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In this supplementary material, we provide some details
and additional experimental results.

1. Details
Here we will further detail the Diverse Fake Face Dataset

and proposed attention map, and analyze additional experi-
ments.

1.1. DFFD Dataset Details

The DFFD was constructed from large and commonly
used facial recognition datasets. This widespread use of
FFHQ and CelebA validate our decision to utilize these as
our real images, and the generation of manipulated images
from them. As shown in Fig. 1, the DFFD encompasses
large variance in both face size and human age, for both
real and manipulated images. Details about the images from
datasets used to construct the DFFD are available in Tab. 1.

1.2. Network Architecture Details

In Fig. 2, we show a simplified diagram of the placement
of the attention layer within the Xception network. Due to
its modularity, the attention layer can easily be added to any
network, in a similar fashion to placing the attention layer
in a different location in the Xception network.

2. Additional Experimental Results
2.1. Human Study

We conduct a human study to determine the ability of hu-
mans to distinguish between real and manipulated images
in the DFFD. 10 humans participated in the study. This
was accomplished using a random set of 110 images from
the DFFD, where 10 images were taken from each row in
Tab 1. For each image, the human was required to classify
between Real, Entire Fake, and Partial Fake, and addition-
ally required to provide polygon-based regions of interest
(attention maps) for Partial Fakes. The results of this study
are shown in Tab. 2. It is clear that humans have signifi-
cant difficulty in the binary classification task (Entire Fake
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Figure 1. (a) Distribution of the face bounding box sizes (pixel)
and (b) Age distribution of our DFFD.

Figure 2. The overall architecture of XceptionNet and its enhance-
ment with our proposed attention later. The original XceptionNet
has entry flow, middle flow, and exit flow, where the middle flow
is composed of 8 blocks. Our attention layer can be added after
any of the blocks.

and Partial Fake are considered a single class), while our
attention based solution performs almost perfectly.

In Fig. 3, we show the manipulation maps produced by
our proposed solution compared to the maps produced by
humans. Humans focus largely on semantic concepts such
as image quality, large artifacts, or strange lighting/color
when judging between real and fake images. Due to this,
humans do not detect the very subtle difference in the image
“fingerprint”, which our proposed solution is able to detect.

2.2. Additional Performance Evaluation

For our best performing model, Xception Regression
Map with supervision, we conduct analysis in two aspects.
i) Fig. 4 shows the worst 3 test samples among the real
test faces and each fake types. For example, the images in
the first column have the lowest Softmax probability of be-
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Table 1. Statistics of our DFFD composition and protocol.

Dataset # Total Samples # Training # Validation # Testing Average face width (pixel)

Real
FFHQ [4] 70, 000 10, 000 999 9, 000 750
CelebA [5] 202, 599 9, 974 997 8, 979 200

Original @ FaceForensics++ [6] 509, 128 10, 230 998 7, 526 200

Fake

Id. Swap
DFL 49, 235 10, 006 1, 007 38, 222 200

Deepfakes @ FaceForensics++ [6] 509, 128 10, 230 999 7, 517 200
FaceSwap @ FaceForensics++ [6] 406, 140 8, 123 770 6, 056 200

Exp. Swap Face2Face @ FaceForensics++ [6] 509, 128 10, 212 970 7, 554 200

Attr. Manip. FaceAPP [1] 18, 416 6, 000 1, 000 5, 000 700
StarGAN [2] 79, 960 10, 000 1, 000 35, 960 150

Entire Syn. PGGAN [3] 200, 000 19, 957 1, 998 17, 950 750
StyleGAN [4] 100, 000 19, 999 2, 000 17, 997 750

Table 2. Comparison between the proposed solution and humans
for detecting manipulated images and localization of the manipu-
lated regions. Larger values are better for all but the EER.

Method ACC AUC EER TDR0.01% TDR0.1% PBCA
Human 68.18 81.71 30.00 42.50 42.50 58.20

XceptionRegSup 97.27 99.29 3.75 85.00 85.00 90.93

Table 3. Fake face detection performance of the Xception Regres-
sion Map with supervision for each fake type.

Fake Type AUC EER TDR0.01% TDR0.1%

ID Manip. 99.43 3.11 65.16 77.76
EXP Manip. 99.40 3.40 71.23 80.87
Attr. Manip. 99.92 1.09 81.32 90.93
Entire Syn. 100.00 0.05 99.89 99.96

Figure 3. The attention maps produced by our proposed solution
and humans during the human study.

ing the real class. Among these samples, some have heavy
makeup, and others are of low image quality. Meanwhile,
the failure cases for the manipulated or entirely synthetic
images are high quality and devoid of defects or artifacts.
ii) Tab. 3 shows the accuracy of testing samples in each fake
type. The completely synthesized images are the easiest to
detect. This is due to the artificial “fingerprint” these meth-
ods leave on the generated images, which is easily distin-
guishable from real images. In contrast, identity and expres-
sion manipulated images are the most challenging to detect,
where image is of good quality and no noticeable artifacts
exist, as in the 2nd and 3rd columns in Fig. 4.

Figure 4. Failure examples of the Xception with Regression Map
under supervision. From left to right, the columns are top 3 worst
samples of real, identity manipulated, expression manipulated,
completely generated, and attribute modified, respectively.

2.3. Additional Ablation Study

In Fig 4, we show an ablation for the placement of the
attention layer within the middle flow of the Xception net-
work. Two trends emerge from this; i) the AUC and EER
decrease as the attention layer is placed later in the network,
and ii) the PBCA increases as the attention layer is placed
later in the network. This second trend is expected, the net-
work is able to produce a more finely-tuned attention map
given more computational flexibility and depth. The first
trend is more intriguing, because it shows that earlier focus
from the attention map is more beneficial for the network
than a finely-tuned attention map later. This earlier atten-
tion provides the network with additional time to inspect
the features selected by the attention map in order to distin-
guish between real and manipulated images at a semantic
level.

In Fig 5, we show the empirical decision for the thresh-
old of 0.1 that we used to convert maps from continuous
values (in the range [0,1]) to binary values. This provides
strong performance in both graphs of Fig. 5, while being se-
mantically reasonable. A modification of 0.1 corresponds to
a modification of magnitude equal to 25 in the typical RGB
range of [0,255]. While a modification of small magnitude



Table 4. The performance of the attention map at different place-
ments in the middle flow of the XceptionNet architecture.

Map position AUC EER TDR0.01% TDR0.1% PBCA
Block1 99.82 1.69 71.46 92.80 83.30
Block2 99.84 1.72 67.95 90.14 87.41
Block3 99.50 2.82 49.06 72.50 88.14
Block4 99.64 2.23 83.83 90.78 88.44
Block5 99.49 2.62 82.70 89.03 88.40
Block6 99.72 2.28 63.08 86.02 87.41
Block7 99.78 1.79 28.51 88.98 88.39
Block8 98.62 4.42 74.24 79.95 88.96
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Figure 5. The attention map estimation performance of the pro-
posed method when using different thresholds to binarize the pre-
dicted map (a) and the ground truth map (b). The threshold for the
other map in either case was 0.1.

(< 10) is almost undetectable by a human, a modification
of larger magnitude (> 25) is significant. Therefore, all ex-
periments presented utilized this empirical threshold value
of 0.1.
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