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Abstract. Large facial variations are the main challenge in face recog-
nition. To this end, previous variation-specific methods make full use of
task-related prior to design special network losses, which are typically
not general among different tasks and scenarios. In contrast, the existing
generic methods focus on improving the feature discriminability to min-
imize the intra-class distance while maximizing the inter-class distance,
which perform well on easy samples but fail on hard samples. To im-
prove the performance on hard samples, we propose a novel Distribution
Distillation Loss to narrow the performance gap between easy and hard
samples, which is simple, effective and generic for various types of facial
variations. Specifically, we first adopt state-of-the-art classifiers such as
Arcface to construct two similarity distributions: a teacher distribution
from easy samples and a student distribution from hard samples. Then,
we propose a novel distribution-driven loss to constrain the student dis-
tribution to approximate the teacher distribution, which thus leads to
smaller overlap between the positive and negative pairs in the student
distribution. We have conducted extensive experiments on both generic
large-scale face benchmarks and benchmarks with diverse variations on
race, resolution and pose. The quantitative results demonstrate the su-
periority of our method over strong baselines, e.g., Arcface and Cosface.
Code will be available at https://github.com/HuangYG123/DDL.
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1 Introduction

A primary challenge of large-scale face recognition on unconstrained imagery is
to handle the diverse variations on pose, resolution, race and illumination, etc.
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Fig.1: Comparisons with Arcface [6] on SCface [10] dataset. T-SNE [21] vi-
sualizations on features, where the same color indicates samples of the same subject.
Distancel (d;) and Distance3 (ds) indicate low-resolution and high-resolution images,
which were captured at distances of 4.2 and 1.0m, respectively. Each method has two
distributions from ds and di, where there are also two distributions from the positive
and negative pairs with a margin indicating the difference of their expectations. With
our distribution distillation loss between the teacher and student distributions, our
method effectively narrows the performance gap between the easy and hard samples,
decreasing the expectation margin from 0.21 (0.52-0.31) to 0.07 (0.56-0.49).

While some variations are easy to address, many others are relatively difficult.
As in Fig. 1, State-of-the-Art (SotA) facial classifiers like Arcface [6] well address
images with small variations with tight groupings in the feature space. We denote
these as easy samples. In contrast, images with large variations are usually far
away from the easy ones in the feature space, and are much more difficult to
tackle. We denote these as hard samples. To better recognize these hard samples,
there are usually two schemes: variation-specific and generic methods.
Variation-specific methods are usually designed for a specific task. For in-
stance, to achieve pose-invariant face recognition, either handcrafted or learned
features are extracted to enhance robustness against pose while remaining dis-
criminative to the identities [33]. Recently, joint face frontalization and disen-
tangled identity preservation are incorporated to facilitate the pose-invariant
feature learning [35,49]. To address resolution-invariant face recognition, a uni-
fied feature space is learned in [16,27] for mapping Low-Resolution (LR) and
High-Resolution (HR) images. The works [4,50] first apply super-resolution on
LR images and then perform recognition on the super-resolved images. However,
the above methods are specifically designed for the respective variations, there-
fore their ability to generalize from one variation to another is limited. Yet, it is
highly desirable to handle multiple variations in real world recognition systems.
Different from variation-specific methods, generic methods focus on improv-
ing the discriminative power of facial features for small intra-class and large inter-
class distances. Basically, the prior works fall into two categories, i.e., softmax
loss-based and triplet loss-based methods. Softmax loss-based methods regard
each identity as a unique class to train the classification networks. Since the tra-
ditional softmax loss is insufficient to acquire the discriminative features, several
variants [6, 18,40, 43] are proposed to enhance the discriminability. In contrast,
triplet loss-based methods [23,26] directly learn a Euclidean space embedding
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for each face, where faces from the same person form a separate cluster from
faces of other people. With large-scale training data and well-designed network
structures, both types of methods can obtain promising results.

However, the performance of these methods degrades dramatically on hard
samples, such as very large-pose and low-resolution faces. As illustrated in Fig. 1,
the features extracted from HR images (i.e., d3) by the strong face classifier of
Arcface [6] are well separated, but the features extracted from LR images (i.e.,
dq) cannot be well distinguished. From the perspective of the angle distributions
of positive and negative pairs, we can easily observe that Arcface exists more
confusion regions on LR face images. It is thereby a natural consequence that
such generic methods perform worse on hard samples.

To narrow the performance gap between the easy and hard samples, we
propose a novel Distribution Distillation Loss (DDL). By leveraging the best
of both the wariation-specific and generic methods, our method is generic and
can be applied to diverse variations to improve face recognition in hard samples.
Specifically, we first adopt current SotA face classifiers as the baseline (e.g.,
Arcface) to construct the initial similarity distributions between teacher (e.g.,
easy samples from ds in Fig. 1) and student (e.g., hard samples from d; in Fig. 1)
according to the difficulties of samples, respectively. Compared to finetuning the
baseline models with domain data, our method firstly does not require extra data
or inference time (i.e., simple); secondly makes full use of hard sample mining
and directly optimizes the similarity distributions to improve the performance
on hard samples (i.e., effective); and finally can be easily applied to address
different kinds of large variations in extensive real applications, e.g., women
with makeup in fashion stores, surveillance faces in railway stations, and apps
looking for missing senior person or children, etc.

To sum up, the contributions of this work are three-fold:

— Our method narrows the performance gap between easy and hard samples
on diverse facial variations, which is simple, effective and general.

— To our best knowledge, it is the first work that adopts similarity distribution
distillation loss for face recognition, which provides a new perspective to
obtain more discriminative features to better address hard samples.

— Significant gains compared to the SotA Arcface are reported, e.g., 97.0%
over 92.7% on SCface, 93.4% over 92.1% on CPLFW, 90.7% over 89.9%
(@FAR=1e—4) on IJB-B and 93.1% over 92.1% (@FAR=1e—4) on IJB-C.

2 Related Work

Loss Function in FR. Loss function design is pivotal for large-scale face recog-
nition. Softmax is commonly used for face recognition [30,34,39], which encour-
ages the separability of features but the learned features are not guaranteed
to be discriminative. To address this issue, contrastive [29] and triplet [23, 26]
losses are proposed to increase the margin in the Euclidean space. However, both
contrastive and triplet losses occasionally encounter training instability due to



4 Y. Huang, P. Shen, and et al.

e al P A
~~];_-]§ 1

IRecognition|
Network
7 N
Examples Examples

Simi'larity Distribution

(c) DDL

(a) Conventional KD (b) Self Distillation

Fig.2: Comparisons among conventional knowledge distillation, self-
distillation and our DDL. The student in KD is usually smaller than the teacher.
{e}T and {h}T indicate the easy and hard samples, respectively.

the selection of effective training samples. As a simple alternative, center loss
and its variants [7,43,52] are proposed to compress the intra-class variance.
More recently, angular margin-based losses [6,13,18,19,38] facilitate feature dis-
crimination, and thus lead to larger angular/cosine separability between learned
features. The above loss functions are designed to apply constraints either be-
tween samples, or between sample and center of the corresponding subject. In
contrast, our proposed loss is distribution driven. While being similar to the his-
togram loss [37] that constrains the overlap between the distributions of positive
and negative pairs across the training set, our loss differs in that we first separate
the training set into a teacher distribution (easy samples) and student distribu-
tion (hard samples), and then constrain the student distribution to approximate
the teacher distribution via our novel loss, which narrows the performance gap
between easy and hard samples.
Variation-Specific FR. Apart from generic solutions [30, 34] for face recogni-
tion, there are also many methods designed to handle specific facial variations,
such as resolutions, poses, illuminations, expressions and demographics [8]. For
example, cross-pose FR [33, 35,48, 54] is very challenging, and previous meth-
ods mainly focus on either face frontalization or pose invariant representations.
Low resolution FR is also a difficult task, especially in the surveillance scenario.
One common approach is to learn a unified feature space for LR and HR im-
ages [11,20,55]. The other way is to perform super resolution [4,31,32] to enhance
the facial identity information. Differing from the above methods that mainly
deal with one specific variation, our novel loss is a generic approach to improve
FR from hard samples, which is applicable to a wide variety of variations.
Knowledge Distillation. Knowledge Distillation (KD) is an emerging topic.
Its basic idea is to distill knowledge from a large teacher model into a small
one by learning the class distributions provided by the teacher via softened soft-
max [12]. Typically, Kullback Leibler (KL) divergence [12,53] and Maximum
Mean Discrepancy (MMD) [14] can be adopted to minimize the posterior proba-
bilities between teacher and student models. More recently, transferring mutual
relations of data examples from the teacher to the student is proposed [22, 36].
In particular, RKD [22] reported that KD can improve the original performance
when the student has the same structure as the teacher (i.e., self-distillation).
Compared to the above distillation methods, our DDL differs in several as-
pects (see Fig. 2): 1) KD has at least two networks, a teacher and a student,
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Fig. 3: Illustration of our DDL. We sample b positive pairs (i.e., 2b samples) and b
samples with different identities, for both the teacher Ps and student Py distributions,
to form one mini-batch (i.e., 6b in total). {(s;fi, sg, )i =1,...,b} indicates we construct b
positive and negative pairs from Pg via Eqgs. 1 and 2 respectively to estimate the teacher
distribution. {(s;i, 83;,)]1 =1, ..., b} also indicates we construct b positive and negative
pairs from Py via Egs. 1 and 2 respectively to estimate the student distribution.

while DDL only learns one network. Although in KD the student may have
the same structure as the teacher (e.g., self-distillation), they have different pa-
rameters in training. 2) KD uses sample-wise, Euclidean distance-wise or angle-
wise constraints, while DDL proposes a novel cosine similarity distribution-wise
constraint which is specifically designed for face recognition. 3) To our best
knowledge, currently no KD methods outperform SotA face classifiers on face
benchmarks, while DDL consistently outperforms the SotA Arcface classifier.

3 The Proposed Method

Fig. 3 illustrates the framework of our DDL. We separate the training set into
two parts, i.e., £ for easy samples and H for hard samples to form the teacher
and student distributions, respectively. In general, for each mini-batch during
training, we sample from both parts. To ensure a good teacher distribution, we
use the SotA FR model [6] as our initialization. The extracted features are used
to construct the positive and negative pairs (Sec. 3.1), which are further utilized
to estimate the similarity distributions (Sec. 3.2). Finally, based on the similarity
distributions, the proposed DDL is utilized to train the classifier (Sec. 3.3).

3.1 Sampling Strategy from Pg and Py

First, we introduce the details on how we construct the positive and negative
pairs in one mini-batch during training. Given two types of input data from both
Pe and Py, each mini-batch consists of four parts, two kinds of positive pairs
(i.e., (x1,22) ~ Pg and (z1,22) ~ Py), and two kinds of samples with different
identities (i.e., x ~ P¢ and x ~ Py). To be specific, we on one hand construct b
positive pairs (i.e., 2b samples), and on the other hand b samples with different
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identities from Pg and Py. As the result, there are 6b = (2b 4 b) * 2 samples in
each mini-batch (see Fig. 3 for more details).

Positive Pairs. The positive pairs are constructed offline in advance, and each
pair consist of two samples with the same identity. As shown in Fig. 3, samples
of each positive pair are arranged in order. After embedding data into a high-
dimensional feature space by a deep network F, the similarity of a positive pair
st can be obtained as follows:

57 =< Fpasn ). Flaposs) >i=1,.0,b (1)

where ZTpos,, 5 Tpos;, are the samples of one positive pair. Note that positive pairs
with similarity less than 0 are usually outliers, which are deleted as a practical
setting since our main goal is not to specifically handle noise.

Negative Pairs. Different from the positive pairs, we construct negative pairs
online from the samples with different identities via hard negative mining, which
selects negative pairs with the largest similarities. To be specific, the similarity
of a negative pair s~ is defined as:

8; = mjax ({S; =< ]:(xnegi)v}—(x”egj) >li=1 ”'7b})’ @

where Zpeg,, Tneg; are from different subjects. Once the similarities of positive
and negative pairs are constructed, the corresponding distributions can be esti-
mated, which is described in the next subsection.

3.2 Similarity Distribution Estimation

The process of similarity distribution estimation is similar to [37], which is per-
formed in a simple and piece-wise differentiable manner using 1D histograms
with soft assignment. Specifically, two samples z;, x; from the same person form
a positive pair, and the corresponding label is denoted as m;; = +1. In contrast,
two samples from different persons form a negative pair, and the label is denoted
as m;; = —1. Then, we obtain two sample sets ST = {s* = (F(z;), F(x;))|m;; =
+1} and §™ = {s™ = (F(z;), F(x;))|ms; = —1} corresponding to the similari-
ties of positive and negative pairs, respectively.

Let p* and p~ denote the two probability distributions of ST and S, re-
spectively. As in cosine distance-based methods [6], the similarity of each pair is
bounded to [—1, 1], which is demonstrated to simplify the task [37]. Motivated
by the histogram loss, we estimate this type of one-dimensional distribution by
fitting simple histograms with uniformly spaced bins. We adopt R-dimensional
histograms H Tand H~, with the nodes t; = —1, t9, - - -, tg = 1 uniformly filling
[—1,1] with the step A = 2. Then, we estimate the value h;" of the histogram

H™ at each bin as: )
+ -
D DI ®)
(4,5)mij=11
where (4, j) spans all the positive pairs. Different from [37], the weights §; ; , are
chosen by an exponential function as:

8ijr = exp(—y(sij — tr)?), (4)
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Fig.4: Illustration of the effects of our order loss. Similarity distributions are
constructed by Arcface [6] on SCface, in which we have 2 kinds of order distances
formed from both of the teacher and student distributions according to Eq. 6.

where v denotes the spread parameter of Gaussian kernel function, and ¢, denotes
the rth node of histograms. We adopt the Gaussian kernel function because it
is the most commonly used kernel function for density estimation and robust to
the small sample size. The estimation of H~ proceeds analogously.

3.3 Distribution Distillation Loss

We make use of SotA face recognition engines like [6], to obtain the similar-
ity distributions from two kinds of samples: easy and hard samples. Here, easy
samples indicate that the FR engine performs well, in which the similarity dis-
tributions of positive and negative pairs are clearly separated (see the teacher
distribution in Fig. 4), while hard samples indicate that the FR engine performs
poorly, in which the similarity distributions may be highly overlapped (see the
student distribution in Fig. 4).

KL Divergence Loss. To narrow the performance gap between the easy and
hard samples, we constrain the similarity distribution of hard samples (i.e., stu-
dent distribution) to approximate the similarity distribution of easy samples
(i.e., teacher distribution). The teacher distribution consists of two similarity
distributions of both positive and negative pairs, denoted as P* and P, respec-
tively. Similarly, the student distribution also consists of two similarity distribu-
tions, denoted as QT and Q. Motivated by the previous KD methods [12,53],
we adopt the KL divergence to constrain the similarity between the student and
teacher distributions, which is defined as follows:

Lrxr = DrL(PY|QT) + AeDxr(P7[|Q7)

PT(s) _ P~ (s)
=X ) PH(s)l > P (s)1
A d (s) log () + A2 S (s) log (5’ (5)
KL losson pos. pairs KLlossonneg.pairs

where A1, Ay are the weight parameters.

Order Loss. However, only using KL loss does not guarantee good performance.
In fact, the teacher distribution may choose to approach the student distribution
and leads to more confusion regions between the distributions of positive and
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negative pairs, which is the opposite of our objective (see Fig. 4). To address
this problem, we design a simple yet effective term named order loss, which
minimizes the distances between the expectations of similarity distributions from
the negative and positive pairs to control the overlap. Our order loss can be
formulated as follows:

Eo'rde'r = _)\3 Z (E[S:r} - E[Sji]% (6)

(4,9)€(p,q)

where S;r and S, denote the similarities of positive and negative pairs of the
teacher distribution; S,j and S, denote the similarities of positive and negative
pairs of the student distribution; and A3 is the weight parameter.

In summary, the entire formulation of our distribution distillation loss is:
Lppr = Lxr, + Lorder- DDL can be easily extended to multiple student distri-
butions varied from one specific variation as follows:

Lppr = ZDKL(PHQi) — A3 Z (E[Sﬂ —E[S; D, (7)

i=1 1,5€(P,q1---qK)

where K is the number of student distributions. Further, to maintain the per-
formance on easy samples, we incorporate the loss function of Arcface [6], and
thus the final loss is:

L(©) =Lppr + Larcfaces (8)

where © denotes the parameter set. Note that £arcrace can be easily replaced
by any kind of popular losses in FR.

3.4 Generalization on Various Variations

Next, we discuss the generalization of DDL on various variations, which de-
fines our application scenarios and how we select easy/hard samples. Basically,
we can distinguish the easy and hard samples according to whether the image
contains large facial variations that may hinder the identity information, e.g.,
low-resolution and large pose variation.

Observation from Different Variations. Our method assumes that two or
more distributions, each computed from a subset of training data, have differ-
ences among themselves, which is a popular phenomenon in face recognition and
is demonstrated in Fig. 5. It shows similarity distributions of normal and chal-
lenging samples based on Arcface [6] trained on CASIA except CFP, which is
trained on VGGFace2. As we can see, 1) since CASIA is biased to Caucasian,
Mongolian samples in COX are more difficult and thus relatively regarded as
the hard samples, 2) different variations share a common observation that the
similarity distributions of challenging samples are usually different from those of
easy samples, 3) variations with different extents may have different similarity
distributions (e.g., H1 and H2 in Fig. 5(c)). In summary, when a task satis-
fies that the similarity distributions differ between easy and hard samples, our
method is a good solution and one can enjoy the performance improvement by
properly constructing the positive and negative pairs, as validated in Sec. 4.3.
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Fig.5: Similarity distribution differences Fig.6: Effects of number of
between easy and hard samples on various varia- training subjects on COX. Com-
tions, including race on COX, pose on CFP, and pared to Arcface-FT, DDL achieves
resolution on SCface respectively. (-,-) indicates comparable results with only half
the mean and standard deviation. the number of training subjects.

Performance Balance Between Easy and Hard Samples. Improving the
performance on hard samples while maintaining the performance on easy sam-
ples is a trade-off. Two factors in our method help maintain performance on
easy samples. First, we incorporate the SotA Arcface loss [6] to maintain feature
discriminability on easy samples. Second, our order loss minimizes the distance
between the expectations of similarity distributions from the negative and posi-
tive pairs, which helps control the overlap between positive and negative pairs.
Discussions on Mixture Variations. As shown in Eq. 7, our method can
be easily extended to multiple variations for one task (e.g., low resolution, large
pose, etc). An alternative is to mix the variations with different extents from one
task into one student distribution, which, as shown in Sec. 4.2, is not good enough
to specifically model the different extents and tends to lead to lower performance.
As for different variations from different tasks, one may also construct multiple
teacher-student distribution pairs to address the corresponding task respectively,
which can be a good future direction.

4 Experiments

4.1 Implementation Details

Datasets. We separately employ SCface [10], COX [15], CASIA-WebFace [47],
VGGFace2 [3] and the refined MS1IM [6] as our training data to conduct fair
comparisons with other methods. We extensively test our method on bench-
marks with diverse variations, i.e., COX on race, SCface on resolution, CFP and
CPLFW on Pose, as well as generic large-scale benchmarks IJB-B and IJB-C.
For COX, the data are collected from two races: Caucasian and Mongolian. Since
no race label is given, we manually label 428 Mongolians and 572 Caucasians to
conduct experiments, in which half of both races are used for finetuning and the
others for testing. For SCface, following [20], 50 subjects are used for finetuning
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and 80 subjects are for testing. In the testing stage, we conduct face identifica-
tion, where HR image is used as the gallery and LR images with three different
resolutions form the probe. Specifically, the LR images are captured at three
distances: 4.2m for dy, 2.6m for ds and 1.0m for d3. We split easy and hard sam-
ples according to the main variation in each dataset. For race, since the dataset
on which the model is pre-trained is biased to Caucasian, Mongolian samples
on COX are more difficult and thus relatively regarded as the hard samples.
For pose, we estimate the pose of each image [25] on VGGFace2, and images
with yaw < 10° and yaw > 45° are used as easy and hard samples respectively.
For resolution, images captured under d3 and d; /ds are used as easy and hard
samples respectively on SCface.

Training Setting. We follow [6,40] to generate the normalized faces (112 x 112)
with five landmarks [51]. For the embedding network, we adopt ResNet50 and
ResNet100 as in [6]. Our work is implemented in Tensorflow [1]. We train mod-
els on 8 NVIDIA Tesla P40 GPUs. On SCface, we set the number of posi-
tive/negative pairs as b = 16, thus the batch size on one GPU is 3b x 3 = 144,
including one teacher distribution and two student distributions (see Fig. 5(c)).
On other datasets, we set b to 32, thus the batch size per GPU is 3b x 2 = 192.
The numbers of iterations are 1K, 2K and 20K on SCface, COX and VGGFace2,
respectively. The models are trained with SGD, with momentum 0.9 and weight
decay 5e~*. The learning rate is le~3, and is divided by 10 at half of iterations.
All of the weight parameters are consistent across all the experiments. A1, As
and Az are set to le™!, 2¢72 and 5e!, respectively.

4.2 Ablation Study

Effects of Distance Metric on Distributions. We investigate the effects of
several commonly used distribution metrics to constrain the teacher and stu-
dent distributions in our DDL, including KL divergence, Jensen-Shannon (JS)
divergence, and Earth Mover Distance (EMD). Although KL divergence does
not qualify as a statistical metric, it is widely used as a measure of how one
distribution is different from another. JS divergence is a symmetric version of
KL divergence. EMD is another distance function between distributions on a
given metric space and has seen success in image synthesis [9]. We incorporate
our order loss with the above distance metrics, and report the results in Tab. 1.
We choose KL divergence in our DDL since it achieves the best performance,
which shares similar conclusion with [53]. To further investigate the effectiveness
of each component in our loss, we train the network with each component sepa-
rately. As shown in Tab. 1, only KL or only Order does not guarantee satisfying
performance, while using both components leads to better results.

Effects of Random vs. Hard Mining. To investigate the effect of hard sam-
ple mining in our method, we train models on SCface with the corresponding
strategy (i.e., negative pairs with the largest similarity are selected), and without
the strategy by randomly selecting the negative pairs, respectively. The compar-
ative results are reported in Tab. 1. Comparing with the results of “Random”
selecting, it is clear that our hard mining version outperforms the one without.
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Table 1: Extensive ablation studies on SCface dataset. All methods are
trained on CASIA with a ResNet50 backbone. Each color corresponds to a
type of ablation study experimental setting.

EMD JS KL Order|Random Hard Mining|Mixture Specific| di d2 d3 |Avg.

Arcface-FT 67.3 93.5 98.0|86.3
v v v v |78.0 97.8 96.8|90.5

Distance metric v v v v [83.0 98.399.0/93.4
v v v |76.0 94.3 98.5(89.6

v v v’ |80.8 97.5 99.0|92.4

Mining strategy v v v v 180.3 96.3 95.3|90.6
Mixture training Y v I 15 970 97.8]92.1
DDL (ours) | v V] v \ v [86.898.3 98.3][94.4

Effects of Mixture vs. Specific training. As mentioned in Sec. 3.4, we basi-
cally construct different student distributions for samples with different extents
of variations on SCface. Here, we mix two variations from d; and ds into one
student distribution. The comparison between our specific and mixture training
is also shown in Tab. 1. As we expected, the mixture version is worse than the
specific version, but is still better than the conventional finetuning (i.e., Avg.
being 86.3), which indicates that properly constructing different hard samples
for the target tasks may maximize the advantages of our method.

Effects of Number of Training Subjects. Here, we conduct tests on COX
dataset to show the effects of using different numbers of training subjects. Specif-
ically, we adopt 10%, 30%, 50%, 70%, 90% and 100% of training subjects, re-
spectively. A pre-trained Arcface on CASIA is used as the baseline. For fair
comparison, we also compare our method against Arcface with conventional fine-
tuning (i.e., Arcface-FT). From Fig. 6 we see that: 1) Compared to Arcface-FT,
our method clearly boosts the performance on Mongolian-Mongolian verification
tests with comparable training data. 2) Our method can have comparable per-
formance with the only half of the entire training subjects, which demonstrate
the superiority of utilizing the global similarity distributions.

4.3 Comparisons with SotA Methods

Resolution on SCface. SCface mimics the real-world surveillance watch-list
problem, where the gallery contains HR faces and the probe consists of LR faces
captured from surveillance cameras. We compare our method with SotA low-
resolution face recognition methods in Tab. 2. Most results are directly cited
from [20], while the results of Arcface come from our re-implementation. From
Tab. 2, we have some observations: 1) The baseline Arcface achieves much better
results than the other methods without finetuning, especially on the relatively
high-resolution images from ds. 2) Our (CASIA+ResNet50)-FT version already
outperforms all of the other methods, including Arcface (MS1M+ResNet100)-
FT, which uses a larger model that is trained by a much larger dataset. 3) We
achieve significant improvement on d; setting, which is the hardest. This demon-
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Table 2: Rank-1 performance (%) of Table 3: Verification comparisons
face identification on SCface test- with SotA methods on LFW and
ing set. -FT" represents finetuning with two popular pose benchmarks, including

training set from SCface. CFP-FP and CPLFW.
Distance — & dz  ds |avg. Methods (%) LFW CFP-FP CPLEW
LDMDS [46] 62.7 70.7 65.566.3 Triplet Loss (CVPR’15) 98.98 91.90 -
Center Loss [43] 36.3 81.8 94.3|70.8 Center Loss (ECCV’16) [43] 98.75  — 77.48
Arcface (CASIA+R50) 48.0 92.0 99.3|79.8 SphereFace (CVPR'17) [18] 9927 — 81.40
Arcface (MSIM+R100) 58.9 98.3 99.5/85.5 ~ DRGAN (CVPRIT) [35] e S
Center Loss-FT 548 863 95.8]79.0  Leng et al (ICCVIT) [24] G

o . - Yin et al. (TIP’17) [48] 98.27  94.39 -
DCR-FT [20] 73.3 93.5 98.088.3 VGGFace2 (FG'18) [3] 9943  — 84.00
Histogram (CASIA+R50)-FT [37][74.3 95.0 97.3|88.8 Dr;a’m (CVPRHS) [2‘] T 9308 N
OHEM (CASIA+R50)-FT [28]  [82.5 97.3 97.5(92.7 Deng et al. (CVPR'1S) [5] 99.60 9405 -
Focal (CASIA+RS50)-FT [17] 76.8 95.5 96.8189.7 gy Aye Softmax (arXiv'19) [42] | 99.78 98.28  92.83
Triplet (CASIA+R50)-FT [6] 84.2 97.2 99.2|93.5 CO-Mining (ICCV’19) [41] " o587 873l
Arcface (CASIA+R50)-FT 67.3 93.5 98.0186.3 Arcface (MSIM+R100)-Official [6]'(99.82 98.37  92.08
Arcface (MSIM+R100)-FT 80.5 98.0 99.5|92.7 Arcface (MS1M+R100) 99.80 98.29  92.52
Ours (CASTA+R50) 86.8 98.3 98.3194.4 Arcface (VGG+R100) 99.62 98.30  93.13
Ours (MS1IM+R100) ‘93‘2 99.2 98.5 ‘9740 Ours (VGG+R100) [99.68 98.53 93.43

strates the effectiveness of our novel loss. 4) Histogram loss performs poorly,
which demonstrates the effects of our constraint between teacher and student
distributions.

Moreover, different to the prior hard mining methods [17,26, 28] where the
hard samples are mined based on the loss values during the training process, we
pre-define hard samples according to human prior. Penalizing individual samples
or triplets as in previous hard mining methods does not leverage sufficient con-
textual insight of the overall distribution. DDL minimizes the difference of global
similarity distributions between the easy and hard samples, which is more ro-
bust for tackling hard samples and against the noisy samples. The word ”global”
means our method leverages sufficient contextual insight of the overall distribu-
tion in a mini-batch, rather than focusing on a sample.

Fig. 7 illustrates the estimated similarity distributions of various SotA meth-
ods. To quantify the differences among these methods, we introduce two statis-
tics for evaluation, the expectation margin and histogram intersection (i.e.,
Zil min(h;", k7)) between the two distributions from positive and negative
pairs. Typically, smaller histogram intersection and larger expectation margin
indicate better verification/identification performance, since it means more dis-
criminative embeddings are learned [37]. Our DDL achieves the closest statistics
to the teacher distribution, and thus obtains the best performance.

Pose on CFP-FP and CPLFW. We compare our method with SotA pose-
invariant methods [2, 5,24, 35, 48] and generic solutions [3, 6, 18,41-43]. Since
VGGFace2 includes comprehensive pose variations, we use it to pre-train a
ResNet100 with Arcface. Next, we construct teacher and student distributions
to finetune the model with our loss. From Tab. 3, we can see that: 1) Our Arcface
re-implementations achieve comparable results against the official version, with
similar results on LFW and CFP-FP, as well as better performance on CPLFW.

! Results are from the official model: https://github.com/deepinsight /insightface,
which is trained on MS1M and adopts ResNet100 as the backbone.



Distribution Distillation Loss 13

0 /li Student 0. ;1y,|:Histogram-FT
1

0153

LN W s W

5
a
3
2 |
1
[

— | .
4-02 0.0 02 04 06 08 10 j-04-0200 02 04 06 08 1.0 2470200 02 0.4 06 08 10 204-0200 0.2 04 0.6 08 10

5¢

036§  Triplet-FT

0.31 | ArcFace-FT

= N W » w
= N W » w

a
3
2
1

0.202
> 0.097

" °
24-6200 02 04 06 08 10 204-0200 02 04 06 08 10 204-0.2 00 0.2 04 06 08 1.0 ~04-02 00 02 0.4 06 0.8 1.0

Fig.7: Illustrations of similarity distributions of different SotA methods,
which are all pre-trained by CASTA with ResNet50 and then finetuned on SCface. The
leftmost and rightmost are the student and teacher distributions estimated from a pre-
trained Arcface model on d; and ds settings, respectively. The similarity distributions
in the middle are obtained by various methods finetuned on SCface. The red number
indicates the histogram intersection between the estimated similarity distributions from
the positive and negative pairs.

Arcface is also much better than other methods, including those pose-invariant
face recognition methods. 2) Our method achieves the best performance on both
pose benchmarks, while also maintaining the performance on LEW (i.e., 99.68%
vs. 99.62%).

Note that when using the model pre-trained on MS1M, and finetuning it
with easy/hard samples from VGGFace2, our method can further push the per-
formance to a higher level (99.06% on CFP-FP and 94.20% on CPLFW), which
is the first method that exceeds 99.0% on CFP-FP and 94.0% on CPLFW using
images cropped by MTCNN. Besides, we also train our DDL on the smaller train-
ing set CASIA with a smaller backbone ResNet50. Again, our DDL outperforms
the competitors. Please refer to our supplementary material for details.
Large-Scale Benchmarks: IJB-B and IJB-C. On 1JB-B/C datasets, we
employ VGGFace2 with ResNet50 for a fair comparison with recent methods.
We first construct the teacher and student distributions according to the pose of
each image, and then follow the testing protocol in [6] to take the average of the
image features as the corresponding template representation without bells and
whistles. Tabs. 4 and 5 show the 1:1 verification and 1:N identification compar-
isons with the recent SotA methods, respectively. Note that our method is not a
set-based face recognition method, and the experiments on these two datasets are
just to prove that our DDL can obtain more discriminate features than generic
methods like Arcface, even on all-variations-included datasets. Please refer to
our supplementary material for the detailed analysis.

Comparisons with SotA KD Methods. We further conduct fair compar-
isons between our DDL and the recent SotA KD/self-distillation methods, i.e.,
SP [36] and RKD [22]. Note that since both SP and RKD have not reported
SOTA results on face recognition tasks, we re-implement the two methods un-
der the same experimental setting on VGGFace2, using their officially released
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Table 4: 1:1 verification TAR on the IJB-B and IJB-C datasets. All methods are
trained on VGGFace2 with ResNet50.

Methods (%) ‘ LB-B UB-C
FAR=1e—5 FAR=1e—4 FAR=1e—3 FAR=1e—5 FAR=1e—4 FAR=1e—3

VGGFace2 3] 67.1 80.0 88.7 74.7 84.1 90.9
MN ([45] 70.8 83.1 90.9 77.1 86.2 92.7
DCN [4] - 84.9 93.7 - 88.5 94.7
Arcface [6] 80.5 89.9 94.5 86.1 92.1 96.0
SP [36] 79.4 89.8 94.9 85.9 923 96.2
RKD [22] 78.4 89.6 94.7 85.5 92.1 96.1
Ours ‘ 83.4 90.7 95.2 88.4 93.1 96.3

Table 5: 1:N (mixed media) Identification on IJB-B/C. All methods are trained
on VGGFace2 with ResNet50. VGGFace?2 is cited from the paper, and Arcface is from
its official released model.

Methods (%) | UB-B LB-C
FPIR=0.01FPIR=0.1Rank 1Rank 5FPIR=0.01FPIR=0.1Rank 1Rank 5
VGGFace2 [3] 70.6 83.9 90.1 94.5 74.6 84.2 91.2 94.9
Arcface [6] 73.1 88.2 93.6 96.5 79.6 89.5 94.8 96.9
SP [36] 72.4 88.0 93.8  96.6 79.9 89.5 94.7 97.0
RKD [22] 70.6 87.6 93.4 96.5 79.3 89.1 94.6 96.9
Ows | 763 895 939 966 854  9l1 954 97.2

code. Specifically, we first train a ResNet50 with Arcface on VGGFace2 as the
teacher model, and then train a student ResNet50 via combining the knowledge
distillation method (e.g., SP or RKD) and Arcface loss under the guidance of
the teacher model. As in Tabs. 4 and 5, our DDL outperforms the SotA KD /self-
distillation methods, which achieve similar results to vanilla Arcface.

5 Conclusion

In this paper, we propose a novel framework Distribution Distillation Loss (DDL)
to improve various variation-specific tasks, which comes from the observations
that state-of-the-art methods (e.g., Arcface) witness significant performance
gaps between easy and hard samples. The key idea of our method is to con-
struct a teacher and a student distribution from easy and hard samples, respec-
tively. Then, the proposed loss drives the student distribution to approximate
the teacher distribution to reduce the overlap between the positive and nega-
tive pairs. Extensive experiments demonstrate the effectiveness of our DDL on
a wide range of recognition tasks compared to the state-of-the-art face recogni-
tion methods. In subsequent work, we can try to extend our method to multiple
teacher-student distribution pairs for the corresponding task respectively.
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