = 0 99.32 95.90
t = 0.3 99.37 96.47
t = 0.7 99.42 96.66
t = 1 99.45 93.94

Adaptive t 99.47 96.96

Table 3. Verification performance (%) of different strategies
for setting t.

Methods (%) LFW CFP-FP

Mode(cos θyi) 99.42 96.49
Mean(pxi) 99.42 95.39
Mean(cos θyi) 99.47 96.96

4. Experiments
4.1. Implementation Details

Datasets. We separately employ CASIA-WebFace [36]
and refined MS1MV2 [8] as our training data for fair com-
parisons with other methods. CASIA-WebFace contains
about 0.5M of 10 individuals, and MS1MV2 contains about
5.8M images of 85K individuals. We extensively test our
method on several popular benchmarks, including LFW [9],
CFP-FP [24], CPLFW [41], AgeDB [20], CALFW [40],
IJB-B [33], IJB-C [19], and MegaFace [11].

Training Setting. We follow [8] to crop the 112 × 112
faces with five landmarks [37, 27]. For the embedding net-
work, we adopt ResNet50 and ResNet100 as in [8]. Our
framework is implemented in Pytorch [21]. We train mod-
els on 4 NVIDIA Tesla P40 GPU with batch size 512. The
models are trained with SGD algorithm, with momentum
0.9 and weight decay 5e − 4. On CASIA-WebFace, the
learning rate starts from 0.1 and is divided by 10 at 28, 38,
46 epochs. The training process is finished at 50 epochs.
On MS1MV2, we divide the learning rate at 10, 18, 22
epochs and finish at 24 epochs. We follow the common
setting as [8] to set scale s = 64 and margin m = 0.5 .

4.2. Ablation study

Effects on Fixed vs. Adaptive Parameter t. We first in-
vestigate the effect of adaptive estimation of t. We choose
four fixed values between 0 and 1 for comparison. Specifi-
cally, 0 means the modulation coefficient I(·) of each hard
sample’s negative cosine similarity is always reduced based
on its difficultness. In contrast, 1 means the hard samples
are always emphasized. 0.3 and 0.7 are between the two
cases. Tab. 2 shows that it is more effective to learn from
easier samples first and hard samples later based on our
adaptively estimated parameter t.

Figure 5. Illustrations on loss curves of our CurricularFace and
ArcFace with the small backbone MobileFaceNet.

Effects on Different Statistics for Estimating t. We now
investigate the effects of several other statistics, i.e., mode
of positive cosine similarities in a mini-batch, or mean of
the predicted ground truth probability for estimating t in our
loss. As Tab. 3 shows: 1) The mean of positive cosine simi-
larities is better than mode. 2) The positive cosine similarity
is more accurate than the predicted ground truth probability
to indicate the training stages.

Robustness on Training Convergence. As claimed
in [15], ArcFace exhibits the divergence issue when using
small backbones like MobileFaceNet. As a result, softmax
loss must be incorporated for pre-training. To illustrate the
robustness of our loss function on convergence issue with
small backbones, we use the MobileFaceNet as the network
architecture and train it on CASIA-WebFace. As shown in
Fig. 5, when the margin m is set to 0.5, the model trained
with our loss achieves 99.25% accuracy on LFW, while the
model trained with ArcFace does not converge and the loss
is NAN at about 2, 400-th step. When the marginm is set to
0.45, both losses can converge, but our loss achieves better
performance (99.20% vs. 99.10%). Comparing the yellow
and red curves, since the losses of hard samples are reduced
in early training stages, our loss converges much faster in
the beginning, leading to lower loss than ArcFace. Later
on, the value of our loss is slightly larger than ArcFace, be-
cause we emphasize the hard samples in later stages. The
results illustrate that learning from easy samples first and
hard samples later is beneficial to model convergence.

4.3. Comparisons with SOTA Methods

Results on LFW, CFP-FP, CPLFW, AgeDB and
CALFW. Next, we train our CurricularFace on dataset
MS1MV2 with ResNet100, and compare with the SOTA
competitors on various benchmarks, including LFW for un-
constrained face verification, CFP-FP and CPLFW for large
pose variations, AgeDB and CALFW for age variations. As
reported in Tab. 4, our CurricularFace achieves comparable
result (i.e., 99.80%) with the competitors on LFW where



Table 4. Verification comparison with SOTA methods on LFW,
two pose benchmarks: CFP-FP and CPLFW, and two age bench-
marks: AgeDB and CALFW. ∗ denotes our re-implemented results
with the backbone ResNet100 [8].

Methods (%) LFW CFP-FP CPLFW AgeDB CALFW

Center Loss (ECCV’16) 98.75 − 77.48 − 85.48
SphereFace (CVPR’17) 99.27 − 81.40 − 90.30
DRGAN (CVPR’17) − 93.41 − − −
Peng et al. (ICCV’17) − 93.76 − − −
VGGFace2 (FG’18) 99.43 − 84.00 − 90.57
Dream (CVPR’18) − 93.98 − − −
Deng et al. (CVPR’18) 99.60 94.05 − − −
ArcFace (CVPR’19) 99.77 98.27 92.08 98.15 95.45
MV-Arc-Softmax (AAAI’20) 99.78 - - − −
MV-Arc-Softmax∗ 99.80 98.28 92.83 97.95 96.10
CurricularFace (Ours) 99.80 98.37 93.13 98.32 96.20

Table 5. 1:1 verification TAR (@FAR=1e−4) on the IJB-B and
IJB-C datasets. ∗ denotes our re-implemented results with the
backbone ResNet100 [8].

Methods (%) IJB-B IJB-C

ResNet50+SENet50 (FG’18) 80.0 84.1
Multicolumn (BMVC’18) 83.1 86.2
DCN (ECCV’18) 84.9 88.5
ArcFace-VGG2-R50 (CVPR’19) 89.8 92.1
ArcFace-MS1MV2-R100 (CVPR’19) 94.2 95.6
Adocos (CVPR’19) − 92.4
P2SGrad (CVPR’19) − 92.3
PFE (ICCV’19) − 93.3
MV-Arc-Softmax∗ (AAAI’20) 93.6 95.2
Ours-MS1MV2-R100 94.8 96.1

(a) ROC for IJB-B (b) ROC for IJB-C

Figure 6. ROC of 1:1 verification protocol on IJB-B and IJB-C.

the performance is near saturated. While for both CFP-FP
and CPLFW, our method shows superiority over the base-
lines including general methods, e.g., [32], [4], and cross-
pose methods, e.g., [29], [22], [3] and [7]. As a recent face
recognition method, MV-Arc-Softmax achieves better per-
formance than ArcFace, but still worse than Our Curricular-
Face. Finally, for AgeDB and CALFW, as Tab. 4 shows, our
CurricularFace again achieves the best performance than all
of the other SOTA methods.

Results on IJB-B and IJB-C. The IJB-B dataset contains
1, 845 subjects with 21.8K still images and 55K frames
from 7, 011 videos. In the 1:1 verification, there are 10, 270
positive matches and 8M negative matches. The IJB-C
dataset is a further extension of IJB-B, which contains
about 3, 500 identities with a total of 31, 334 images and
117, 542 unconstrained video frames. In the 1:1 verifica-
tion, there are 19, 557 positive matches and 15, 638, 932

Table 6. Verification comparison with SOTA methods on
MegaFace Challenge 1 using FaceScrub as the probe set. Id refers
to the rank-1 face identification accuracy with 1M distractors, and
Ver refers to the face verification TAR at 1e−6 FAR. The col-
umn R refers to data refinement on both probe set and 1M dis-
tractors. ∗ denotes our re-implemented results with the backbone
ResNet100 [8].

Methods (%) Protocol R Id Ver

Triplet (CVPR’15) Small 64.79 78.32
Center Loss (ECCV’16) Small 65.49 80.14
SphereFace (CVPR’17) Small 72.73 85.56
CosFace (CVRP’18) Small 77.11 89.88
AM-Softmax (SPL’18) Small 72.47 84.44
ArcFace-R50 (CVPR’19) Small 77.50 92.34
ArcFace-R50 Small X 91.75 93.69
Ours-R50 Small 77.65 92.91
Ours-R50 Small X 92.48 94.55

CosFace-R100 Large 80.56 96.56
CosFace-R100 Large X 97.91 97.91
ArcFace-R100 Large 81.03 96.98
ArcFace-R100 Large X 98.35 98.48
PFE (ICCV’19) Large 78.95 92.51
Adacos (CVPR’19) Large X 97.41 −
P2SGrad (CVPR’19) Large X 97.25 −
MV-Arc-Softmax (AAAI’20) Large X 97.14 97.57
MV-Arc-Softmax* Large 80.59 96.22
MV-Arc-Softmax* Large X 97.76 97.80
Ours-R100 Large 81.26 97.26
Ours-R100 Large X 98.71 98.64

AdaptiveFace-R50 (CVPR19) Large X 95.02 95.61
Ours-R50 Large X 98.25 98.44

negative matches. On IJB-B and IJB-C datasets, we em-
ploy MS1MV2 and the ResNet100 for a fair comparison
with recent methods. We follow the testing protocol in Ar-
cFace and take the average of the image features as the cor-
responding template representation without bells and whis-
tles. Note that our method is not proposed for set-based face
recognition task, and DOES not adopt any specific strate-
gies for set-based face recognition. The experiments on
these two datasets are just to prove that our loss can ob-
tain more discriminate features than the baselines like Arc-
Face, which are also generic methods for face recognition.
Tab. 5 exhibits the performance of different methods, e.g.,
Multicolumn [35], DCN [34], Adacos [38], P2SGrad [39],
PFE [25] and MV-Arc-Softmax [31] on IJB-B and IJB-C
1:1 verification, our method again achieves the best per-
formance. Fig. 6 shows the ROC curves of CurricularFace
and ArcFace on IJB-B/C with the backbone ResNet100, our
method achieves better performance.

Results on MegaFace. Finally, we evaluate the perfor-
mance on the MegaFace Challenge. The gallery set of
MegaFace includes 1M images of 690K subjects, and the
probe set includes 100K photos of 530 unique individu-
als from FaceScrub. We report the two testing results un-
der two protocols (large or small training set). Here, we
use CASIA-WebFace and MS1MV2 under the small proto-
col and large protocol, respectively. In Tab. 6, our method



Figure 7. Easy and hard examples from two subjects classified by our CurricularFace on early and later training stage, respectively.
Green box indicates easy samples. Red box indicates hard samples. Blue box means samples are classified as hard in early stage but re-
labeled as easy in later stage, which indicates samples’ transformation from hard to easy during the training procedure.

Figure 8. The rank-1 face identification accuracy on MegaFace
Challenge 1 with both the 1M distractors and the probe set refined
by ArcFace.

achieves the best single-model identification and verifica-
tion performance under both protocols, surpassing the re-
cent strong competitors, e.g., CosFace, ArcFace, Adacos,
P2SGrad and PFE. We also report the results following the
ArcFace testing protocol, which refines both the probe set
and the gallery set. As shown in Fig. 8, our method still
clearly outperforms the competitors and achieves the best
performance on identification. Compared with ArcFace,
our loss shows better performance under both identification
and verification scenarios as shown in Fig. 9. Adapitve-
Face [17] is another recent margin-based loss function for
face recognition. We train our model with the same train-
ing data MS1MV2 and the same backbone ResNet50 [8] as
AdaptiveFace for a fair comparison. The results in Tab. 6
demonstrate the superiority of our method.

Time Complexity. The proposed method only brings
small burden on training complexity, but has the same cost
as the backbone model during inference. Specifically, com-
pared with the conventional margin-based loss functions,
our loss only additionally adjusts the negative cosine sim-
ilarity of hard samples. Under the same environment and
batchsize, ArcFace [8] costs 0.370s for each iteration on
NVIDIA P40 GPUs, while ours costs 0.378s.

(a) TOP 1 (b) ROC

Figure 9. Illustrations on Top 1 of different distractors and
ROC on Megaface. Results are evaluated on refined MegaFace
dataset. The results of ArcFace are from the official ResNet100
pre-trained with MS1M.

Discussion on Easy and Hard Samples During Training.
Finally, Fig. 7 shows the easy and hard samples classified
by our method in different training stages. As we can see,
the front and clear faces are usually considered as easy sam-
ples in early training stage, and our model mainly learns the
identity information from these samples. With the model
continues training, slightly harder samples (i.e., Blue box)
are gradually focused and corrected as the easy ones.

5. Conclusions

In this paper, we propose a novel Adaptive Curriculum
Learning Loss that embeds the idea of adaptive curricu-
lum learning into deep face recognition. Our key idea is
to address easy samples in the early training stage and hard
ones in the later stage. Our method is easy to implement
and robust to converge. Extensive experiments on popu-
lar facial benchmarks demonstrate the effectiveness of our
method compared to the SOTA competitors. Following the
main idea of this work, future research can be expanded in
various aspects, including designing a better function N(·)
for negative cosine similarity that shares similar adaptive
characteristic during training, and investigating the effects
of noise samples that might be optimized as hard samples.
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