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In this supplementary material, we provide more infor-
mation of the pipeline details (Section 1), additional exper-
iments (Section 2), as well as additional qualitative results
on in-the-wild images and videos (Section 3).

1. Pipeline Details
1.1. Feature Extraction

For computing the optimization objective of appearance-
consistency (i.e. Ea) and generating the adaptive basis (i.e.
Badap), two sets of multi-level feature maps {Fi}Mi=1 and
{F′i}Mi=1 are extracted by two Feature Pyramid Networks
(FPNs) [8]. As shown in Figure 1, each image is firstly fed
into a backbone network, which is a modified version of Di-
lated Residual Network (DRN-38) [12], where we remove
all dilations and add stride-2 down-sampling at the begin-
ning of each resolution level. Then several convolutional
blocks with up-sampling and skip connection are applied to
generate the final feature maps. Note that our two FPNs
share the same backbone.

1.2. Adaptive Face Model Generation

To better leverage the prior knowledge of facial expres-
sions, we use the linear expression basis [6] built from Face-
Warehouse [1] to initialize the first level adaptive basis at
the beginning of training. More specifically, we initialize
the kernel weights of the last convolution layer (without
bias) in the first level basis network F1

basis to zeros, and
add the expression basis to our adaptive basis after texture
mapping, as shown in the red box in Figure 2. Note that we
allow this expression basis to be updated during training,
which we find helpful to improve the fidelity of our results.
We do not explicitly include the expression basis in our face
model since we find it harming the convergence of training.

The number of parameters for each basis is set to
Kbfm = 80 and Kadap = 64. We use four Residual Blocks
[7] with dilation 1, 2, 4, and 8 in the Siamese branch. After
the max pooling along view dimension, three convolutional
blocks are applied to generate the UV texture representation
of the adaptive basis.

1.3. Pose Initialization

At the very beginning (i.e., level 0), the initial head pose
is regressed by a pre-trained neural network. In principal,
any pose regression network can be used here. In our im-
plementation, we use DRN38 [12] as a feature extractor, on
top of which we build Siamese and view-shared branches to
regress per-view poses similar to Tewari et al. [10]. The
network is trained with the landmark loss computed by
transforming and projecting the mean face from Basel Face
Model (BFM) [9].

2. Additional Experiments

2.1. Dimensionality of the Adaptive Basis

We also investigate how the dimension of the adaptive
basis affects the reconstruction quality. As shown in Ta-
ble 1, different dimensions often lead to similar results
while higher dimension produces slightly more robust re-
sults. Eventually, we empirically set it as 64 for a good
trade off between the quality of results and memory usage.

Table 1: Geometric errors on BU3DFE [11] w.r.t. different
dimensionalities of the adaptive basis.

# of Dimensions 16 32 64
Mean (mm) 1.11 1.12 1.11
STD (mm) 0.32 0.30 0.29

3. Additional Results

3.1. Additional Qualitative Evaluations on Vox-
Celeb2

In this section, we provide additional qualitative evalu-
ations on VoxCeleb2 dataset [3], as shown in Figure 3 and
Figure 4. In general, our results outperform previous single-
and multi-view methods in terms of alignment to images
(e.g., 1st row in Figure 4), and medium-level geometry de-
tails (e.g., 1st row in Figure 3).
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Figure 1: Feature Pyramid Networks Architecture.
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Figure 2: Detail pipeline of the 1st level Adaptive Basis. Details are highlighted with red box.

Note that (self-) occlusions may negatively affect our re-
sults, leading to misalignment (e.g., 5th row in Figure 4)

and unfaithful geometry (e.g., 8th row in Figure 4). This
can be alleviated by including more views and considering



face segmentation when computing the objectives for the
optimization.

3.2. Video Results

We also test our method on three video sequences from
VoxCeleb2 [3], including the comparison with Deng et al.
[4]. We start with the initial 2 frames and cache them. Then,
for each incoming frame, we first compute its head pose
using the pose regression network, and choose the cached
frame whose head pose has a larger difference in yaw angle
with the incoming frame. We then use these 2 frames to per-
form the reconstruction. After that, if the yaw angle of head
pose in the incoming frame is closer to +40◦ or −40◦, we
replace the corresponding cached frame with the incoming
one. This head pose selection process is to ensure sufficient
pose-coverage. From the video, we can see that our method
could generate more temporally consistent and accurate 3D
facial geometry compared to Deng et al. [4].
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Figure 3: Qualitative comparison with Feng et al. [5], Chen et al. [2], and Tewari et al. [10]. For two-view methods, images
of two consecutive rows are input together.
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Figure 4: Qualitative comparison with Feng et al. [5], Chen et al. [2], and Tewari et al. [10]. For two-view methods, images
of two consecutive rows are input together.


