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Abstract

Differences in forgery attributes of images generated in
CNN-synthesized and image-editing domains are large, and
such differences make a unified image forgery detection and
localization (IFDL) challenging. To this end, we present
a hierarchical fine-grained formulation for IFDL represen-
tation learning. Specifically, we first represent forgery at-
tributes of a manipulated image with multiple labels at
different levels. Then we perform fine-grained classifica-
tion at these levels using the hierarchical dependency be-
tween them. As a result, the algorithm is encouraged to
learn both comprehensive features and inherent hierarchi-
cal nature of different forgery attributes, thereby improving
the IFDL representation. Our proposed IFDL framework
contains three components: multi-branch feature extrac-
tor, localization and classification modules. Each branch
of the feature extractor learns to classify forgery attributes
at one level, while localization and classification modules
segment the pixel-level forgery region and detect image-
level forgery, respectively. Lastly, we construct a hier-
archical fine-grained dataset to facilitate our study. We
demonstrate the effectiveness of our method on 7 different
benchmarks, for both tasks of IFDL and forgery attribute
classification. Our source code and dataset can be found:
github.com/CHELSEA234/HiFi-IFDL.

1. Introduction

Chaotic and pervasive multimedia information sharing
offers better means for spreading misinformation [1], and
the forged image content could, in principle, sustain re-
cent “infodemics” [3]. Firstly, CNN-synthesized images
made extraordinary leaps culminating in recent synthesis
methods—Dall·E [52] or Google ImageN [57]—based on
diffusion models (DDPM) [24], which even generates re-
alistic videos from text [23, 60]. Secondly, the availability
of image editing toolkits produced a substantially low-cost
access to image forgery or tampering (e.g., splicing and in-
painting). In response to such an issue of image forgery,
the computer vision community has made considerable ef-
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Figure 1. (a) In this work, we study image forgery detection and
localization (IFDL), regardless of forgery method domains. (b)
The distribution of forgery region depends on individual forgery
methods. Each color represents one forgery category (x-axis).
Each bubble represents one image forgery dataset. The y-axis de-
notes the average of forgery area. The bubble’s area is proportional
to the variance of the forgery area.

forts, which however branch separately into two directions:
detecting either CNN synthesis [62,64,73], or conventional
image editing [17,26,43,63,68]. As a result, these methods
may be ineffective when deploying to real-life scenarios,
where forged images can possibly be generated from either
CNN-sythensized or image-editing domains.

To push the frontier of image forensics [59], we study the
image forgery detection and localization problem (IFDL)—
Fig. 1a—regardless of the forgery method domains, i.e.,
CNN-synthesized or image editing. It is challenging to de-
velop a unified algorithm for two domains, as images, gen-
erated by different forgery methods, differ largely from each
other in terms of various forgery attributes. For example,
a forgery attribute can indicate whether a forged image is
fully synthesized or partially manipulated, or whether the
forgery method used is the diffusion model generating im-
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Figure 2. (a) We represent the forgery attribute of each manipulated image with multiple labels, at different levels. (b) For an input image,
we encourage the algorithm to classify its fine-grained forgery attributes at different levels, i.e. a 2-way classification (fully synthesized or
partially manipulated) on level 1. (c) We perform the fine-grained classification via the hierarchical nature of different forgery attributes,
where each depth l node’s classification probability is conditioned on classification probabilities of neighbor nodes at depth (l − 1). [Key:
Fu. Sy.: Fully Synthesized; Pa. Ma.: Partially manipulated; Diff.: Diffusion model; Cond.: Conditional; Uncond.: Unconditional].

ages from the Gaussian noise, or an image editing process
that splices two images via Poisson editing [51]. Therefore,
to model such complex forgery attributes, we first repre-
sent forgery attribute of each forged image with multiple
labels at different levels. Then, we present a hierarchical
fine-grained formulation for IFDL, which requires the algo-
rithm to classify fine-grained forgery attributes of each im-
age at different levels, via the inherent hierarchical nature
of different forgery attributes.

Fig. 2a shows the interpretation of the forgery attribute
with a hierarchy, which evolves from the general forgery
attribute, fully-synthesized vs partial-manipulated, to spe-
cific individual forgery methods, such as DDPM [24] and
DDIM [61]. Then, given an input image, our method per-
forms fine-grained forgery attribute classification at differ-
ent levels (see Fig. 2b). The image-level forgery detection
benefits from this hierarchy as the fine-grained classification
learns the comprehensive IFDL representation to differenti-
ate individual forgery methods. Also, for the pixel-level lo-
calization, the fine-grained classification features can serve
as a prior to improve the localization. This holds since the
distribution of the forgery area is prominently correlated
with forgery methods, as depicted in Fig. 1b.

In Fig. 2c, we leverage the hierarchical dependency be-
tween forgery attributes in fine-grained classification. Each
node’s classification probability is conditioned on the path
from the root to itself. For example, the classification prob-
ability at a node of DDPM is conditioned on the classification
probability of all nodes in the path of Forgery→ Fully
Synthesis→Diffusion→Unconditional→DDPM.
This differs to prior work [44, 45, 68, 71] which assume a
“flat” structure in which attributes are mutually exclusive.
Predicting the entire hierarchical path helps understanding
forgery attributes from the coarse to fine, thereby capturing
dependencies among individual forgery attributes.

To this end, we propose Hierarchical Fine-grained Net-
work (HiFi-Net). HiFi-Net has three components: multi-
branch feature extractor, localization module and detection

module. Each branch of the multi-branch extractor clas-
sifies images at one forgery attribute level. The localiza-
tion module generates the forgery mask with the help of a
deep-metric learning based objective, which improves the
separation between real and forged pixels. The classifica-
tion module first overlays the forgery mask with the input
image and obtain a masked image where only forged pixels
remain. Then, we use partial convolution to process masked
images, which further helps learn IFDL representations.

Lastly, to faciliate our study of the hierarchical fine-
grained formulation, we construct a new dataset, termed
Hierarchical Fine-grained (HiFi) IFDL dataset. It con-
tains 13 forgery methods, which are either latest CNN-
synthesized methods or representative image editing meth-
ods. HiFi-IFDL dataset also induces a hierarchical structure
on forgery categories to enable learning a classifier for vari-
ous forgery attributes. Each forged image is also paired with
a high-resolution ground truth forgery mask for the localiza-
tion task. In summary, our contributions are as follows:

⋄ We study the task of image forgery detection and local-
ization (IFDL) for both image editing and CNN-synthesized
domains. We propose a hierarchical fine-grained formula-
tion to learn a comprehensive representation for IFDL and
forgery attribute classification.

⋄ We propose a IFDL algorithm, named HiFi-Net, which
not only performs well on forgery detection and localiza-
tion, also identifies a diverse spectrum of forgery attributes.

⋄ We construct a new dataset (HiFi-IFDL) to facilitate
the hierarchical fine-grained IFDL study. When evaluating
on 7 benchmarks, our method outperforms the state of the
art (SoTA) on the tasks of IFDL, and achieve a competitive
performance on the forgery attribute classifications.

2. Related Work
Image Forgery Detection. In the generic image forgery de-
tection, it is required to distinguish real images from ones
generated by a CNN: Zhang et al. [73] report that it is
difficult for classifiers to generalize across different GANs
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Method Det. Loc. Forgery
Type

Attribute
Learning

Wu et al. [68] ✘ ✔ Editing ✘
Hu et al. [26] ✘ ✔ Editing ✘
Liu et al. [43] ✔ ✔ Editing ✘

Dong et al. [17] ✔ ✔ Editing ✘
Wang et al. [63] ✔ ✔ Editing ✘
Zhang et al. [73] ✔ ✘ CNN-based ✘
Wang et al. [64] ✔ ✘ CNN-based ✘
Asnani et al. [6] ✔ ✘ CNN-based syn.-based

Yu et al. [71] ✔ ✘ CNN-based syn.-based
Stehouwer et al. [62] ✔ ✔ CNN-based ✘

Huang et al. [27] ✔ ✔ CNN-based ✘
Ours ✔ ✔ Both types for.-based

Table 1. Comparison to previous works. [Key: Det.: detection,
Loc.: localization, Syn.: synthesis, for.: forgery]

and leverage upsampling artifacts as a strong discriminator
for GAN detection. On the contrary, against expectation,
the work by Wang et al. [64] shows that a baseline clas-
sifier can actually generalize in detecting different GAN
models contingent to being trained on synthesized images
from ProGAN [29]. Another thread is facial forgery de-
tection [5, 8, 15, 16, 19, 28, 34, 38, 55], and its application
in bio-metrics [4, 20–22, 25]. All these works specialize in
the image-level forgery detection, which however does not
meet the need of knowing where the forgery occurs on the
pixel level. Therefore, we perform both image forgery de-
tection and localization, as reported in Tab. 1.
Forgery Localization. Most of existing methods perform
pixel-wise classification to identify forged regions [26, 63,
68] while early ones use a region [76] or patch-based [47]
approach. The idea of localizing forgery is also adopted in
the DeepFake Detection community by segmenting the arti-
facts in facial images [10, 14, 74]. Zhou et al. [75] improve
the localization by focusing on object boundary artifacts.
The MVSS-Net [11,17] uses multi-level supervision to bal-
ance between sensitivity and specificity. MaLP [7] shows
that the proactive scheme benefits both detection and local-
ization. While prior methods are restricted to one domain,
our method unifies across different domains.
Attribute Learning. CNN-synthesized image attributes
can be observed in the frequency domain [64, 73], where
different GAN generation methods have distinct high-
frequency patterns. The task of “GAN discovery and attri-
bution” attempts to identify the exact generative model [44,
45, 71] while “model parsing” identifies both the model
and the objective function [6]. These works differ from
ours in two aspects. Firstly, the prior work concentrates
the attribute used in the digital synthesis method (synthesis-
based), yet our work studies forgery-based attribute, i.e., to
classify GAN-based fully-synthesized or partial manipula-
tion from the image editing process. Secondly, unlike the
prior work that assumes a “flat” structure between different
attributes, we represent all forgery attributes in a hierarchi-
cal way, exploring dependencies among them.

3. HiFi-Net

In this section, we introduce HiFi-Net as shown in Fig. 3.
We first define the image forgery detection and localization
(IFDL) task and hierarchical fine-grained formulation. In
IFDL, an image X ∈ R3×W×H

|[0,255] is mapped to a binary vari-
able y for image-level forgery detection and a binary mask
M ∈ RW×H

|[0,1] for localization, where the Mij indicates if
the ij-th pixel is manipulated or not.

In the hierarchical fine-grained formulation, we train the
given IFDL algorithm towards fine-grained classifications,
and in the inference we evaluate the binary classification
results on the image-level forgery detection. Specifically,
we denote a categorical variable ŷb at branch b, where its
value depends on which level we conduct the fine-grained
forgery attribute classification. For example, as depicted
in Fig. 2b, two categories at level 1 are full-synthesized,
partial-manipulated; four classes at level 2 are diffusion
model, GAN-based method, image editing, CNN-based
partial-manipulated method; classes at level 3 discriminate
whether forgery methods are conditional or unconditional;
14 classes at level 4 are real and 13 specific forgery meth-
ods. We detail this in Sec. 4 and Fig. 6a.

To this end, we propose HiFi-Net (Fig. 3) which consists
of a multi-branch feature extractor (Sec. 3.1) that performs
fine-grained classifications at different specific forgery at-
tribute levels, and two modules (Sec. 3.2 and Sec. 3.3) that
help the forgery localization and detection, respectively.
Lastly, Sec. 3.4 introduces training procedure and inference.

3.1. Multi-Branch Feature Extractor

We first extract feature of the given input image via the
color and frequency blocks, and this frequency block ap-
plies a Laplacian of Gaussian (LoG) [9] onto the CNN fea-
ture map. This architecture design is similar to the method
in [46], which exploits image generation artifacts that can
exist in both RGB and frequency domain [17, 63, 64, 73].

Then, we propose a multi-branch feature extractor, and
whose branch is denoted as θb with b ∈ {1 . . . 4}. Specif-
ically, each θb generates the feature map of a specific res-
olution, and such a feature map helps θb conduct the fine-
grained classification at the corresponding level. For ex-
ample, for the finest level (i.e. identifying the individual
forgery methods), one needs to model contents at all spa-
tial locations, which requires high-resolution feature map.
In contrast, it is reasonable to have low resolution feature
maps for the coarsest level (i.e. binary) classification.

We observe that different forgery methods generate ma-
nipulated areas with different distributions (Fig. 1b), and
different patterns, e.g., deepfake methods [37, 55] manipu-
late the whole inner part of the face, whereas STGAN [42]
changes sparse facial attributes such as mouth and eyes.
Therefore, we place the localization module at the end of

3



Color
Block

Frequency
Block C

on
ca
t

Localization
Module

Conv
Pconv
Transition layer

Feature
map

Image

M̂

Real v.s.
Level 4

Forgery Attributes

Level 3
Forgery Attributes

Level 2
Forgery Attributes

Level 1
Forgery Attributes

Figure 3. Given the input image, we first leverage color and frequency blocks to extract features. The multi-branch feature extractor ( )
learns feature maps of different resolutions, for the fine-grained classification at different levels. The localization module (Sec. 3.2)
generates the forgery mask, M̂, to identify the manipulation region. After that, we use the partial convolution (PConv) layer to encode the
masked image (Eq. 2), and then leverage such “masked” embeddings in the classification module ( ), which details in Sec. 3.3.

the highest-resolution branch of the extractor—the branch
to classify specific forgery methods. In this way, features
for fine-grained classification serve as a prior for localiza-
tion. It is important to have such a design for localizing both
manipulated images with CNNs or classic image editing.

3.2. Localization Module

Architecture. The localization module maps feature out-
put from the highest-resolution branch (θ4), denoted as
F ∈ R512×W×H , to the mask M̂ to localize the forgery.
To model the dependency and interactions of pixels on
the large spatial area, the localization module employs the
self-attention mechanism [65, 72]. As shown in the local-
ization module architecture in Fig. 4, we use 1×1 con-
volution to form g, ϕ and ψ, which convert input fea-
ture F into Fg = g(F), Fϕ = ϕ(F) and Fψ = ψ(F).
Given Fϕ and Fθ, we compute the spatial attention matrix
As = softmax(FTϕFθ). We then use this transformation
As to map Fg into a global feature map F′ = AsFg ∈
R512×W×H .
Objective Function. Following [46], we employ a met-
ric learning objective function for localization, which cre-
ates a wider margin between real and manipulated pixels.
We firstly learn features of each pixel, and then model the
geometry of such learned features with a radial decision
boundary in the hyper-sphere. Specifically, we start with
pre-computing a reference center c ∈ RD, by averaging the
features of all pixels in real images of the training set. We
use F′

ij ∈ RD to indicate the ij-th pixel of the final mask
prediction layer. Therefore, our localization loss Lloc is:

Lloc =
1

HW

H∑
i

W∑
j

L
(
F′

ij ,Mij ; c, τ
)
, (1)

where:

L =

{∥∥F′
ij − c

∥∥
2

if Mij real
max

(
0, τ −

∥∥F′
ij − c

∥∥
2

)
if Mij forged.

Here τ is a pre-defined margin. The first term in L improves
the feature space compactness of real pixels. The second
term encourages the distribution of forged pixels to be far
away from real by a margin τ . Note our method differs
to [46,56] in two aspects: 1) unlike [56], we use the second
term in L to enforce separation; 2) compared to the image-
level loss in [46] that has two margins, we work on the more
challenging pixel-level learning. Thus we use a single mar-
gin, which reduces the number of hyper-parameters and im-
prove the simplicity.

3.3. Classification Module

Partial Convolution. Unlike prior work [17, 26, 63] whose
ultimate goal is to localize the forgery mask, we reuse
the forgery mask to help HiFi-Net learn the optimal fea-
ture for classifying fine-grained forged attributes. Specifi-
cally, we generate a binary mask M̂, then overlay M̂ with
the input image as X ⊙ M̂ to obtain the masked image
Xmask ∈ R3×W0×H0 . To process the masked image, we re-
sort to the partial convolution operator (PConv) [41], whose
convolution kernel is renormalized to be applied only on
unmasked pixels. The idea is to have feature maps only
describe pixels at the manipulated region. PConv acts as
conditioned dot product for each kernel, conditioned on the
mask. Denoting Wpar as the convolution kernel, we have:

X′
mask = WT

parXmask = WT
par(X⊙ M̂), (2)

where the dot product ⊙ is “renormalized” to account for
zeros in the mask. At different layers, we update and propa-
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Figure 4. The localization module adopts the self-attention mech-
anism to transfer the feature map F to the localization mask M.

gate the new mask M̂′ according to the following equation:

M̂′ =

{
1 If ∥M̂∥ ≥ 0

0 otherwise.
(3)

Specifically, Xmask represents the most prominent
forged image region. We believe the feature of Xmask can
serve as a prior for HiFi-Net, to better learn the attribute
of individual forgery methods. For example, the observa-
tion whether the forgery occurs on the eyebrow or entire
face, helps decide whether given images are manipulated
by STGAN [42] or FaceShifter [37]. The localization part
is implemented with only two light-weight partial convolu-
tional layers for higher efficiency.
Hierarchical Path Prediction. We intend to learn the hi-
erarchical dependency between different forgery attributes.
Given the image X, we denote output logits and predicted
probability of the branch θb as θb(X) and p(yb|X), respec-
tively. Then, we have:

p(yb|X)
.
= softmax

(
θb(X)⊙ (1 + p(yb−1|X))

)
(4)

Before computing the probability p(yb|X) at branch θb, we
scale logits θb(X) based on the previous branch probability
p(yb−1|X). Then, we enforce the algorithm to learn hi-
erarchical dependency. Specifically, in Eq. (4), we repeat
the probability of the coarse level b − 1 for all the logits
output by branch at level b, following the hierarchical struc-
ture. Fig. 5 shows that the logits associated to predicting
DDPM or DDIM are multiplied by probability for the image
to be Unconditional (Diffusion) in the last level,
according to the hierarchical tree structure.

3.4. Training and Inference

In the training, each branch is optimized towards the
classification at the corresponding level, we use 4 classi-
fication losses, L1

cls, L2
cls, L3

cls and L4
cls for 4 branches.

At the branch b, Lbcls is the cross entropy distance between
p(yb|X) and a ground truth categorical ŷb. The architecture

Branch b
Logits

DDPM 0.7

DDIM 0.1

LDM 0.2

GDM 0.1

Unconditional
Diffusion 0.9

Conditional
Diffusion 0.1

Branch b-1
Probability

0.9

0.9
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Figure 5. The classification probability output from branch θb de-
pends on the predicted probability at branch θb−1, following the
definition of the hierarchical forgery attributes tree.

is trained end-to-end with different learning rates per layers.
The detailed objective function is:

Ltot =
{
λLloc + L1

cls + L2
cls + L3

cls + L4
cls if X is forged

λLloc + L4
cls if X is real

where X is the input image. When the input image is la-
beled as “real”, we only apply the last branch (θ4) loss
function, otherwise we use all the branches. λ is the hyper-
parameter that keeps Lloc on a reasonable magnitude.

In the inference, HiFi-Net generates the forgery mask
from the localization module, and predicts forgery attributes
at different levels. We use the output probabilities at level
4 for forgery attribute classification. For binary “forged
vs. real” classification, we predict as forged if the highest
probability falls in any manipulation method at level 4.

4. Hierarchical Fine-grained IFDL dataset
We construct a fine-grained hierarchical benchmark,

named HiFi-IFDL, to facilitate our study. HiFi-IFDL con-
tains some most updated and representative forgery meth-
ods, for two reasons: 1) Image synthesis evolves into a more
advanced era and artifacts become less prominent in the re-
cent forgery method; 2) It is impossible to include all pos-
sible generative method categories, such as VAE [33] and
face morphing [58]. So we only collect the most-studied
forgery types (i.e., splicing) and the most recent generative
methods (i.e., DDPM).

Specifically, HiFi-IFDL includes images generated from
13 forgery methods spanning from CNN-based manipu-
lations to image editing, as shown in the taxonomy of
Fig. 6a. Each forgery method generates 100, 000 images.
For the real images, we select them from 6 datasets (e.g.,
FFHQ [32], AFHQ [12], CelebaHQ [36], Youtube face [55],
MSCOCO [40], and LSUN [70]). We either take the entire
real image datasets or select 100, 000 images. Training, val-
idation and test sets have 1, 710K, 15K and 174K images.
While there are different ways to design a forgery hierarchy,
our hierarchy starts at the root of an image being forged, and
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Figure 6. Overview of HiFi-IFDL dataset. (a) At level 1, we separate forged images into fully-synthesized and partial-manipulated. The
second level discriminates different forgery methodologies, e.g., image editing, CNN-based partial manipulation, Diffusion or GANs.
Then, we separate images based on whether forgery methods are conditional or unconditional. The final level refers to the specific forgery
method. (b) The table of forgery methods and images source that forgery methods are trained on. The dataset details can be found in the
supplementary material. (c) We offer high resolution forgery masks on manipulated images.

then each level is made more and more specific to arrive at
the actual generator. Our work studies the impact of the hi-
erarchical formulation to IFDL. While different hierarchy
definitions are possible, it is beyond the scope of this paper.

5. Experiments
We evaluate image forgery detection/localization (IFDL)

on 7 datasets, and forgery attribute classification on HiFi-
IFDL dataset. Our method is implemented on PyTorch and
trained with 400, 000 iterations, and batch size 16 with 8
real and 8 forged images. The details can be found in the
supplementary.

5.1. Image Forgery Detection and Localization
5.1.1 HiFi-IFDL Dataset

Tab. 2 reports the different model performance on the HiFi-
IFDL dataset, in which we use AUC and F1 score as met-
rics on both image-level forgery detection and pixel-level
localization. Specifically, in Tab. 2a, first we observe that
the pre-trained CNN-detector [64] does not perform well
because it is trained on GAN-generated images that are dif-
ferent from images manipulated by diffusion models. Such
differences can be seen in Fig. 2c, where we visualize the
frequency domain artifacts, by following the routine [64]
that applies the high-pass filter on the image generated by
different forgery methods. Similar visualization is adopted
in [13,53,64,73] also. Then, we train both prior methods on
HiFi-IFDL, and they again perform worse than our model:
CNN-detector uses ordinary ResNet50, but our model is
specifically designed for image forensics. Two-branch pro-
cesses deepfakes video by LSTM that is less effective to
detect forgery in image editing domain. Attention Xcep-
tion [62] and PSCC [43] are proposed for facial image
forgery and image editing domain, respectively. These two
methods perform worse than us by 9.3% and 3.6% AUC, re-
spectively. We believe this is because our method can lever-
age localization results to help the image-level detection.

In Tab. 2b, we compare with previous methods which

Forgery
Detection

CNN-syn. Image Edit. Overall
AUC F1 AUC F1 AUC F1

CNN-det.∗ [64] 76.5 60.5 54.8 33.5 56.5 40.5
CNN-det. [64] 92.3 90.0 87.0 74.7 90.1 83.7
Two-bran. [46] 93.3 89.2 83.3 66.7 86.7 80.2
Att. Xce. [62] 93.8 91.2 90.8 82.1 87.3 90.0

PSCC [43] 94.6 93.2 90.7 82.3 93.2 91.3
Ours 97.0 96.1 91.5 85.9 96.8 94.1

(a) CNN-detector [64] has 4 variants with different augmentations, and we
report the variant with the best performance. For Two-branch [46], we
implement this method with the help of its authors.

Forgery
Localization

CNN-syn. Image Edit. Overall
AUC F1 AUC F1 AUC F1

OSN-det.∗ [69] 51.4 38.8 83.2 70.1 79.4 56.5
CatNet∗ [35] 48.6 31.9 86.1 79.4 78.3 65.1
CatNet [35] 92.5 81.5 92.0 88.2 92.4 86.8

Att. Xce. [62] 89.1 87.7 83.3 79.3 87.1 86.5
PSCC [43] 94.3 96.8 91.1 86.5 92.7 94.9

Ours 98.4 97.0 93.0 90.1 95.3 96.9

(b) OSN-det [69] only releases pre-trained weights with the inference
script, without the training script.

StarGANv2 STGANDDPM DDIM

(c) Frequency artifacts in different forgery methods. DDPM [24] and
DDIM [61] do not exhbit the checkboard patterns [64, 73] observed in
GAN-based methods, such as StarGAN-v2 [12] and STGAN [42].

Table 2. IFDL Results on HiFi-IFDL. ∗ means we apply author-
released pre-trained models. Models without ∗ mean they are
trained on HiFi-IFDL training set. [Bold: best result].

can perform the forgery localization. Specifically, the pre-
trained OSN-detector [69] and CatNet [35] do not work well
on CNN-synthesized images in HiFi-IFDL dataset, since
they merely train models on images manipulated by edit-
ing methods. Then, we use HiFi-IFDL dataset to train Cat-
Net, but it still performs worse than ours: CatNet uses DCT
stream to help localize area of splicing and copy-move, but
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GT

PSCC
[43]

Ours

Figure 7. Qualitative results on different forged images. The first 6 columns are from image editing methods whereas the last 3 columns
are images generated by Faceshifer [37] and STGAN [42].

Localization Col. Cov. NI.16 CAS. IM20 Avg.
Metric: AUC(%) – Pre-trained

ManT. [68] 82.4 81.9 79.5 81.7 74.8 80.0
SPAN [26] 93.6 92.2 84.0 79.7 75.0 84.9
PSCC [43] 98.2 84.7 85.5 82.9 80.6 86.3
Ob.Fo. [63] 95.5 92.8 87.2 84.3 82.1 88.3

Ours∗ 98.3 93.2 87.0 85.8 82.9 89.4
Ours 98.4 92.4 86.9 86.6 83.4 89.6

(a)

Localization Cov. CAS. NI.16 Avg.
Metric: AUC(%) / F1(%) – Fine-tuned

SPAN [26] 93.7/55.8 83.8/40.8 96.1/58.2 91.2/51.6
PSCC [43] 94.1/72.3 87.5/55.4 99.6/81.9 93.7/69.8
Ob.Fo. [63] 95.7/75.8 88.2/57.9 99.6/82.4 94.5/72.0

Ours 96.1/80.1 88.5/61.6 98.9/85.0 94.6/75.5

(b)

Detection AUC(%) F1(%)
ManT. [68] 59.9 56.7
SPAN [26] 67.3 63.8
PSCC [43] 99.5 97.1
Ob.Fo. [63] 99.7 97.3

Ours 99.5 97.4

(c)

Table 3. IFDL results on the image editing. (a) Localization performance of the pre-train model. (b) Localization performance of the
fine-tuned model. (c) Detection performance on CASIA dataset. All results of prior works are ported from [63]. [Key: Best; Second Best;
Ours∗ uses the same pre-trained dataset as [43], and ours is pre-trained on HiFi-IFDL].

HiFi-IFDL contains more forgery types (e.g., inpainting).
Meanwhile, the accurate classification performance further
helps the localization as statistics and patterns of forgery
regions are related to different individual forgery method.
For example, for the forgery localization, we achieve 2.6%
AUC and 2.0% F1 improvement over PSCC. Addition-
ally, the superior localization demonstrates that our hier-
archical fine-grained formulation learns more comprehen-
sive forgery localization features than multi-level localiza-
tion scheme proposed in PSCC.

5.1.2 Image Editing Datasets

Tab. 3 reports IFDL results for the image editing do-
main. We evaluate on 5 datasets: Columbia [48], Cover-
age [66], CASIA [18], NIST16 [2] and IMD20 [50]. Follow-
ing the previous experimental setup of [17, 26, 43, 63, 68],
we pre-train the model on our proposed HiFi-IFDL and
then fine-tune the pre-trained model on the NIST16, Cov-
erage and CASIA. We also report the performance of HiFi-
Net pre-trained on the same dataset as [43]. Tab. 3a
reports the pre-trained model performance, in which our
method achieves the best average performance. The Object-
Former [63] adopts the powerful transformer-based archi-
tecture and solely specializes in forgery detection of the im-
age editing domain, nevertheless its performance are on-par

Metric: IoU / PBCA
Att.Xce. [62] 0.401/0.786

Ours 0.411/0.801

(a) localization

Metric: AUC/PBCA
Att.Xce. [62] 99.69/88.44

Ours 99.45/88.50

(b) detection

Table 4. IFDL results on DFFD dataset. [Key: Best]

with ours. In the fine-tune stage, our method achieves the
best performance on average AUC and F1. Specifically, we
only fall behind on NIST16, where AUC tends to saturate.
We also report the image-level forgery detection results in
Tab. 3c, achieving comparable results to ObjectFormer [63].
We show qualitative results in Fig. 7, where the manipulated
region identified by our method can capture semantically
meaningful object shape, such as the shapes of the tiger and
squirrel. At last, we also offer the robustness evaluation
in Tab. 2 of the supplementary, showing our performance
against various image transformations.

5.1.3 Diverse Fake Face Dataset

We evaluate our method on the Diverse Fake Face Dataset
(DFFD) [62]. For a fair comparison, we follow the same
experiment setup and metrics: IoU and pixel-wise binary
classification accuracy (PBCA) for pixel-level localization,
and AUC and PBCA for image-level detection. Tab. 4 re-
ports that our method obtains competitive performance on
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Method Loss Detection Localization
AUC F1 AUC F1

Full M,L,P Lcls, Lloc 96.8 94.1 95.3 96.9
1 M,L,P Lloc 65.0 70.0 93.4 95.0
2 M,L,P Lcls 95.8 92.4 66.0 58.0
3 M,L,P L4

cls,Lloc 93.1 91.7 92.5 93.9

4 M,L,P Lind
cls ,Lloc 93.2 92.8 93.2 94.8

5 M,L Lcls,Lloc 96.6 93.0 94.8 96.0

Table 5. Ablation study. M, L, and P represent the multi-branch
classification module, localization module and Pconv operation,
respectively. Lcls and Lloc are classification and localization loss,
respectively. L4

cls and Lind
cls denote we only perform the fine-

grained classification on 4th level and classification without hi-
erarchical path prediction. [Key: Best]

F1 score

Attr. [71] 31.11

FEN [6] 48.00

Baseline 84.62

Multi-scale 85.37

HiFi-Net 87.63

(a)
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Figure 8. (a) The forgery attribute classification results. The im-
provement over previous works [6, 71] is because the previous
works only learn to attribute CNN-synthesized images, yet do not
consider attributing image editing methods. (b) The confusion ma-
trix of forgery attribute classification at level 4, where a, b and c
represent three scenarios of classification failures. The numerical
value indicates the accuracy. See Sec. 5.3 and Fig. 9 for details.

detection and the best localization performance on partial-
manipulated images. More results are in the appendix.

5.2. Ablation Study

In row 1 and 2 of Tab. 5, we first ablate the Lloc and
Lcls, removing which causes large performance drops on
the detection (24.1% F1) and localization (29.3% AUC), re-
spectively. Also, removing Lcls harms localization by 1.9%
AUC and F1. This shows that fine-grained classification
improves the localization, as the fine-grained classification
features serve as a prior for localization. We evaluate the ef-
fectiveness of performing fine-grained classification at dif-
ferent hierarchical levels. In the 3th row, we only keep the
4th level fine-grained classification in the training, which
causes a sensible drop of performance in detection (3.7%
AUC) and localization (2.8% AUC). In the 4th row, we per-
form the fine-grained classification without forcing the de-
pendency between layers of Eq. 4. This impairs the learning
of hierarchical forgery attributes and causes a drop of 3.6%
AUC in the detection. Lastly, we ablate the PConv in the
5th row, making model less effective for detection.

(a)

(b)

(c)

Figure 9. Three failure scenarios: (a) real images. (b) inpainting
images with small removal regions. (c) images generated from
different styleGANv2ada [30] and styleGANv3 [31], as shown in
the last two rows, respectively.

5.3. Forgery Attribute performance

We perform the fine-grained classification among real
images and 13 forgery categories on 4 different levels, and
the most challenging scenario is the fine-grained classifi-
cation on the 4 th level. The result is reported in Tab. 8a.
Specifically, we train HiFi-Net 4 times, and at each time
only classifies the fine-grained forgery attributes at one
level, denoted as Baseline. Then, we train a HiFi-Net to
classify all 4 levels but without the hierarchical dependency
via Eq. 4, denoted as multi-scale. Also, we compare to the
pre-trained image attribution works [6,71]. Also, it has been
observed in Fig. 8b that we fail on 3 scenarios 1) Some
real images have watermarks, extreme lightings, and dis-
tortion. 2) Inpainted images have small forgery regions.
3) styleGANv2-ada [30] and styleGAN3 [31] can produce
highly similar images. Fig. 9 shows failure cases.

6. Conclusion

In this work, we develop a method for both CNN-
synthesized and image editing forgery domains. We for-
mulate the IFDL as a hierarchical fine-grained classifica-
tion problem which requires the algorithm to classify the
individual forgery method of given images, via predicting
the entire hierarchical path. Also, HiFi-IFDL dataset is pro-
posed to further help the community in developing forgery
detection algorithms.

Limitation Please refer to the supplementary Sec. 2: the
model that performs well on the conventional image edit-
ing can generalize poorly on diffusion-based inpainting
method. Secondly, we think it is possible improve the IFDL
learning via the larger forgery dataset.
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