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Fig. 1: SiW-Mv2 dataset samples in Covering and Makeup spoof categories. These
spoof attacks are: (a) Funny Eyes, (b) Partial Eyes, (c) Partial Mouths, (d) Paperglass,
(e) Impersonate Makeup, (d) Obfuscation Makeup, and (f) Cosmetic Makeup. More
details are in Tab. 1.

In this supplementary material, Sec. 1 and 2 introduce the SiW-Mv2 dataset,
designed protocols, and the baseline model performance. Sec. 3 adds more ex-
planations of the proposed FAS-wrapper, and Sec. 4 reports the implementation
details of our experiments in the main paper’s Sec. 5.2.
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Fig. 2: SiW-Mv2 dataset samples in 3D and 2D Attack spoof categories. These spoof
attacks are: (a) Full Mask, (b) Transparent Mask, (c) Paper Mask, (d) Silicone Head,
(e) Mannequin, (d) Print, and (f) Replay. More details are in Tab. 1.

1 SiW-Mv2 Dataset

In this section, Sec. 1.1 and 1.2 report the SiW-Mv2 dataset and three protocols.
In Sec. 2, we first verify the baseline performance on the Oulu-NPU and SiW
datasets, and then report the baseline performance on the SiW-Mv2 dataset 1.

1.1 Introduction

Our SiW-Mv2 dataset is the updated version of the original SiW-M dataset [9],
which is unavailable due to the privacy issue. For the SiW-Mv2 dataset, we curate
new samples and add one more spoof category (e.g., partial mouths) to improve
the overall spoof attack diversity. As a result, SiW-Mv2 has 785 videos from
493 live subjects, and 915 spoof videos from 600 subjects. Among these spoof
videos, we have 14 spoof attack types, spanning from typical 2D spoof attacks
(e.g., print and replay), various masks, different makeups, and physical material

1 The source code and download instructions can be found on this page.

https://github.com/CHELSEA234/Multi-domain-learning-FAS
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Spoof Category Spoof Attack Video # Subject # Purpose

Covering

Funny Eyes 179 172 Cover.
Partial Eyes 57 27 Hide

Partial Mouths 29 26 Hide
Paperglasses 76 71 Hide

Makeup
Impersonate 61 61 Imper.
Obfuscation 22 15 Imper.
Cosmetic 52 35 Imper.

3D Attack

Full Mask 72 12 Imper.
Transparent Mask 60 60 Hide

Paper Mask 17 6 Hide
Silicone Head 17 4 Hide
Mannequin 40 29 Hide

2D Attack
Replay 98 21 Imper.
Print 135 61 Imper.

Table 1: SiW-Mv2 dataset details. Each spoof attack represents a different purpose
of spoofing, such as impersonation or hiding the original identity. [Keys: Hide: hiding
identity, Imper.: impersonation]

coverings. Some samples are shown in Fig. 1 and Fig. 2, and more details are in
Tab. 1. Moreover, in the SiW-Mv2 dataset, spoof attacks can either modify the
subject appearance to impersonate other people, such as impersonate makeup
and silicone head, or hide the subject identity (e.g., funny eyes and paper mask).
The details of the dataset collection process are in Sec. 4 of the work [9]. Lastly,
the recent usage of SiW-Mv2 is also found in the domain of image forensics [3,5],
where methods are developed to distinguish real images from images that are
manipulated or generated by Artificial Intelligence.

1.2 Protocols and Metrics

In the SiW-Mv2 dataset, we design three different protocols which evaluate the
model ability to detect known and unknown spoof attacks, as well as the gener-
alization ability to spoof attacks at different domains, respectively.

– Protocol I: Known Spoof Attack Detection. We divide live subjects and
subjects of each spoof pattern into train and test splits. We train the model
on the training split and report the overall performance on the test split.

– Protocol II: Unknown Spoof Attack Detection. We follow the leave-one-out
paradigm — keep 13 spoof attack and 80% live subjects as the train split,
and use the remaining one spoof attacks and left 20% live subjects as the
test split. We report the test split performance for both individual spoof
attacks, as well as the averaged performance with standard deviation.

– Protocol III: Cross-domain Spoof Detection. We partition the SiW-Mv2
into 5 sub-datasets, as described in Sec. 4 in the main paper. We train
the model on the source domain dataset, and evaluate the model on test
splits of 5 different domains. Each sub-dataset performance, and averaged
performance with standard deviation are reported.
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Fig. 3: The overall SRENet architecture. We decompose the input image I into three
elements (e.g., IB, IC and IT), which represent the image information at different
frequency levels. The multi-scale feature extractor takes the concatenation of these
three elements to generate multi-scale features (e.g., F1, F2, and F3). Such multi-scale
features are fed to the depth estimate branch for estimating the face depth, and SCE
layers for estimating inpanting trace (Ip), region trace (P), and additive trace (TA).
More importantly, SRE produces M to help pinpoint the spoof region. In the work [8],
such SCE layers are three different branches, and three traces are used to synthesize
the live counterpart of the input image via the adversarial training.

To be consistent with the previous work, we use standard FAS metrics to mea-
sure the SRENet performance. These metrics are Attack Presentation Classifi-
cation Error Rate (APCER), Bona Fide Presentation Classification Error Rate
(BPCER), and Average Classification Error Rate (ACER) [1], and Receiver Op-
erating Characteristic (ROC) curve, respectively.

2 Baseline and Performance

We present our baseline architecture, dubbed SRENet, in Fig. 3. Specifically, the
proposed SRENet is based on PhySTD [8]. However, compared to the original
PhySTD, we make two modifications, which simplify the model and even achieves
the better spoof detection performance. First, the original PhySTD generates
three different traces to reconstruct both spoof and live counterparts of the given
input image, whereas in SRENet we only leverage these three traces to construct
the live counterpart of the given input image. Secondly, we integrate the Spoof
Region Estimator (SRE) in Sec. 3.2 into the architecture, and this SRE serves as
an attention module to help pinpoint the spoof area by the binary mask. Note
that the difference between SRENet and FAS-wrapper is fundamental: SRENet is
a face spoof detection model, whereas FAS-wrapper targets at the multi-domain
FAS updating. Furthermore, from the architectural perspective, the proposed
SRE plays key roles in both SRENet and FAS-wrapper.

Empirically, we first verify the effectiveness of the SRENet on the Oulu-NPU
and SiW datasets. The performance is reported in Tab. 2, which shows that our
model performance is comparable with that of state-of-the-art methods, such as
PhySTD [8] and PatchNet [12]. After that, we report the SRENet performance
on the three designed protocols of the SiW-Mv2 dataset, and results are in Tab. 3.
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Protocol Method APCER (%) BPCER (%) ACER (%)

1
PsySTD. [8] 0.0 0.8 0.4
PatchNet [12] 0.0 0.0 0.0
Ours 0.2 0.6 0.4

2
PsySTD. [8] 1.2 1.3 1.3
PatchNet [12] 1.1 1.2 1.2
Ours 1.4 0.8 1.1

3
PsySTD. [8] 1.7± 1.4 2.2± 3.5 1.9± 2.3
PatchNet [12] 1.8± 1.5 0.6± 1.2 1.2± 1.3
Ours 1.6± 1.6 1.2± 1.4 1.4± 1.5

4
PsySTD. [8] 2.3± 3.6 4.2± 5.4 3.6± 4.2
PatchNet [12] 2.5± 3.8 3.3± 3.7 2.9± 3.0
Ours 2.2± 1.9 3.8± 4.1 3.0± 3.0

(a)

Protocol Method APCER (%) BPCER (%) ACER (%)

1

PsySTD. [8] 0.0 0.0 0.0
PatchNet [12] 0.0 0.0 0.0
Ours 0.0 0.0 0.0

2

PsySTD. [8] 0.0± 0.0 0.0± 0.0 0.0± 0.0
PatchNet [12] 0.0± 0.0 0.0± 0.0 0.0± 0.0
Ours 0.0± 0.0 0.0± 0.0 0.0± 0.0

3

PsySTD. [8] 13.1± 9.4 1.6± 0.6 7.4± 4.3
PatchNet [12] 3.1± 1.1 1.8± 0.8 2.5± 0.5
Ours 6.3± 1.3 2.9± 0.4 4.6± 0.9

(b)

Table 2: The baseline (SRENet) performance on (a) OULU-NPU and (b) SiW datasets.

Metric
Covering Makeup 3D Attack 2D Attack

Overall
Fun. Eye Mou. Pap. Ob. Im. Cos. Imp. Sil. Tra. Pap. Man. Rep. Print

ACER(%) 1.1 1.1 0.2 1.1 0.0 3.6 2.7 0.0 5.4 0.0 0.6 0.0 1.9 1.5 2.6

TDR@
FDR=1.0(%)

31.2 47.8 100.0 44.8 100.0 80.0 87.5 100.0 34.3 100.0 100.0 100.0 97.4 98.2 89.4

(a) Protocol I: Unknown Spoof Attack Detection.

Metric
Covering Makeup 3D Attack 2D Attack

Average
Fun. Eye Mou. Pap. Ob. Im. Cos. Imp. Sil. Tra. Pap. Man. Rep. Print

APCER(%) 26.1 5.4 2.3 6.5 2.7 6.1 8.0 8.8 10.0 0.0 1.1 8.0 19.9 2.7 7.7± 7.0

BPCER(%) 33.0 0.0 0.0 17.3 0.0 42.9 13.7 7.1 8.5 0.0 0.0 0.0 16.0 16.5 11.1± 12.9

ACER(%) 29.5 2.7 1.1 11.9 1.3 24.5 10.9 8.0 9.2 0.0 0.6 4.0 17.9 9.6 9.4± 8.8

TDR@
FDR=1.0(%)

8.9 37.0 88.4 4.0 98.3 23.8 39.2 61.4 47.4 100 100 66.6 39.3 78.9 56.7± 32.0

(b) Protocol II: Unknown Spoof Attack Detection.

Metric
Source
Domain

Spoof Race Age Illum. Average

APCER(%) 2.8 12.5 18.9 15.4 7.7 11.5± 5.7

BPCER(%) 1.5 17.4 11.1 0.0 0.0 6.0± 7.0

ACER(%) 2.2 14.9 15.0 7.7 3.8 8.7± 5.4

TDR@
FDR=1.0(%)

86.2 28.3 44.4 55.6 66.7 56.2± 19.6

(c) Protocol III: Cross Domain Spoof Detection.

Table 3: The baseline (SRENet) performance on three protocols in SiW-Mv2 dataset.

3 More Method Details

3.1 Face Reconstruction Analysis

The motivation of using face reconstruction in our method is that, although
it cannot reconstruct the perfect live faces given its spoof counterpart, but it
can largely shed the light on spatial pixel location where spoofness occurs. As
introduced in Sec. 3.2, we use such a reconstruction method to generate the
preliminary mask Ipre as the pseudo label that supervises the proposed SRE.
We offer the detailed visualization in Fig. 4.
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Fig. 4: The visualization of (a) input spoof image, (b) live counterpart reconstruction,
(c) generated preliminary mask, and (d) estimated spoof region from our method. Three
columns (from left to right) represent three different spoof genera, covered material,
makeup stroke and visual artifacts from replay and print attack.

In general, we have categorized spoof types into three main genera: (a) cov-
ered materials; (b) makeup stroke; (c) visual artifacts (i.e., color distortion and
moire effect) in the replay and print attacks. In particular, for covered materials,
reconstruction methods largely erase these spoof materials, such as funny glasses,
and paper mask. As shown from Fig. 4, Ipre can roughly locate the pixel-wise
spatial location that has been covered by the spoof material, and the estimated
spoof region gives the more accurate prediction on pixels that are covered by
these spoof materials. For makeup stroke, the reconstruction method changes the
color and texture of the facial makeup area, making them similar to the natural
skin. Ipre offers the scattered, discrete binary mask and estimated spoof region
provides the smoother region indicating the spoofness. For replay and print at-
tacks, the reconstruction method modifies facial structure (i.e., nose and eyes)
of the human face, or largely change the image’s appearance, by providing the
image with a sense of depth. Similar as makeup stroke genera, Ipre gives very
discontinuous predictions on spoofness whereas the estimated spoof region is
smoother and semantic.

3.2 Model Response

When a target domain image Itarget is fed to the pre-trained model, the pre-
trained model will be activated, as if the pre-trained model takes as input source
domain images Isource which has resemblance with Itarget. In other words, the
pre-trained model recognizes it as source domain images Isource which has com-
mon characteristic and pattern with Itarget. Therefore, source data can manifest
themselves on the response of the model, or in other words, keeping model re-
sponse allows us to have memory or characteristics of the source data.
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Fig. 5: The detailed architecture of PhySTD. The overall architecture contains Dis-
entangle Generator and Multi-scale Discriminators. Notably, in the architecture of
PhySTD, each convolutional layer is followed by Batch Normalization layer, RELU
activation function and Dropout. This level of details is not included here.
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Fig. 6: In (a), we modify the pre-trained FAS model into a binary classifier. In (b) and
(c), we modified architectures for LwF and LwM methods.

4 Experimental Implementation

4.1 PhySTD method details

In the experimental section, we apply FAS-wrapper on PhySTD for the analysis
in Sec. 5.2. We depict the details of PhySTD in the Fig. 5, and more can be
found in the original work [8].

4.2 The implementation details of prior methods

We are the first work that studies MD-FAS, in which no source data being
available during the model updating process. To the best of our knowledge,
there does not exist FAS works in such a source-free scenario. Therefore, in
order to have a fair comparison, we need to implement methods from other
topics (e.g., anti-forgetting learning and multi-domain learning) on FAS dataset.
In this section, we explain our implementation details on prior methods.
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Fig. 7: Based on the RseNet building block (a), [10,11] have proposed RseNet modified
building blocks in (b) and (c) for learning multiple domain knowledge. Likewise, given
two consecutive building blocks in PhySTD, we construct modified building blocks,
based on [10,11], in (e) and (f).

The implementation details of prior anti-forgetting methods We com-
pare our methods to prior works that have anti-forgetting mechanism: LwF
[7], LwM [4] and MAS [2]. Firstly, we pre-train the FAS model that is based
on PhySTD on the source domain dataset. After the pre-training, we concate-
nate output feature maps generated from the last convolution layer in different
branches as a new concatenated feature maps. Then we feed such feature maps
through Global Average Pooling Layer and a fully-connected (FC) layer, such
that we can obtain a binary classifier. The details are depicted in Fig. 6(a).
We fix the pre-trained FAS model weights and train the last FC layer. As a
result, we can use concatenated feature maps for a binary classification result
indicating spoofness. We denote newly-added layers as the Logits block, part of
which generates the class activate map is denoted as Grad-CAM block. We use
these two blocks with the original FAS model for implementing LwF and LwM,
as illustrated in Fig. 6(b)(c). In terms of MAS [2], we apply the publicly avail-
able source code 2 on the binary classifier we construct, without significantly
changing the architecture. The implementation details of multi-domain

learning methods Seri. Res-Adapter [10], and Para. Res-Adapter [11] are pro-
posed for learning knowledge in multiple visual domains. Specifically, they use
domain-specific adapter to enhance model ability in learning a universal image
representation for multiple domains. They design such an idea on ResNet [6],
which can be seen in Fig. 7. Based on the same idea, we modify the building
block in PhySTD for learning the new domain knowledge. Notably, we have ex-
amine different adapter architectures, such as convolution filter with kernel size
1 × 1, 3 × 3, 5 × 5 and 7 × 7 , and find that 1 × 1 convolution offers the best

2 https://github.com/rahafaljundi/MAS-Memory-Aware-Synapses
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FAS performance. We also consider the publicly available source code 3 as the
reference for the implementation.
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