
PrObeD: Proactive Object Detection Wrapper
– Supplementary material –

Vishal Asnani
Michigan State University
asnanivi@msu.edu

Abhinav Kumar
Michigan State University
kumarab6@msu.edu

Suya You
DEVCOM Army Research Laboratory

suya.you.civ@army.mil

Xiaoming Liu
Michigan State University
liuxm@cse.msu.edu

1 Proof of Lemma 1

We begin our proof by considering the image i as a column vector and the model as a linear regression
model with learnable weights wt. The subscript of time t denotes that the weights change as one
performs SGD updates.

SGD Steps. We first consider the gradient of weight (wt). The linear model uses SGD for training,
therefore, wt after t gradient steps is given by:

wt = w0 −
t∑

i=0

sigt = w0 −
t∑

i=0

si
∂L
∂wt

, (1)

where, for linear regression model with image i, L = f(wti− z) = f(η). To estimate the gradient
wt, we have,

gt =
∂L(wti− z)

∂wt

=
∂L(wti− z)

∂(wti− z)

∂(wti− z)

∂wt

=
∂L(η)
∂η

i

gt = iυ, (2)

where υ = ∂L(η)
∂η is the gradient of the loss function wrt noise.

Optimal Weights. First, we will find the bound of the converged value w∞ and the optimal value
w∗. If µw is mean of the learned weight, we have,

E
(
∥w∞ −w∗∥22

)
= E

(
∥w∞ − µw + µw −w∗∥22

)
,

= E((w∞ − µw)
T (w∞ − µw)) + E((µw −w∗)

T (µw −w∗))

+ 2E((w∞ − µw)
T (µw −w∗)),

= E((w∞ − µw)
T (w∞ − µw)) + E((µw −w∗)

T (µw −w∗)) (3)

Using E(w∞ − µw) = E(w∞)− µw = µw − µw = 0, we have

=⇒ E
(
∥w∞ −w∗∥22

)
= V ar(w∞) + E((µw −w∗)

T (µw −w∗)) (4)

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

where V ar(w) =
∑

j w
2
j .

Gradient of Weight. Given the image vector i, and noise η are statistically independent, the image
and noise gradient υ defined in Eq. (2) are also statistically independent. We also assume that the
distribution of image is normal Gaussian (E(i) = 0). Therefore, the expectation of the gradient gt is
given by,

E(gt) = E(i)E(υ) = 0, (5)

Next, the variance of gt is given as

V ar(gt) = V ar(iυ) = E(iT i)[V ar(υ) + E2(υ)]− E(i)E(υ).
(6)

We assume that image pixels are normally distributed. This is common since the networks do a mean
subtraction before inputting to the network. Thus, E(i) = 0. Hence, we have

V ar(gt) = E(iT i)V ar(υ). (7)

Converged Weight. From Eq. (1), the expectation of the weight at time t is,

E(wt) = E(w0) +

t∑
i=0

siE(gj)

= 0 (Using Eq. (5))
(8)

Therefore, for converged weight,

E(w∞) = lim
t→∞

E(wt),

E(w∞) = E(µw) = 0. (9)

For variance, using Eq. (1) we have,

V ar(wt) = V ar(w0) + (

t∑
i

s2j)V ar(gt).

Therefore, we have,
V ar(w∞) = lim

t→∞
(V ar(wt))

= V ar(w0) +
(

lim
t→∞

t∑
i=

s2j

)
V ar(gt)

V ar(w∞) = V ar(w0) + S ′V ar(gt). (10)

Substituting Eq. (7) in the above equation, we have

V ar(w∞) = V ar(w0) + S ′E(iT i)V ar(υ), (11)

Going back to Eq. (4), and substituting Eq. (8) and Eq. (10), we have,

E
(
∥w∞ −w∗∥22

)
= V ar(w0) + S ′E(iT i)V ar(υ) + E(||w∗||2)

=⇒ E
(
∥w∞ −w∗∥22

)
= c+ SV ar(υ) (12)

where c is independent of loss function L and S = S ′E(iT i) is also another constant.

Lemma 1.

We assume that the regression error term e = wT i − ŷ, is drawn from zero mean Gaussian with
variance σ2 as in [5]. So,

V ar(ê) = V ar(wT i− ŷ) = σ2. (13)

2

For a passive detector with converged weights w∞, we have,

E
(
∥w∞ −w∗∥22

)
= c+ SV ar(υ)

= c+ SV ar(e)

=⇒ E
(
∥w∞ −w∗∥22

)
= c+ Sσ2 (14)

Similarly, for a proactive detector with converged weights w
′

∞, we have

E
(∥∥∥w′

∞ −w∗

∥∥∥2
2

)
= c+ SV ar(υ

′
) (15)

Assume that a proactive detector multiplies the input image vector i with a scalar template s. From
Eq. (12), we write the loss term as,

L
′
=

1

2

(
swT i− ŷ

)2
=⇒ ∂L′

∂w
= (swT i− ŷ)si (16)

Taking the variance,

V ar(υ
′
) = V ar

(
∂L′

∂w

)
= V ar((swT i− ŷ)si)

= V ar(s(ŷ + e)− ŷ)s2V ar(i) , assuming E(i) = 0

= V ar(se+ (s− 1)ŷ)s2V ar(i)

= (V ar(se) + V ar((s− 1)ŷ))s2V ar(i)

= s2V ar(e)s2V ar(i) , assuming V ar(ŷ) = 0

≤ s2V ar(e)s2 , assuming V ar(i) ≤ 0.5×(−1)2+0.5× 12 = 1 (17)

=⇒ V ar(υ
′
) ≤ s4σ2 (18)

If the magnitude of the scalar template is bounded by 1 i.e., s2 < 1, we have

V ar(υ
′
) < σ2. (19)

The above shows that the gradients in the proactive model has less noise than the passive model (a
key for better convergence). Substituting above in Eq. (15), we have

E
(∥∥∥w′

∞ −w∗

∥∥∥2
2

)
= c+ SV ar(υ

′
)

< c+ Sσ2

< c+ SV ar(υ)

=⇒ E
(∥∥∥w′

∞ −w∗

∥∥∥2
2

)
< E

(
∥w∞ −w∗∥22

)
. (20)

The last inequality follows trivially from Eq. (14).

2 Proof of Theorem 1

From Lemma 1, we have,

E
(∥∥∥w′

∞ −w∗

∥∥∥2
2

)
< E

(
∥w∞ −w∗∥22

)
=⇒ V ar(w‘

∞) < V ar(w∞)

=⇒ E(|w‘T
∞i− y|) < E(|wT

∞i− y|)
=⇒ E(ŷ‘ − y) < E(ŷ − y) (21)

3

Since the proactive detector has a better bounding box prediction,

=⇒ E(IoU
′

2D) > E(IoU2D) (22)

Since AP is a non-decreasing function of IoU2D, we have,

AP ‘ ≥ AP. (23)

An important point to note is that the non-decreasing nature does not keep the inequality strict.
In other words, we agree that the final AP from passive and pro-active schemes could be equal.
However, our experience says that IoU improvements, especially close to 1, lead to significant AP
improvements. Current SoTA detectors already achieve decent IoU; hence, even a slight improvement
in IoU improves the AP score.

4

Table 1: Ablation of training iterations on DGNet for more iterations similar to after applying PrObeD.

Method Iter Em ↑ Sm ↑ wFβ ↑ MAE↓ Em ↑ Sm ↑ wFβ ↑ MAE↓ Em ↑ Sm ↑ wFβ ↑ MAE↓
CAMO COD10K NC4K

DGNet [6] 1× 0.859 0.791 0.681 0.079 0.833 0.776 0.603 0.046 0.876 0.815 0.710 0.059
DGNet [6] 2× 0.861 0.791 0.682 0.080 0.832 0.778 0.606 0.045 0.875 0.814 0.711 0.059
+ PrObeD 2× 0.871 0.797 0.702 0.071 0.869 0.803 0.661 0.037 0.900 0.838 0.755 0.049

Table 2: Ablation of dice loss with cross-entropy (CE) loss vs. cosine similarity
CAMO COD10K NC4KMethod Em ↑ Sm ↑ wFβ ↑ MAE↓ Em ↑ Sm ↑ wFβ ↑ MAE↓ Em ↑ Sm ↑ wFβ ↑ MAE↓

Dice + CE loss 0.831 0.782 0.688 0.084 0.810 0.795 0.646 0.045 0.874 0.817 0.721 0.060
Cosine similarity 0.871 0.797 0.702 0.071 0.869 0.803 0.661 0.037 0.900 0.838 0.755 0.049

3 Implementation Details

We now include more details of our method here.

Network Architecture. The network architecture of encoder E and decoder D network used for
PrObeD is shown in Fig. 1. Both networks consist of 2 stem convolution layers and 13 blocks, each
block containing convolutional, batch normalization, and ReLU activation layers. The images are
given as input to the encoder network to output the template, which is multiplied by the input images
to make them encrypted. The encrypted images are then passed to the decoder network to recover the
template. Finally, we input encrypted images to different object detectors to perform detection.

Dataset license information. We use benchmark datasets for GOD and COD. The authors for
MS-COCO [8] dataset specify that the annotations in this dataset, along with this website, belong to
the COCO Consortium and are licensed under a Creative Commons Attribution 4.0 License. The
COD10K dataset is available for non-commercial purposes only [4]. The CAMO data is published
under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License [7]. Finally, the
NC4K dataset is available to use for non-commercial purposes.

Experimental Setup and Hyperparameters. PrObeD is trained in an end-to-end manner for all the
object detectors, with training iterations similar to the pretrained object detector. For both encoder
and decoder networks, we use Adam optimizer with a learning rate of 1e−5. We use different weights
of [λOBJ , λE , λD] for different object detectors. We use [7,10,10] for Faster-RCNN, [50, 1.25, 4.25]
for YOLOv5, [50, 7.5, 7.5] for DeTR and [10, 0.1, 0.1] for DGNet. All experiments are conducted
on one NVIDIA A100 GPU.

4 Additional Experiments

Train COD detector DGNet more. Similar to the GOD detector, we train the COD detector
DGNet for more iterations, similar to after applying PrObeD. The results are shown in Tab. 1. We
see a similar behavior as seen in GOD detectors; the performance improves after training for more
iterations, but only up to a certain extent. PrObeD is able to improve performance by a larger margin,
showing the effectiveness of the proactive schemes.

COD loss. Our loss design is inspired by the prior proactive works [1, 2], which estimate the
learnable template by applying a cosine similarity loss. The authors experiment with various loss
types, showing the effectiveness of the cosine similarity loss design. However, COD is analogous
to the segmentation task, which generally adopts a loss design of cross-entropy loss with dice loss,
which might be beneficial for COD. We perform an ablation by applying cross-entropy loss with dice
loss for COD. The results are shown in Table 2. We see that our proactive wrapper is not benefiting
by removing the cosine similarity loss, proving the study of the prior proactive works.

Error analysis. Following [3], there can be a number of errors that deteriorate the performance of
the object detector. These are:

1. Classification error (Cls): Localized correctly but classified incorrectly.

5

Figure 1: Architecture for encoder and decoder network.

2. Localization error (Loc): Classified correctly but localized incorrectly.
3. Both Classification and Localization error (Cls & Loc): Classified and localized incorrectly.
4. Duplicate detection error (Duplicate): Would be correct if not for a higher scoring detection.
5. Background error (Background): Detected background as foreground.
6. Missed target error (Missed): All undetected targets i.e.false negatives, which are not already

covered by classification or localization errors.

Fig. 2 shows the error analysis for three object detectors, namely, Faster-RCNN, YOLOv5, and
DeTR. PrObeD improves the number of correct predictions of all three detectors, especially for
Faster-RCNN, where the number of correct predictions increases by around 17%. For DeTR and
YOLOv5, the improvement is less, which is evident from the less increase in correct predictions.
The major improvement for all three detectors comes from classification and localization-related
errors. All these errors decrease after PrObeD is applied to all the detectors. Further, Faster-RCNN,

6

Figure 2: Error analysis for (a) Faster-RCNN, (b) YOLOv5, and (c) DeTR. PrObeD is able to improve the
number of correct predictions and reduce most errors.

being an old detector, makes a lot of background errors, which are reduced by a significant margin
after applying PrObeD. The gain is not much for DeTR and YOLOv5, which tend to make fewer
background errors. Finally, one-stage detectors suffer mostly from the problem of duplicate detection,
which is remedied by the PrObeD.

5 Potential Negative Societal Impact

PrObeD utilizes a proactive scheme to benefit object detection. Our approach can be considered
a benign adversarial attack on object detectors. However, with a change in the objective function,
PrObeD could also be used as an adversarial attack to deteriorate the performance of different object
detectors. This might pose a threat to object detectors, whether used for GOD or COD, and some
forms of adversarial training might be required to prevent the threat of adversarial attacks.

7

References

[1] Vishal Asnani, Xi Yin, Tal Hassner, Sijia Liu, and Xiaoming Liu. Proactive image manipulation
detection. In CVPR, 2022. 5

[2] Vishal Asnani, Xi Yin, Tal Hassner, and Xiaoming Liu. MaLP: Manipulation localization using a
proactive scheme. In CVPR, 2023. 5

[3] Daniel Bolya, Sean Foley, James Hays, and Judy Hoffman. TIDE: A general toolbox for
identifying object detection errors. In ECCV, 2020. 5

[4] Deng-Ping Fan, Ge-Peng Ji, Ming-Ming Cheng, and Ling Shao. Concealed object detection.
TPAMI, 2021. 5

[5] Yihui He, Chenchen Zhu, Jianren Wang, Marios Savvides, and Xiangyu Zhang. Bounding box
regression with uncertainty for accurate object detection. In CVPR, 2019. 2

[6] Ge-Peng Ji, Deng-Ping Fan, Yu-Cheng Chou, Dengxin Dai, Alexander Liniger, and Luc Van Gool.
Deep gradient learning for efficient camouflaged object detection. Machine Intelligence Research,
2023. 5

[7] Trung-Nghia Le, Tam Nguyen, Zhongliang Nie, Minh-Triet Tran, and Akihiro Sugimoto.
Anabranch network for camouflaged object segmentation. CVIU, 2019. 5

[8] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and Lawrence Zitnick. Microsoft COCO: Common objects in context. In ECCV, 2014. 5

8

	Proof of Lemma 1
	Proof of Theorem 1
	Implementation Details
	Additional Experiments
	Potential Negative Societal Impact

