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Figure 1: Performance of [5] on FFHQ. (a) input image,
(b) target lighting, (c) Nestmeyer et al. [5]. The method of
[5] does not seem to generalize well to in-the-wild images,
which is likely caused by the limited subject diversity and
night-time setting of their training set.

1. Qualitative Results on FFHQ for Nestmeyer
et al. [5]

We include qualitative results on FFHQ for Nestmeyer et
al. [5] (See Fig. 1). Overall, their model seems to generalize
poorly to in-the-wild images, which is likely caused by the
limited number of subjects (21) in their training set and the
night-time setting of their images. Therefore, we chose not
to compare with them qualitatively on FFHQ.

2. Ablations on Lface, Lgradient, LDSSIM, and
Ladversarial

We perform 4 additional ablations to show that the addi-
tion of each loss function improves our model’s relighting
performance. We train 4 additional models, each of which
excludes one of Lface, Lgradient, LDSSIM, and Ladversarial, and
compare the performance with our proposed model. We
evaluate their performance quantitatively on Multi-PIE [3]
(See Tab. 1). We find that our proposed model, which in-
cludes all loss functions, achieves the best overall perfor-
mance across our 3 evaluation metrics.

We further demonstrate the benefits of including these 4
losses qualitatively on FFHQ [4] (See Fig. 2). We find that

Method Si-MSE MSE DSSIM
w/o Lface 0.0262 0.0346 0.1734

w/o Lgradient 0.0223 0.0297 0.1589
w/o LDSSIM 0.0227 0.0293 0.1703

w/o Ladversarial 0.0275 0.0361 0.1800
Proposed 0.0220 0.0292 0.1605

Table 1: Additional Ablation Studies. We perform abla-
tion studies on Lface, Lgradient, LDSSIM, and Ladversarial. We
find that the proposed model (which includes all loss func-
tions) achieves the best overall performance.

excluding Lface lowers the model’s ability to preserve the
subject’s facial details, as expected since Lface is responsi-
ble for ensuring face feature consistency for the same sub-
ject under different lighting. Removing Lgradient can lead to
smoother edges on the face, which is understandable given
it encourages the edges of the predicted and target ratio im-
ages to be similar. Another effect is the quality of the cast
shadows generally decreases, which makes sense because
shadow borders are edges in the image. Excluding LDSSIM
can lead to unnatural transitions from illuminated to shad-
owed regions of the face: rather than transitioning gradu-
ally, the shift between the regions can be abrupt. This be-
havior can arise since the SSIM metric measures if the local
image patterns of the predicted image match the target im-
age. Without the corresponding loss LDSSIM, these unnat-
ural transitions may occur. Finally, we find that removing
Ladversarial noticeably reduces the visual quality of the re-
lit images and makes the output more blurry. This verifies
that the inclusion of PatchGAN [2] discriminators helps the
model capture high frequency details and improve the pho-
torealism of the results. We thus assert that qualitatively,
our proposed model produces the best results.

3. Ratio vs Relit Image Estimation

We provide more insights concerning the advantages of
estimating the ratio image instead of the relit image directly.
Regressing a ratio image is easier for the network since it
contains less high-frequency detail than the target image.
This can be shown by the power spectrums of a target Multi-
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Figure 2: Qualitative Results on FFHQ for Ablation Models. We compare the qualitative performance of our proposed
model with 4 additional ablation models, each of which removes one loss function. Removing Lface degrades the model’s
ability to preserve the subject’s facial features, removing Lgradient causes the edges on the face to become smoother (fourth
row, around the nose) and lowers the quality of the produced cast shadows, removing LDSSIM can lead to unnatural transitions
from illuminated regions of the face to shadowed regions (third row), and removing Ladversarial leads to a noticeably more
blurry output. The proposed model that uses all of these losses yields the best qualitative performance.

PIE image and its corresponding ratio image in Fig. 3. It’s
clear from the power spectrums that the target image con-
tains more high-frequency details than the ratio image. The
ratio image contains more lower frequency information, and
is therefore easier to estimate. We can thus more easily pre-
serve facial details by regressing ratio images instead of relit
images directly.

4. Shadow Removal

As shadow removal is a challenging task in face relight-
ing, we demonstrate our model’s capacity to remove hard
cast shadows. Fig. 4 shows relit results on FFHQ subjects
using a frontal target lighting, which should remove facial
shadows. Our model either removes hard shadows com-
pletely or softens them.

5. Non-frontal Poses

To demonstrate our model’s performance on face images
with large poses, we apply our model to FFHQ subjects with
non-frontal poses. As shown in Fig. 5, our model can handle
large poses gracefully.

6. Lighting Estimation

We provide more details on how we estimate the
groundtruth lightings for the DPR [7], Yale [1], and Multi-
PIE [3] datasets.

The DPR images provide the SH coefficients as
groundtruth lighting. The Yale dataset provides the lighting
direction for each image, and we treat each light as a direc-
tional light. Multi-PIE provides positions for every light,
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(b) Ratio Image

Figure 3: Power spectrums. Comparing the power spec-
trums of a target Multi-PIE image and its corresponding ra-
tio image, it is clear that the ratio image contains less high-
frequency detail than the target image. The ratio image is
thus easier for our model to regress than the target image,
which indicates that it is an easier way to preserve facial
details.

(a) Input Image (b) Target Lighting (c) Result

Figure 4: Shadow Removal. Our model is able to remove
or significantly soften hard cast shadows.

which we treat as point lights. For Yale and Multi-PIE, we
project the light source to SH basis functions on the unit
sphere to get the SH coefficients. The ambient component
is estimated using shadow masks, as explained in Sec. 3.5
of the main paper.

7. Inference Time

We compare our model’s inference time with SfSNet
[6] and Nestmeyer et al. [5], two methods with available
code and significantly different architectures from our work.

(a) Input Image (b) Target Lighting (c) Result

Figure 5: Non-frontal poses. Our model is able to properly
relight images with large, non-frontal poses.

Running on Multi-PIE, [6] takes 0.0087 seconds per im-
age, [5] takes 0.0750 seconds per image, and our model is
the fastest at 0.0075 seconds per image.

8. Qualitative Video
We include a video with 5 FFHQ subjects to show that

our model can faithfully perform face relighting across
many different target lighting directions and many diverse
subjects. Our video also shows that our model can handle
varying lighting intensities, as seen when we move the light
source closer to the last subject at the end of the video.
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