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Abstract. In this work, we study multi-domain learning for face anti-spoofing
(MD-FAS), where a pre-trained FAS model needs to be updated to perform equally
well on both source and target domains while only using target domain data for
updating. We present a new model for MD-FAS, which addresses the forgetting
issue when learning new domain data, while possessing a high level of adaptabil-
ity. First, we devise a simple yet effective module, called spoof region estimator
(SRE), to identify spoof traces in the spoof image. Such spoof traces reflect the
source pre-trained model’s responses that help upgraded models combat catas-
trophic forgetting during updating. Unlike prior works that estimate spoof traces
which generate multiple outputs or a low-resolution binary mask, SRE produces
one single, detailed pixel-wise estimate in an unsupervised manner. Secondly,
we propose a novel framework, named FAS-wrapper, which transfers knowledge
from the pre-trained models and seamlessly integrates with different FAS mod-
els. Lastly, to help the community further advance MD-FAS, we construct a new
benchmark based on SIW, SIW-Mv2 and Oulu-NPU, and introduce four distinct
protocols for evaluation, where source and target domains are different in terms
of spoof type, age, ethnicity, and illumination. Our proposed method achieves su-
perior performance on the MD-FAS benchmark than previous methods. Our code
is available at https://github.com/CHELSEA234/Multi-domain-learning-FAS.

1 Introduction

Face anti-spoofing (FAS) comprises techniques that distinguish genuine human faces
and faces on spoof mediums [6], such as printed photographs, screen replay, and 3D
masks. FAS is a critical component of the face recognition pipeline that ensures only
genuine faces are being matched. As face recognition systems are widely deployed in
real world applications, a laboratory-trained FAS model is often required to deploy in a
new target domain with face images from novel camera sensors, ethnicities, ages, types
of spoof attacks, etc., which differ from the source domain training data in the laboratory.

In the presence of a large domain-shift [50,58,23] between the source and target do-
main, it is necessary to employ new target domain data for updating the pre-trained FAS
model, in order to perform well in the new test environment. Meanwhile, the source
domain data might be inaccessible during updating, due to data privacy issues, which
happens more and more frequently for Personally Identifiable Information (PII). Sec-
ondly, the FAS model needs to be evaluated jointly on source and target domains, as
spoof attacks should be detected regardless of which domain they originate from. Mo-
tivated by these challenges, the goal of this paper is to answer the following question:

https://orcid.org/0000-0003-3575-3953
https://orcid.org/0000-0003-3756-7820
https://orcid.org/0000-0002-6369-6995
https://orcid.org/0000-0003-3215-8753
https://github.com/CHELSEA234/Multi-domain-learning-FAS


2 X. Guo et al.

MsFE

Target Train Source Train

SCE Layers

Live vs. Spoof

(a) Naïve Fine-tuning

Target Train

Live vs. Spoof

(b) Joint Training

Source Train Target Train

Live vs. Spoof

FAS-wrapper

(c) Our proposed method

Source pre-trained model initializeFAS-wrapper

SCE Layers SCE Layers

MsFE MsFE

Fig. 1. We study multi-domain learning face anti-spoofing (MD-FAS), in which the model is
trained only using target domain data. We first derive the general formulation of FAS models,
which contains Spoof Cue Estimate Layers (SCE layers) and multi-scale feature extractor (MsFE).
Based on these two components, we propose FAS-wrapper that can be adopted for any FAS mod-
els, as depicted in Fig. 1(c). Fig. 1(a) and 1(b) represent the naive fine-tuning and joint training.

How can we update a FAS model using only target domain data, so that the upgraded
model can perform well in both the source and target domains?

We define this problem as multi-domain learning face anti-spoofing (MD-FAS), as
depicted in Fig. 1. Notably, Domain Adaptation (DA) works [14,51,31,27,38] mainly
evaluate on the target domain, whereas MD-FAS requires a joint evaluation. Also, MD-
FAS is related to Multiple Domain Learning (MDL) [44,45,17], which aims to learn
a universal representation for images in many generic image domains, based on one
unchanged model. In contrast, MD-FAS algorithm needs to be model-agnostic for the
deployment, which means the MD-FAS algorithm can be tasked to update FAS models
with various architectures or loss functions. Lastly, the source domain data is unavailable
during the training in MD-FAS, which is different from previous domain generalization
methods in FAS [53,36,20,42] or related manipulation detection problems [5].

There are two main challenges in MD-FAS. First, the source domain data is unavail-
able during the updating. As a result, MD-FAS easily suffers from the long-standing
catastrophic forgetting [25] in learning new tasks, gradually degrading source domain
performance. The most common solution [29,12,22] to such a forgetting issue is to use
logits and class activation map (grad-CAM) [52] restoring prior model responses when
processing the new data. However, due to the increasingly sophisticated spoof image,
using logits and grad-CAM empirically fail to precisely pinpoint spatial pixel locations
where spoofness occurs, unable to uncover the decision making behind the FAS model.
To this end, we propose a simple yet effective module, namely spoof region estimator
(SRE), to identify the spoof regions given an input spoof image. Such spoof traces serve
as responses of the pre-trained model, or better replacement to logits and activation
maps in the MD-FAS scenario. Notably, unlike using multiple traces to pinpoint spoof-
ness or manipulation in image [31,69], or low-resolution binary mask as manipulation
indicator [10,64,33], our SRE offers a single and high-resolution detailed binary mask
representing pixel-wise spatial locations of spoofness. Also, many anti-forgetting algo-
rithms [46,8,54,49,40,13] usually require extra memory for restoring exemplar samples
or expanding the model size, which makes them inefficient in real-world situations.
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Paradigm Method Source Free Learning
New Domain

Joint
Evaluation

Model
Agnostic

Anti-forgetting
Mechanism

Face Anti-Spoofing
Domain Learning

SSDG [20] ✘ ✔ ✔ ✔ N/A
MADDoG [53] ✘ ✔ ✔ ✔ N/A
FSDE-FAS [61] ✘ ✔ ✔ ✔ N/A

Anti-forgetting
Learning

EWC [25] ✔ ✘ ✔ ✔ Prior-driven
iCaRL [46] ✔ ✘ ✔ ✔ Replay
MAS [4] ✔ ✘ ✔ ✔ Prior-driven
LwF [29] ✔ ✘ ✔ ✔ Data-driven (class prob.)
LwM [12] ✔ ✘ ✔ ✔ Data-driven (feat. map)

Multi-domain
Learning

DAN [14] ✘ ✔ ✘ ✔ N/A
OSBP [51] ✘ ✔ ✘ ✔ N/A
STA [31] ✘ ✔ ✘ ✔ N/A

CIDA [27] ✔ ✔ ✘ ✘ N/A
Seri. Adapter [44] ✔ ✔ ✔ ✘ N/A
Para. Adapter [45] ✔ ✔ ✔ ✘ N/A

Multi-domain Learning
Face Anti-spoofing FAS-wrapper (Ours) ✔ ✔ ✔ ✔ Data-driven (spoof region)

Table 1. We study the multi-domain learning face anti-spoofing, which is different to prior works.

Secondly, to develop an algorithm with a high level of adaptability, it is desirable
to keep original FAS models intact for the seamless deployment while changing the
network parameters. Unlike methods proposed in [44,45] that specialize on the certain
architecture (e.g., ResNet), we first derive the general formulation after studying FAS
models [63,65,34,37,30,53], then based on such a formulation we propose a novel ar-
chitecture, named FAS-wrapper (depicted in Fig. 2), which can be deployed for FAS
models with minimum changes on the architecture.

In summary, this paper makes the following contributions:
⋄ Driven by the deployment in real-world applications, we define a new problem of

MD-FAS, which requires to update a pre-trained FAS model only using target domain
data, yet evaluate on both source and target domains. To facilitate the MD-FAS study,
we construct the FASMD benchmark, based on existing FAS datasets [36,34,7], with
four evaluation protocols.

⋄ We propose a spoof region estimator (SRE) module to identify spoof traces in the
input image. Such spoof traces serve as the prior model’s responses to help tackle the
catastrophic forgetting during the FAS model updating.

⋄ We propose a novel method, FAS-wrapper, which can be adopted by any FAS
models for adapting to target domains while preserving the source domain performance.

⋄ Our method demonstrates superior performance over prior works, on both source
and target domains in the FASMD benchmark. Moreover, our method also generalizes
well in the cross-dataset scenario.

2 Related Works

Face Anti-spoofing Domain Adaptation In Domain Adaption (DA) [14,51,31,27,38],
many prior works assume the source data is accessible, but in our setup, source domain
data is unavailable. The DA performance evaluation is biased towards the target domain
data, as source domain performance may deteriorate, whereas FAS models need to excel
on both source and target domain data. There are some FAS works that study the cross-
domain scenario [61,53,20,36,43,59,56]. [61] is proposed for the scenario where source
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Fig. 2. (a) Given the source pre-trained model that contains feature extractor 𝑓𝑆 , we fine-tune
it with the proposed spoof region estimator (SRE) on the target domain data, in which we use
preliminary mask (I𝑝𝑟𝑒) to assist the learning (see Sec. 3.2). Then, we obtain a well-trained SRE
and a new feature extractor 𝑓 𝑇 which specializes in the target domain. (b) In FAS-wrapper, SRE
helps 𝑓𝑆 and updated model (𝑓 𝑛𝑒𝑤) generate binary masks indicating spoof cues, which serve as
model responses given an input image (I).𝑆𝑝𝑜𝑜𝑓 prevents the divergence between estimated spoof
traces, to combat catastrophic forgetting. Meanwhile, using two multi-scale discriminators (𝐷𝑖𝑠𝑆
and 𝐷𝑖𝑠𝑇 ), FAS-wrapper transfers the knowledge from two teacher models ( 𝑓𝑆 and 𝑓 𝑇 ) to 𝑓 𝑛𝑒𝑤

via the adversarial training. (c) The update model 𝑓 𝑛𝑒𝑤 and SRE can be used for the inference.

and a few labeled new domain data are available, with the idea to augment target data by
style transfer [62]. [53] learns a shared, indiscriminative feature space without the target
domain data. Besides, [20] constructs a generalized feature space that has a compact
real faces feature distribution in different domains. [36] also works on unseen domain
generalization. But the same as the other works, the new domain is not based on bio-
metric patterns (i.e., age). Being orthogonal to prior works, the source domain data in
our study is unavailable, which is a more challenging setting, as shown in Tab. 1.
Anti-forgetting Learning The main challenge in MD-FAS is the long-studied catas-
trophic forgetting [25]. According to [11], there exist four solutions: replay [46,8,54],
parameter isolation [49,40,13], prior-driven [25,28,4] and data-driven [29,12,22]. The
replay method requires to restore a fraction of training data which breaks our source-
free constraint, e.g., [47] needs to store the exemplar training data. Parameter isolation
methods [49,40,13] dynamically expand the network, which is also discouraged due to
the memory expense. The prior-driven methods [25,28,4] are proposed based on the as-
sumption that model parameters obey the Gaussian distribution, which is not always the
case. The data-driven method [15,16,19,3] is always more favored in the community,
due to its effectiveness and low computation cost. However, the development of data-
driven methods is dampened in the FAS, since the commonly-used pre-trained model
responses (e.g., class probabilities [29] and grad-CAM [12]) fail to capture spoof re-
gions. In this context, our SRE is a simple yet effect way of estimating the spoof trace
in the image, which serves as the responses of the pre-train model.
Multi-domain Learning Mostly recently, many large-scale FAS datasets with rich an-
notations have been collected [68,67,30] in the community, among which [30] stud-
ies cross-ethnicity and cross-gender FAS. However they work on multi-modal datasets,
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whereas our input is a single RGB image. In the literature, our work is similar to the
multi-domain learning (MDL) [44,45,41], where a re-trained model is required to per-
form well on both source and target domain data. The common approaches are pro-
posed from [44,45] based on ResNet [18], which, compared to [55,26], has advantages
in increasing the abstraction by convoluation operations. In contrast, an ideal MD-FAS
algorithm, such as FAS-wrapper, should work in a model-agnostic fashion.

3 Proposed Method
This section is organized as follows. Sec. 3.1 summarizes the general formulation of
recent FAS models. Sec. 3.2 and 3.3 introduce the spoof region estimator and overall
FAS-wrapper architecture. Training and inference procedures are reported in Sec. 3.4.

3.1 FAS Models Study
We investigate the recently proposed FAS methods (see Tab. 2) and observe that these
FAS models have two shared characteristics.
Spoof Cue Estimate Beyond treating FAS as a binary classification problem, many
SOTA works emphasize on estimating spoof clues from a given image. Such spoof clues
are detected in two ways: (a) optimizing the model to predict auxiliary signals such
as depth map or rPPG signals [34,65,63]; (b) interpreting the spoofness from different
perspectives: the method in [21] aims to disentangle the spoof noise, including color
distortions and different types of artifacts, and spoof traces are interpreted in [35,37] as
multi-scale and physical-based traces.

Method Year Number of Scale Spoof Cue Estimate
Auxiliary [34] 2018 3 Depth and rPPG signal

Despoofing [21] 2018 3 Color distortions,
and display artifacts

MADD [53] 2019 3 Depth
CDCN [65] 2020 3 Depth

STDN [37] 2020 3 Color range bias, content and
texture pattern, and depth.

BCN [63] 2020 3 Patch, reflection and depth.
PSMM-Net [30] 2021 4 Depth, RGB and infrared image.

PhySTD [35] 2022 4 Additive and inpainting trace,
and depth.

Table 2. Summary of recent FAS models.

Multi-scale Feature Extractor
Majority of previous FAS meth-
ods adopt the multi-scale fea-
ture. We believe such a multi-
scale structure assists in learn-
ing information at different fre-
quency levels. This is also demon-
strated in [37] that low-frequency
traces (e.g., makeup strokes and
specular highlights) and high-
frequency content (e.g., Moiré
patterns) are equally important
for the FAS models’ success.

As a result, we formalize the generic FAS model using two components: feature
extractor 𝑓 and spoof cue estimate (SCE) layers (or decoders) 𝑔. When 𝑓 takes an input
face image, denoted as 𝐈, the output feature map at 𝑡-th layer of the feature extractor 𝑓
is 𝑓𝑡(𝐈). The size of 𝑓𝑡(𝐈) is 𝐶𝑡 ×𝐻𝑡 ×𝑊𝑡, where 𝐶𝑡 is the channel number, and 𝐻𝑡 and
𝑊𝑡 are respectively the height and width of feature maps.

3.2 Spoof Region Estimator
Motivation Apart from the importance of identifying spoof cues for FAS performance,
we observe that spoof trace also serves as a key reflection of how different models make
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Fig. 3. The preliminary mask generation process: (a) the spoof image, (b) the live reconstruction,
(c) and (d) are difference image in RGB and gray format, and (e) is the preliminary spoof mask.

the binary decision, namely, different models’ activations on the input image. In other
words, although different models might unanimously classify the same image as spoof,
they in fact could make decisions based on distinct spatial regions, as depicted in Fig. 6.
Thus, we attempt to prevent the divergence between spoof regions estimated from the
new model (i.e., 𝑓 𝑛𝑒𝑤) and source domain pre-trained model (i.e., 𝑓𝑆 ), such that we can
enable 𝑓 𝑛𝑒𝑤 to perceive spoof cues from the perspective of 𝑓𝑆 , thereby combating the
catastrophic forgetting issue. To this end, we propose a spoof region estimator (SRE) to
localize spatial pixel positions with spoof artifacts or covered by spoof materials.
Formulation Let us formulate the spoof region estimate task. We denote the pixel
collection in an image as 𝐷I = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), ..., (𝑥𝑛, 𝑦𝑛)}, the proposed method
aims to predict the region where the area of presentation attack can be represented as
a binary mask, denoted as 𝐷pred = {(𝑥1, 𝑦′1), (𝑥2, 𝑦

′
2), ..., (𝑥𝑛, 𝑦

′
𝑛)}, where 𝑥𝑖, 𝑦𝑖 and 𝑦′𝑖

respectively represent the pixel, ground truth pixel label, and predicted label at 𝑖 th pixel.
Also, the spoof region estimate task can be regarded as a pixel-level binary classification
problem, namely pixel being live or spoof, thus we have 𝑦𝑖 ∈ {o𝐿𝑖𝑣𝑒, o𝑆𝑝𝑜𝑜𝑓}. Note that
𝑖 ∈ {1, 2, 3..., 𝑛} and 𝑛 is the total number of pixels in the image.
Method As depicted in Fig. 2, we insert a SRE module in the source pre-trained model,
between the feature extractor 𝑓𝑆 and spoof cue estimate layers 𝑔𝑆 . The region estima-
tor converts 𝑓 𝑠(I) to a binary mask M with the size 𝐻𝑡′ ×𝑊𝑡′ . In the beginning of the
training, we create the preliminary mask to supervise SRE for generating the spoof re-
gion. The preliminary mask generation is based on the reconstruction method proposed
in [37], as illustrated in Fig. 3. In particular, we denote input spoof image as I𝑠𝑝𝑜𝑜𝑓 and
use the method in [37] to reconstruct its live counterpart 𝐼𝑙𝑖𝑣𝑒. By subtracting I𝑠𝑝𝑜𝑜𝑓
from Î𝑙𝑖𝑣𝑒, and taking the absolute value of the resulting image, we obtain the different
image I𝑑 , whose size is 𝐶0 × 𝐻0 × 𝑊0 where 𝐶0 is 3. We convert I𝑑 to a gray im-
age Î𝑑 , by summing along with its channel dimension. Apparently, Î𝑑 has the size as
𝐶1 × 𝐻0 × 𝑊0 where 𝐶1 is 1. We assign each pixel value in the preliminary mask by
applying a predefined threshold 𝑇 ,

𝑝′𝑖𝑗 =

{

0 𝑝𝑖𝑗 < 𝑇
1 𝑝𝑖𝑗 ≥ 𝑇 ,

(1)

where pixels in Î𝑑 and I𝑝𝑟𝑒 are 𝑝𝑖𝑗 and 𝑝′𝑖𝑗 respectively.
Evidently, the supervisory signal I𝑝𝑟𝑒 is not the ground truth. Inspired by [10] that a

model can generate the manipulation mask by itself during training procedure, we only
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use I𝑝𝑟𝑒 as the supervision at the first a few training epochs, then steer the model itself
to find the optimal spoof region by optimizing towards a higher classification accuracy.
More details are in Sec. 3.4.
Discussion Firstly, we discuss the difference to prior spoof region estimate works. The
previous methods [37,35] use various traces to help live or spoof image reconstruction,
while our goal is to pinpoint the region with spoof artifacts, which serves as pre-trained
model’s responses to help the new model behave similar to the pre-trained one(s), alle-
viating the forgetting issue. [10] offers low-resolution binary masks as the supervisory
signal, but our self-generated I𝑝𝑟𝑒 can only bootstrap the system. Also, [69] proposes
an architecture for producing multiple masks, which is not practical in our scenario.
Thus our mask generation method is different from theirs. Finally, SRE can be a plug-in
module for any given FAS model, and details are in Sec. 5.4.

3.3 FAS-wrapper Architecture

Motivation We aim to deliver an update algorithm that can be effortlessly deployed to
different FAS models. Thus, it is important to design a model agnostic algorithm that
allows the FAS model to remain intact, thereby maintaining the original FAS model
performance. Our FAS-wrapper operates in a model-agnostic way where only external
expansions are made, largely maintaining the original FAS model’s ability.

As depicted in Fig. 2, we denote the source pre-trained feature extractor 𝑓𝑆 as source
teacher, and the feature extractor after the fine-tuning procedure as target teacher (𝑓𝑇 ).
Instead of using one single teacher model like [20], we use 𝑓𝑆 and 𝑓𝑇 to regularize
the training, offering the more informative and instructive supervision for the newly up-
graded model, denoted as 𝑓 𝑛𝑒𝑤. Lastly, unlike prior FAS works [20,53,61] which apply
the indiscriminative loss on the final output embedding or logits from 𝑓𝑆 , we construct
multi-scale discriminators that operate at the feature-map level for aligning intermediate
feature distributions of 𝑓 𝑛𝑒𝑤 to those of teacher models (i.e., 𝑓𝑇 and 𝑓𝑆 ). Motivations of
the multi-scale discriminators are: (a) the multi-scale features, as a common FAS model
attribute (Sec. 3.1), should be considered; (b) the adversarial learning can be used at the
feature-map level which contains the richer information than final output logits.
Method We construct two multi-scale discriminators, 𝐷𝑖𝑠𝑆 and 𝐷𝑖𝑠𝑇 , for transferring
semantic knowledge from 𝑓𝑆 and 𝑓𝑇 to 𝑓 𝑛𝑒𝑤 respectively, via an adversarial learning
loss. Specifically, at 𝑙-th scale, 𝐷𝑖𝑠𝑆𝑙 and 𝐷𝑖𝑠𝑇𝑙 take the previous discriminator output
and the 𝑙-th scale feature generated from feature extractors. We use 𝐝𝑆𝑙 and 𝐝𝑇𝑙 to rep-
resent two discriminators’ outputs at 𝑙-th level while taking teacher generated features
(i.e., 𝑓𝑆

𝑙 (I) and 𝑓𝑇
𝑙 (I)), and 𝐝′𝑆𝑙 and 𝐝′𝑇𝑙 while taking upgraded model generated feature,

𝑓 𝑛𝑒𝑤
𝑙 (I). Therefore, the first-level discriminator output are:

𝐝𝑆
1 = 𝐷𝑖𝑠𝑆1 (𝑓

𝑆
1 (I)), d𝑇

1 = 𝐷𝑖𝑠𝑇1 (𝑓
𝑇
1 (I)), (2)

d′𝑆
1 = 𝐷𝑖𝑠𝑆1 (𝑓

𝑛𝑒𝑤
1 (I)), d′𝑇

1 = 𝐷𝑖𝑠𝑇1 (𝑓
𝑛𝑒𝑤
1 (I)), (3)

and discriminators at following levels take the 𝑙-th (𝑙 > 1) backbone layer output feature
and the previous level discriminator output, so we have:

d𝑆
𝑙 = 𝐷𝑖𝑠𝑆𝑙 (𝑓

𝑆
𝑙 (I))⊕ d𝑆

𝑙−1), d𝑇
𝑙 = 𝐷𝑖𝑠𝑇𝑙 (𝑓

𝑇
𝑙 (I))⊕ d𝑇

𝑙−1), (4)



8 X. Guo et al.

d′𝑆
𝑙 = 𝐷𝑖𝑠𝑆𝑙 (𝑓

𝑛𝑒𝑤
𝑙 (I))⊕ d′𝑆

𝑙−1), d′𝑇
𝑙 = 𝐷𝑖𝑠𝑇𝑙 (𝑓

𝑛𝑒𝑤
𝑙 (I))⊕ d′𝑇

𝑙−1). (5)
After obtaining the output from the last-level discriminator, we define 𝐷𝑆

and 𝐷𝑇
to

train 𝐷𝑖𝑠𝑠 and 𝐷𝑖𝑠𝑡, and 𝑆 and 𝑇 to supervise 𝑓 𝑛𝑒𝑤.

𝑆 = −𝔼𝑥𝑝∼𝑃𝑠 [𝑙𝑜𝑔(𝐝
𝑆
𝑙 )] − 𝔼𝑥𝑓∼𝑃𝑛𝑒𝑤 [𝑙𝑜𝑔(1 − d′𝑆

𝑙 )], (6)

𝑇 = −𝔼𝑥𝑝∼𝑃𝑡 [𝑙𝑜𝑔(𝐝
𝑇
𝑙 )] − 𝔼𝑥𝑓∼𝑃𝑛𝑒𝑤 [𝑙𝑜𝑔(1 − d′𝑇

𝑙 )], (7)

𝐷𝑠
= −𝔼𝑥𝑝∼𝑃𝑠 [𝑙𝑜𝑔(1 − 𝐝𝑆

𝑙 )] − 𝔼𝑥𝑓∼𝑃𝑛𝑒𝑤 [𝑙𝑜𝑔(d
′𝑆
𝑙 )], (8)

𝐷𝑡
= −𝔼𝑥𝑝∼𝑃𝑡 [𝑙𝑜𝑔(1 − 𝐝𝑇

𝑙 )] − 𝔼𝑥𝑓∼𝑃𝑛𝑒𝑤 [𝑙𝑜𝑔(d
′𝑇
𝑙 )]. (9)

Discussion The idea of adopting adversarial training on the feature map for knowledge
transfer is similar to [9]. However, the method in [9] is for the online task and transferring
knowledge from two models specialized in the same domain. Conversely, our case is to
learn from heterogeneous models which specialize in different domains. Additionally,
using two regularization terms with symmetry based on the two pre-trained models,
is similar to work in [66] on the knowledge distillation topic that is different to FAS.
However, the same is the effect of alleviating the imbalance between classification loss
and regularization terms, as reported in [24,66].

3.4 Training and Inference
Our training procedure contains two stages, as depicted in Fig. 2. Firstly, we fine-tune
given any source pre-trained FAS model with the proposed SRE, on the target dataset.
We optimize the model by minimizing the 𝓁1 distance (denoted as 𝑀𝑎𝑠𝑘) between the
predicted binary mask 𝐌 and I𝑝𝑟𝑒, and the original loss 𝑂𝑟𝑖𝑔 that is used in the training
procedure of original FAS models. After the fine-tuning process, we obtain well-trained
SRE and a feature extractor (𝑓𝑇 ) that is able to work reasonably well on target domain
data. Secondly, we integrate the well-trained SRE with the updated model (𝑓 𝑛𝑒𝑤) and
the source pre-trained model (𝑓𝑆 ), such that we can obtain estimated spoof cues from
perspectives of two models. We use 𝑆𝑝𝑜𝑜𝑓 to prevent the divergence between spoof
regions estimated from 𝑓 𝑛𝑒𝑤 and 𝑓𝑆 . Lastly, we use 𝑆 and 𝑇 as introduced in Sec. 3.3
for transferring knowledge from the 𝑓𝑆 and 𝑓𝑇 to 𝑓 𝑛𝑒𝑤, respectively. Therefore, the
overall objective function in the training is denoted as 𝑡𝑜𝑡𝑎𝑙:

𝑡𝑜𝑡𝑎𝑙 = 𝜆1𝑂𝑟𝑖𝑔 + 𝜆2𝑆𝑝𝑜𝑜𝑓 + 𝜆3𝑆 + 𝜆4𝑇 , (10)

where 𝜆1-𝜆4 are the weights to balance the multiple terms. In inference, we only keep
new feature extract 𝑓 𝑛𝑒𝑤 and SRE, as depcited in Fig. 2 (c).

4 FASMD Dataset
We construct a new benchmark for MD-FAS, termed FASMD, based on SiW [34], SiW-
Mv2 [36] 1 and Oulu-NPU [7]. MD-FAS consists of five sub-datasets: dataset A is the

1 We release SiW-Mv2 on CVLab website.

http://cvlab.cse.msu.edu/siw-m-spoof-in-the-wild-with-multiple-attacks-database.html 
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Fig. 4. Representative examples in source and target domain for spoof and illumination protocols.

Fig. 5. The distribution of ethnicity and age in source and target domain subsets.

source domain dataset, and B, C, D and E are four target domain datasets, which intro-
duce unseen spoof type, new ethnicity distribution, age distribution and novel illumina-
tion, respectively. The statistics of the FASMD benchmark are reported in Tab. 4.

Video Num/Subject Num
Dataset ID Train Test
A (Source) 4, 983/603 2, 149/180

B (New spoof type) 1, 392/301 383/71
C (New eth. distribution) 1, 024/360 360/27
D (New age distribution) 892/157 411/43
E (New illu. distribution) 1, 696/260 476/40

Table 3. The FASMD benchmark. [Keys:
eth.=ethnicity, illu.=illumination.]

New spoof type As illustrated in Fig. 4, target
domain dataset B has novel spoof types that
are excluded from the source domain dataset
(A). The motivation for this design is, com-
pared with the print and replay that are preva-
lent nowadays, other new spoof types are
more likely to emerge and cause threats. As
a result, given the fact that, five macro spoof
types are introduced in SIW-Mv2 (print, re-
play, 3D mask, makeup and partial manipu-
lation attack), we select one micro spoof type
from other three macro spoof types besides
print and replay to constitute the dataset B, which are Mannequin mask, Cosmetic
makeup and Funny eyes.
New ethnicity distribution In reality, pre-trained FAS models can be deployed to orga-
nizations with certain ethnicity distribution (e.g., African American sports club). There-
fore, we manually annotate the ethnicity information of each subject in three datasets,
then devise the ethnicity protocol where dataset A has only 1.1% African American
samples, but this proportion increases to 52.3% in dataset C, as depicted in Fig. 5.
New age distribution Likewise, a FAS model that is trained on source domain data full
of college students needs to be deployed to the group with a different age distribution,
such as a senior care or kindergartens. We estimate the age information by the off-the-
shelf tool [48], and construct dataset D to have a large portion of subjects over 50 years
old, as seen in Fig. 5.
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New illumination Oulu-NPU dataset has three different illumination sessions, and we
use methods proposed in [71] to estimate the lighting condition for each sample in SIW
and SIW-Mv2 datasets. Then we apply 𝐾-means [39] to cluster them into 𝐾 groups. For
the best clustering performance, we use "eblow method" [57] to decide the value of 𝐾 .
We annotate different illumination sessions as Dark, three Front Light, Side Light, and
two Bright Light (Fig. 4), then dataset E introduces the new illumination distribution.

5 Experimental Evaluations

5.1 Experiment Setup

We evaluate our proposed method on the FASMD dataset. In Sec. 5.3, we report FAS-
wrapper performance with different FAS models, and we choose PhySTD [35] as the
FAS model for analysis in Sec. 5.2, because PhySTD has demonstrated competitive em-
pirical FAS results. Firstly, we compare to anti-forgetting methods (e.g., LwF [29], MAS
[4] and LwM [12]). Specifically, based on the architecture of PhySTD, we concatenate
feature maps generated by last convolution layers in different branches, then employ
Global Average Pooling and fully connected (FC) layers to convert concatenated fea-
tures into a 2-dimensional vector. We fix the source pre-trained model weights and only
train added FC layers in the original FAS task, as a binary classifier. In this way, we can
apply methods in [29,4,12] to this binary classifier. For multi-domain learning methods
(e.g., Serial and Parallel Res-Adapter [44,45]), we choose the 1 × 1 kernel size con-
volution filter as the adapter and incorporate into the PhySTD as described in original
works (see details in the supplementary material). We use standard FAS metrics to mea-
sure the performance, which are Attack Presentation Classification Error Rate (APCER),
Bona Fide Presentation Classification Error Rate (BPCER), and Average Classification
Error Rate ACER [1], Receiver Operating Characteristic (ROC) curve.
Implementation Details We use Tensorflow [2] in implementation, and we run ex-
periments on a single NVIDIA TITAN X GPU. In the source pre-train stage, we use a
learning rate 3e-4 with a decay rate 0.99 for every epoch and the total epoch number
is 180. We set the mini-batch size as 8, where each mini-batch contains 4 live images
and 4 spoof images (e.g., 2 SIW-Mv2 images, 1 image in SIW and OULU-NPU, re-
spectively). Secondly, we keep the same hyper-parameter setting as the pre-train stage,
fine-tune the source domain pre-trained model with SRE at a learning rate 1e-6. The
overall FAS-wrapper is trained with a learning rate 1e-7.

5.2 Main Results

Tab. 4 reports the detailed performance from different models on all four protocols.
Overall, our method surpasses the previous best method on source and target domain
evaluation in all categories, with the only exception of the target domain performance
in the illumination protocol (0.3% worse than [12]). More importantly, regarding perfor-
mance on source domain data, it is impressive that our method surpasses the best previ-
ous method in all protocols by a large margin (e.g., 5.3%, 6.5%, 0.8% and 8.6%, and 5.6%
on average). We believe that, the proposed SRE can largely alleviate the catastrophic for-
getting as mentioned above, thereby yielding the superior source domain performance
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Method Training data Spoof Age Ethnicity Illumination Average
Upper Bound Source + Target 89.5∕52.5 86.7∕82.3 87.7∕62.8 89.0∕74.4 88.2∕68.0

Source Teacher Source 84.2∕39.8 84.2∕72.8 84.2∕59.2 84.2∕64.4 84.2∕59.1
Target Teacher Target 73.5/51.5 67.9/80.8 77.2∕61.9 65.0∕71.8 70.9∕66.3

LwF [29] Target 74.8∕50.8 71.7∕77.9 71.0∕59.8 65.3∕69.2 70.7∕64.4
LwM [12] Target 76.5∕51.0 71.5∕80.0 76.0∕62.0 71.0∕71.8 73.8∕65.9
MAS [4] Target 73.4∕48.8 68.3∕78.6 73.5∕60.9 66.0∕65.9 71.4∕63.5

Seri. RA [44] Target 74.3∕51.4 72.6∕79.8 72.0∕61.7 67.0∕70.4 71.5∕65.8
Para. RA [45] Target 75.5∕51.2 73.0∕79.7 72.0∕61.5 68.0∕69.3 72.1∕65.4

Ours - (𝑇 + 𝑆 ) Target 80.3∕50.5 77.1∕79.0 75.1∕61.3 77.2∕69.4 77.4∕65.1
Ours - 𝑇 Target 80.5/50.8 79.0/79.4 76.1/61.5 78.3/70.2 78.5/77.4

Ours - 𝑆𝑝𝑜𝑜𝑓 Target 75.5∕51.0 70.4∕79.3 74.9/62.1 70.1∕70.0 72.7∕65.6
Ours Target 81.8/51.5 79.5/80.6 76.8/62.3 79.6/71.5 79.4/66.4

Table 4. The main performance reported in TPR@FPR=0.5%. Scores before and after “∕” are
performance on the source and target domains respectively. [Key: Best, Second Best, except for
two teacher models and upper bound performance in the first three rows ( )].

than prior works. However, the improvement diminishes on the new ethnicity protocol.
One possible reason is that the print and replay attacks account for a large portion of data
in new ethnicity distribution, and different methods, performance on these two common
presentation attacks are similar.

Method APCER (%) BPCER (%) ACER (%)
Upper Bound 3.7∕4.5 5.8∕13.3 5.2∕13.3

Source Teacher 4.1∕4.8 7.4∕23.0 6.1∕23.0
Target Teacher 6.6∕4.6 6.4∕14.2 5.5∕10.0

LwF [29] 6.4∕5.6 8.1∕15.9 6.8∕11.2
LwM [12] 5.6∕4.3 8.0∕14.0 6.3∕11.1
MAS [4] 6.7∕5.3 8.4∕13.9 6.8∕11.2

Seri. RA [44] 6.3∕5.0 8.4∕15.0 6.7∕11.3
Para. RA [45] 6.2∕7.6 8.4∕13.4 6.7∕11.0

Ours - (𝑆 + 𝑇 ) 4.8∕6.5 9.1∕15.6 6.9∕11.1
Ours - 𝑇 4.5∕5.2 8.3∕14.9 6.4∕10.1

Ours - 𝑆𝑝𝑜𝑜𝑓 6.0∕8.8 8.0∕14.2 7.0∕11.5
Ours 4.2/4.2 7.8/13.5 6.0/8.9

Table 5. The average performance of the differ-
ent methods in four protocols. The scores before
and after “∕” are performance on source and tar-
get domains. [Key: Best, Second Best, except for
two teacher models and upper bound performance
in first three rows ( )].

Additionally, Tab. 5 reports the av-
erage performance on four protocols in
terms of ACPER, BCPER and ACER.
Our method still remains the best, be-
sides BPCER on the target domain per-
formance. It is worth mentioning that
we have 4.2% APCER on source do-
main data and 8.9% ACER on target do-
main data, which are better than best
results from prior works, namely 5.6%
APCER in [12] and 11.0% ACER in
[45]. Furthermore, in Sec. 5.4, we ex-
amine the adaptability of our proposed
method, by incorporating it with differ-
ent FAS methods.
Ablation study using𝑆𝑝𝑜𝑜𝑓 SRE plays
a key role in FAS-wrapper for learn-
ing the new spoof type, as ablating the
𝑆𝑝𝑜𝑜𝑓 largely decreases the source domain performance, namely from 79.4% to 72.7%
on TPR@FPR=0.5% (Tab. 4) and 1.8% on APCER (Tab. 5). Such a performance degra-
dation supports our statement that, 𝑆𝑝𝑜𝑜𝑓 prevents divergence between spoof traces
estimated from the source teacher and the upgraded model, which helps to combat the
catastrophic forgetting issue, and maintain the source domain performance.
Ablation study using 𝑆 and 𝑇 Without the adversarial learning loss (𝑆 + 𝑇 ),
the model performance constantly decreases, according to Tab. 4, although such impacts
are less than removal of 𝑆𝑝𝑜𝑜𝑓 , which still causes 2.0% and 1.3% average performance
drop on source and target domains. Finally, we have a regularization term 𝑇 which also
contributes to performance. That is, removing 𝑇 hinders the FAS performance (e.g.,
1.0% ACER on target domain performance), as reported in Tab. 5.
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TPR@FPR=0.5%
(Source/Target) PhySTD [35] CDCN [65] Auxi.-CNN [34]

Naive Fine. 70.9∕66.3 69.2∕63.2 63.3∕61.3
Full (Ours) 79.4∕66.4 74.8∕62.7 70.3∕61.3

Full - 𝑆𝑝𝑜𝑜𝑓 72.7∕65.6 74.1∕62.5 69.0∕61.4
Full - 𝐷𝑡

78.5∕64.4 73.1∕62.3 69.1∕61.3
Full - (𝑇 + 𝑆 ) 77.3∕65.1 71.6∕62.1 65.6∕61.3

TPR@FPR=0.5%
𝑆𝑝𝑜𝑜𝑓 + Multi-disc. (Ours) 79.4∕66.4

𝑆𝑝𝑜𝑜𝑓 + Multi-disc. (same weights) 75.0∕65.8
𝑆𝑝𝑜𝑜𝑓 + Single disc. (concat.) 74.4∕66.0

𝑆𝑝𝑜𝑜𝑓 + [60] 65.2∕63.2

Table 6. (a) The FAS-wrapper performance with different FAS models; (b) Performance of adopt-
ing different architecture design choices.

(a) (b) (c) (a) (b) (c) (a) (b) (c) (a) (b) (c)

Fig. 6. Spoof region estimated from different models. Given input image (a), (b) and (c) are model
responses from [35] and [34], respectively. Detailed analyses in Sec. 5.4.

5.3 Adaptability Analysis

We apply FAS-wrapper on three different FAS methods: Auxi.-CNN [34], CDCN [65]
and PhySTD [35]. CDCN uses a special convolution (i.e., Central Difference Convolu-
tion) and Auxi.-CNN is the flagship work that learns FAS via auxiliary supervisions. As
shown in Tab. 6 (a), FAS-wrapper can consistently improve the performance of naive
fine-tuning. When ablating the 𝑆𝑝𝑜𝑜𝑓 , PhySTD [35] experiences the large performance
drop (6.7%) on the source domain, indicating the importance of SRE in the learning the
new domain. Likewise, the removal of adversarial learning loss (e.g., 𝑇 + 𝑆 ) leads
to difficulty in preserving the source domain performance, which can be shown from,
on the source domain, CDCN [65] decreases 3.2% and Auxi-CNN [34] decreases 4.7%.
This means dual teacher models, in the FAS-wrapper, trained with adversarial learning
benefit the overall FAS performance. Also, we visualize the spoof region generated from
SRE with [34] and [35] in Fig. 6. We can see the spoof cues are different, which supports
our hypothesis that, although FAS models make the same final binary prediction, they
internally identify spoofness in different areas.

5.4 Algorithm Analysis

Spoof Region Visualization We feed output features from different models (i.e., 𝑓𝑆 ,
𝑓𝑇 and 𝑓 𝑛𝑒𝑤) to a well-trained SRE to generate the spoof region, as depicted in Fig. 7.
In general, the 𝑓𝑆 produces more accurate activated spoof regions on the source domain
images. For example, two source images in new spoof category have detected makeup
spoofness on eyebrows and mouth (first row) and more intensive activation on the funny
eye region (second row). 𝑓𝑇 has the better spoof cues estimated on the target domain
image. For example, two target images in the new spoof category, where spoofness esti-
mated from 𝑓𝑇 is stronger and more comprehensive; in the novel ethnicity category, the
spoofness covers the larger region. With 𝑆𝑝𝑜𝑜𝑓 , the updated model (𝑓 𝑛𝑒𝑤) identifies
the spoof traces in a more accurate way.
Explanability We compare SRE with the work which generate binary masks indicating
the spoofness [10], and works which explain how a model makes a binary classification
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(a) (b) (c) (d) (a) (b) (c) (d) (a) (b) (c) (d) (a) (b) (c) (d)

Fig. 7. Given the input spoof image (a), spoof regions generated by SRE with two teacher models
(i.e., 𝑓𝑆 and 𝑓 𝑇 ) in (b) and (c), and the new upgraded model (𝑓 𝑛𝑒𝑤) in (d), for different protocols.
Detailed analyses are in Sec. 5.4.

(a) (b) (c) (d) (e) (a) (b) (c) (d) (e)

Fig. 8. Different spoof estimate methods. Given input image (a), (b) and (c) are the spoof regions
estimated from ours and [10]. (d) and (e) are the activated map from methods in [52] and [70].

decision [70,52]. In Fig. 8, we can observe that our generated spoof traces can better
capture the manipulation area, regardless of spoof types. For example, in the first print
attack image, the entire face is captured as spoof in our method but other three methods
fail to achieve so. Also, our binary mask is more detailed and of higher resolution than
that of [10], and more accurate and robust than [70,52]. Notably, we do not include
works in [35,37,69] which use many outputs to identify spoof cues.
Architecture Design We compare to some other architecture design choices, such as
all multi-scale discriminators with the same weights, concatenation of different scale
features and one single discriminator. Moreover, we use correlation similarity table in
[60] instead of multi-scale discriminators for transfering knowledge from 𝑓𝑆 and 𝑓𝑇 to
𝑓 𝑛𝑒𝑤. Tab. 6 (b) demonstrates the superiority of our architectural design.

5.5 Cross-dataset Study

We evaluate our methods in the cross-dataset scenario and compare to SSDG [20] and
MADDG [53]. Specifically, we denote OULU-NPU [7] as O, SIW [34] as S, SIW-Mv2
[36] as M, and HKBU-MARs [32] as H. We use three datasets as source domains for
training and one remaining dataset for testing. We train three individual source domain
teacher models on three source datasets respectively. Then, as depicted in Fig. 9, inside
FAS-wrapper, three multi-scale discriminators are employed to transfer knowledge from
three teacher models to the updated model 𝑓 𝑛𝑒𝑤 which is then evaluated on the target
domain. Notably, we remove proposed SRE in this cross-dataset scenario, as there is no
need to restore the prior model responses.
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Fig. 9. We adapt FAS-wrapper for the cross-dataset scenario.

O&M&H to S O&W&H to M M&S&H to O M&S&O to H
HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%)

MADDG [53] 16.7 90.5 50.3 60.7 17.6 73.0 33.2 73.5
SSDG-M [20] 11.1 93.4 29.6 67.1 12.1 89.0 25.0 82.5
SSDG-R [20] 13.3 93.4 29.3 69.5 13.3 83.4 28.9 81.0

Ours 15.4 93.6 28.1 68.4 14.8 85.6 27.1 83.8

Table 7. The cross-dataset comparison.

The results are reported in Tab. 7, indicating that our FAS-wrapper also exhibits a
comparable performance on the cross-dataset scenario as prior works.

6 Conclusion
We study the multi-domain learning face anti-spoofing (MD-FAS), which requires the
model perform well on both source and novel target domains, after updating the source
domain pre-trained FAS model only with target domain data. We first summarize the
general form of FAS models, then based on which we develop a new architecture, FAS-
wrapper. FAS-wrapper contains spoof region estimator which identifies the spoof traces
that help combat catastrophic forgetting while learning new domain knowledge, and the
FAS-wrapper exhibits a high level of flexibility, as it can be adopted by different FAS
models. The performance is evaluated on our newly-constructed FASMD benchmark,
which is also the first MD-FAS dataset in the community.
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