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Abstract

RNN-based approaches have achieved outstanding per-
formance on action recognition with skeleton inputs. Cur-
rently these methods limit their inputs to coordinates of
joints and improve the accuracy mainly by extending RNN
models to spatial domains in various ways. While such
models explore relations between different parts directly
from joint coordinates, we provide a simple universal spa-
tial modeling method perpendicular to the RNN model en-
hancement. Specifically, we select a set of simple geomet-
ric features, motivated by the evolution of previous work.
With experiments on a 3-layer LSTM framework, we ob-
serve that the geometric relational features based on dis-
tances between joints and selected lines outperform other
features and achieve state-of-art results on four datasets.
Further, we show the sparsity of input gate weights in the
first LSTM layer trained by geometric features and demon-
strate that utilizing joint-line distances as input require less
data for training.

1. Introduction
Action recognition aims to identify human actions from

input sensor streams, where RGB [7, 37], depth [32, 29]
and skeleton [8, 38] are three common types of input. RGB
videos are the most popular input and have been widely
studied. However, information captured in the 3D space
where human actions are represented is richer. Motion cap-
ture systems extract 3D joint positions using markers and
high precision camera arrays. Though such systems pro-
vide highly accurate joint positions for skeletons, it is not
designed for recognizing actions in daily life. Another so-
lution is the Kinect sensor that generates skeletons from
depth maps. We focus on action recognition from skele-
ton inputs rather than RGB or depth for three reasons. First,
skeletons suffer less intra-class variances compared to RGB
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Figure 1: Evolution of geometric relation modeling for
RNN-based action recognition. Orange points are joints,
gray dotted lines connect several joints represent body parts,
blue bidirectional arrows represent relations between parts
or joints. (a) relations between adjacent parts [8]; (b) rela-
tions among all parts [38, 24]; (c) relations between adja-
cent joints [16]; (d) relations among all joints (ours).

or depth, since skeletons are invariant to viewpoint or ap-
pearance. Secondly, skeletons are high-level information,
which greatly simplify the learning of action recognition it-
self. Third, Yao et al. [33] show that using the same clas-
sifier on the same dataset, pose-based features outperform
appearance features.

Recent exploration of recurrent neural network
(RNN) [34, 36] has a great influence on processing video
sequence. Several works [8, 38, 24, 16] successfully built
well-designed multilayer RNNs for recognizing action
based on skeletons. However, while promising recognition
performances are observed using these methods, they have
three common limitations: (1) their inputs are limited to the
coordinates of joints, (2) the RNN models are sophisticated
and have a high complexity; and (3) the relations learned
from these models are rarely self-explanatory and intuitive
to human.

In this paper, considering that LSTM can well model
the long-term contextual information of temporal domain,



we focus on feeding LSTM with rich spatial domains fea-
tures by exploring geometric relations between joints. Our
method is inspired by the evolution of recent skeleton-based
action recognition using RNN models. Du et al. [8] model
the relations of neighboring parts (two arms, two legs and
torso) with handcrafted RNN subnets and ignores the rela-
tions between non-adjacent parts (Fig. 1(a)), which is reme-
died by two methods in different ways. Zhu et al. [38] add
a mixed-norm regularization term to the fully connected
LSTMs cost function which can exploit relations between
non-adjacent parts (Fig. 1(b)). Another solution is intro-
duced by Shahroudy et al. [24], who separate the memory
cell to part-based sub-cells and the non-adjacent parts re-
lations are learned over the concatenated part-based mem-
ory cells (Fig. 1(b)). Though these two methods success-
fully explore relations between body parts, dividing body
into parts might not be well funded. A more elaborate divi-
sion is proposed by Liu et al. [16]. They focus on adjacent
joints and design a sophisticated model traversing skeleton
as a tree (Fig. 1(c)). However, [16] ignores the relations
between non-adjacent joints. The evolution of geometric
relation modeling indicates that adding relations between
non-adjacent joints may further enhance the performance.

Based on this intuition, we enumerate eight geometric
features to describe relations among all joints inspired by
several previous work [5] as input (Fig. 1(d)). This kind
of feature describes geometric relations between specific
joints in a single frame or a short frame sequence, which is
typically used for indexing and retrieval of motion capture
data. We evaluate their performances on LSTM. Experi-
mentally, we find joint-line distances outperform others on
four datasets. To further understand our deep LSTM net-
work, we visualize the weights learned in the first LSTM
layer and find the weight of input gate is sparse, which
means a small subset of joint-line distances is sufficiently
representative. Our method has three advantages. First,
our simple geometric feature is superior than the joint co-
ordinates in all evaluations, which means future work shall
pay attention to this type of geometric features. Second, the
fact that we achieve the state-of-the-art performance using
the standard LSTM model [11] indicates that our finding is
applicable to perpendicular development in RNN models.
Third, the geometric features describing relations between
joints, lines and planes are easy for human to comprehend.

Our main contribution is an integrated system combing
the advantages of geometric features and stacked LSTM
model for skeleton-based action recognition. Using pro-
posed JL d requires less training samples than using joint
coordinates. Our model is also simpler than many well-
designed LSTM architectures, and yet it achieves state-of-
art results in widely used four benchmark datasets.

The remainder of the paper is organized as follows. In
Section 2, we introduce the related work on skeleton based

action recognition. In Section 3, we model human spatial
information via eight kinds of geometric relational features.
Experimental results and discussions are presented in Sec-
tion 4. Finally, we conclude the paper in Section 5.

2. Related Work
In this section, we briefly review the existing works that

closely relate to the proposed method, including two cate-
gories of approaches representing relational geometric fea-
tures and skeleton-based action recognition.

Geometric features Many prior works recognize actions
from direct measures of joint parameters of the human
body, e.g., angles, position, orientation, velocity, acceler-
ation [30, 22, 4, 21]. Muller et al. [18] introduce a class
of Boolean features expressing geometric relations between
certain body points of a pose. Yao et al. [33] develop a
variety of pose-based features including distance between
joints, distance between joints and planes, and velocity of
joints, etc. Yun et al. [35] extend [33]’s idea and modify
pose-based features that are suitable for two persons’ in-
teraction. Chen et al. [5] enumerate 9 types of geometric
features and concatenate all of them as pose and motion
representations. Vinagre et al. [28] propose a relational geo-
metric feature called Trisarea, which describes the geomet-
ric correspondence between joints by means of the area of
the defined triangle. Vemulapalli et al. [27] utilize rotations
and translations to represent the 3D geometric relationships
of body parts in Lie group. In contrast, our work extends
geometric features to action recognition via deep learning
methods.

RNN for skeleton-based action recognition Du et al. [8]
propose an end-to-end hierarchical RNN with handcrafted
subnets, where the raw positions of human joints are di-
vided to five parts according to human structure, and then
are separately fed into five bidirectional RNNs. As the num-
ber of layers increases, the representations extracted by the
subnets are hierarchically fused to a higher-level represen-
tation. Zhu et al. [38] find such methods ignore the inher-
ent co-occurrences of joints, and thus design a softer divi-
sion method. They add a mixed-norm regularization term
to fully connected LSTMs cost function, which is capa-
ble to exploit the groups of co-occurring and discrimina-
tive joints for better action recognition. An internal dropout
mechanism is also introduced for stronger regularization in
the network, which is applied to all the gate activations.
Shahroudy et al. [24] separate the memory cell to part-
based sub-cells and push the network towards learning the
long-term context representations individually for each part.
The output of the network is learned over the concatenated
part-based memory cells followed by the common output
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Figure 2: The structure of a LSTM layer. The input xt of
the first layer is the geometric feature. For higher layers, the
input xt is the output ht from the previous layer at the same
time instance.

gate. Liu et al. [16] focus on adjacent joints in a skele-
ton, which split body into more smaller parts than prior
work. They extend LSTM to spatial-temporal domains with
a tree-based traversal method. Compared to learning fea-
tures with advanced models, we show that properly defining
hand-crafted features for a basic model can be superior.

3. Our Approach
Many traditional computer vision systems rely on hand-

crafted features. However, recent deep learning-based sys-
tems utilizing features learned from raw data have demon-
strated great success on various vision tasks, e.g., video
classification [6, 34, 17, 25] and image description [6, 31].
Such data-driven features, without the guidance of domain
knowledge, may run into the overfitting problem, especially
in the cases of small amount of training data, or the differ-
ence data distributions between training and testing data.
To this end, we hypothesize that properly designed hand-
crafted features could be valuable to deep learning-based
methods, in contrast to the typical raw data input. Specif-
ically, our skeleton-based action recognition approach uti-
lizes a set of relational geometric features. Similar features
are used in motion retrieval applications [5].

3.1. Our LSTM architecture
In order to put our proposed approach into context, we

first review Long-Short Term Memory neuron (LSTM).
LSTM is an advanced structure which overcomes the
RNN’s vanishing gradient problem [2] and is able to model
long-term dependencies. Different from RNN’s simple neu-
ron, a LSTM neuron contains an input gate, an output gate,
a cell and a forget gate that determines how the information
flow into and out of the neuron. One LSTM layer is shown
in Fig. 2. In our approach, we do not use in-cell connec-
tions [11] (also called peepholes) as no improvement has
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Figure 3: The LSTM architecture in our approach, where
each orange dot is one LSTM layer as Fig. 2.

shown in recent experiments [3]. In summary, components
in LSTM neurons are calculated as follows:

it = σ(Wxixt +Whiht−1 + bi),

ft = σ(Wxfxt +Whfht−1 + bf ),

ut = tanh(Wxuxt +Whuht−1 + bu),

ct = it ◦ ut + ft ◦ ct−1,
ot = σ(Wxoxt +Whoht−1 + bo),

ht = ot ◦ tanh(ct),

(1)

where W and b are the weight matrixes and bias vectors
respectively. The symbol σ is the sigmoid function. The
operation ◦ is an element-wise multiplication.

Taking advantage of multilayer LSTM (a.k.a. the stacked
or deep LSTM) architectures, we build our model shown in
Fig. 3. Specifically, the first LSTM layer takes geometric
features as the input xt and the upper LSTM layer takes the
output ht from the lower LSTM layer as the input xt. The
softmax layer locates on the top of the highest LSTM layer.
This variation of LSTM enables the higher layers to capture
longer-term dependencies of the input sequence.

3.2. Spatial Modeling via Geometric Feature
In this section we consider spatial modeling using geo-

metric features in a single frame. We adopt a typical human
skeleton model with 16 joints. Any two of joints form a
line and any three of joints form a plane. Thus, there are
C2

16 = 120 lines and C3
16 = 560 planes in total. The pair-

wise combination of joints, lines, and planes form geomet-
ric features. Figure 4 (a) shows the skeleton model. Tab. 1
summarizes the numbers of all possible features, where du-
plicated features are removed when identical lines or planes
are determined by the same set of joints.

Since the number of combinations is extremely large, us-
ing all of them in the learning could be very time consum-
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Figure 4: (a) A skeleton model. Orange dots represent joints
and green lines represent limbs. (b) Lines. Green, blue and
red lines are three types of lines. (c) Planes.

Joint Line Plane
Joint 120 1, 680 7, 280
Line 7, 140 65, 520
Plane 156, 520

Table 1: Number of all possible features when using the
human model with 16 joints.

ing. Therefore, we need to select several important lines and
planes in order to reduce the computational cost. Specifi-
cally, we select the following joints, lines and planes on the
16-joint human skeleton, as shown in Fig. 4.

• Joint. Each joint J is encoded with its coordinate
(Jx, Jy, Jz).

• Line. LJ1→J2
is the line from joint J1 to J2, if one of

the following three constraints is satisfied:

1. J1 and J2 are directly adjacent in the kinetic chain.

2. If one of J1 and J2 is at the end of skele-
ton chain (one of Head, L(R)Hand or L(R)Foot),
the other one can be two steps away in the ki-
netic chain (Head→Chest, RHand→RShoulder,
LHand→LShoulder, RHip→RFoot, and
LHip→LFoot). This produces five lines.

3. If both J1 and J2 are at end of skeleton chain,
LJ1→J2

is a line. This produces ten lines.

• Plane. PJ1→J2→J3
is the plane determined

by the triangle with vertices J1, J2, and
J3. We only consider five planes corre-
sponding to the torso, arms and legs, namely:
PChest→Neck→Head, PLShoulder→LElbow→LHand,
PRShoulder→RElbow→RHand, PLHip→LKnee→LFoot

and PRHip→RKnee→RFoot.

As LSTM are designed to learn variation in time, we
enumerate eight types of geometric features that are en-
coded in one pose and are independent of time, as shown
in Fig. 5. In contrast, features like joints velocity and ac-
celeration consider spatial variations over the time. Spe-
cific definitions of the features are shown in Tab. 2. In ad-
dition, we remove duplicated features due to symmetry or
degeneration. For example, JJ d(J1, J2) is symmetric to
JJ d(J2, J1), and JL d(J, LJ1→J2

) degenerates to zero if
J is the same as J1 or J2.

3.3. Implementation Details
Joint coordinates are preprocessed in a way similar to the

scheme in Shahroudy et al. [24], which transforms all joint
coordinates from the camera coordinate system to the body
coordinate system. The original point of body coordinate
is translated to the “center of hips”, and then rotate the X
axis parallel to the 3D vector from “right shoulder” to “left
shoulder” and Y axis towards the 3D vector from “center
of shoulders” to “center of hips”. The Z axis is fixed as the
new X × Y . After that, we normalize all 3D points based
on the summation of skeletal chains distances. Since other
features such as distances and angles are invariant to the
coordinate system, they are calculated in the camera coor-
dinate system in order to reduce the deviation introduced by
the coordinate transformation.

In our system, we use a 3-layer LSTM implemented by
torch7 bindings for NVIDIA CuDNN. The learning rate is
set to 0.01 with a classic momentum of 0.9 [26]. We set an
upper bound on the L2 norm of the incoming weight vector
for each individual neuron [10]. We also adopt common
techniques such as adding weight noises and early stopping.

4. Experimental Results
In this section, we conduct extensive experiments to

demonstrate our action recognition approach based on geo-
metric relational features.

4.1. Dataset description
Our approach is evaluated on four widely used bench-

mark datasets: NTU-RGB+D dataset, SBU-Kinect dataset,
UT-Kinect dataset, and Berkeley MHAD dataset.

SBU-Kinect dataset [35]. The SBU Kinect dataset is a
Kinect captured human action recognition dataset depicting
two-person interaction. In most interactions, one person is
acting and the other person is reacting. The entire dataset
has a total of 282 sequences belonging to 8 classes of inter-
actions performed by 7 participants. Each person have 15
joints. The smoothed positions of joints are used during the
experiment. The dataset provides a standard experimental
protocol with 5-fold cross validation.

NTU-RGB+D dataset [24]. To the best of our knowl-
edge, NTU-RGB+D dataset is a currently the largest RGBD
database for action recognition, which is captured by Kinect



Name Symbol Calculation Description
Joint Coordinate J c J c(J) = (J x, J y, J z) The 3D coordinate of the joint J .

Joint-Joint Distance JJ d JJ d(J1, J2) =
∥∥∥−−→J1J2∥∥∥ The Euclidean distance between joint J1 to

J2.
Joint-Joint Orienta-
tion

JJ o JJ o(J1, J2) = unit(
−−→
J1J2)

The orientation from joint J1 to J2, repre-
sented by the unit length vector

−−→
J1J2.

Joint-Line Distance JL d JL d(J, LJ1→J2) = 2SMJJ1J2/JJ d(J1, J2)
The distance from joint J to line LJ1→J2 .
The calculation is accelerated with Helen
formula.

Line-Line Angle LL a
LL a(LJ1→J2 , LJ3→J4)

= arccos(JJ o(J1, J2)
T � JJ o(J3, J4))

The angle (0 to π) from line LJ1→J2 to
LJ3→J4 .

Joint-Plane Distance JP d
JP d(J, PJ1→J2→J3)

= (J c(J)− J c(J1))� JJ o(J1, J2)⊗ JJ o(J3, J4)

The distance from joint J to plane
PJ1→J2→J3 .

Line-Plane Angle LP a
LP a(LJ1→J2 , PJ3→J4→J5)

= arccos(JJ o(J1, J2))� JJ o(J3, J4)⊗ JJ o(J3, J5)

The angle (0 to π) between line LJ1→J2

and the normal vector of planePJ3→J4→J5 .

Plane-Plane Angle PP a

PP a(PJ1→J2→J3 , PJ4→J5→J6)

= arccos(JJ o(J1, J2)⊗ JJ o(J1, J3)

� JJ o(J3, J4)⊗ JJ o(J3, J5))

The angle (0 to π) between the nor-
mal vectors of planes PJ1→J2→J3 and
PJ4→J5→J6 .

Table 2: Definitions of eight geometric features. Note that Hips coordinate is excluded as it is fixed as (0, 0, 0). On the other
hand, the y coordinate of Hip in the world coordinate frame reflects the absolute height of body and is informative in some
cases (e.g., discerning jumping in the air), and hence is included. � is the dot product. ⊗ is the cross product of two vectors.

J c(J) JJ d(J1, J2) JJ o(J1, J2) JL d(J, L)

LL a(L1, L2) JP d(J, P ) LP a(L,P ) PP a(P1, P2)

Figure 5: Eight feature types. Note that for each feature only the relevant joints, lines, and planes are drawn in red.

v2 in varied views containing 4 different data modalities
for each sample. It consists of 56, 880 action samples of
60 different classes including daily activities, interactions
and medical conditions performed by 40 subjects aged be-
tween 10 and 35. A 25 joints human model is provided. In
order to evaluate effectiveness of scale-invariant and view-
invariant features, it provides two types of evaluation proto-
cols, cross-subject and cross-view.

UT-Kinect Dataset [30]. The UT-Kinect dataset is

captured by a single stationary Kinect containing 200 se-
quences of 10 classes performed by 10 subjects in varied
views. Each action is recorded twice for every subject and
each frame in a sequence contains 20 skeleton joints. We
follow the half-vs-half protocol proposed in [39], where half
of the subjects are used for training and the remaining for
testing.

Berkeley MHAD [20]. Berkeley MHAD is captured by
a motion capture system containing 659 sequences of 11



J c JJ d JJ o JL d LL a JP d LP d PP d

SBU-Kinect 90 435 1305 1624 1635 270 550 45
NTU-RGB+D 73 300 900 897 741 110 180 10

UT-Kinect 58 190 570 612 561 85 155 10
Berkeley MHAD 103 595 1785 1551 1081 160 230 10

Table 3: Dimensions of geometric features in four datasets.

J c JJ d JJ o JL d LL a JP d LP d PP d

SBU-Kinect 128 512 512 512 512 256 512 64
NTU-RGB+D 73 300 512 512 512 110 180 10

UT-Kinect 58 190 570 612 561 85 155 10
Berkeley MHAD 128 512 1024 1024 1024 256 256 32

Table 4: The number of neurons in four datasets.

classes. Actions are performed by 7 male and 5 female sub-
jects in the range 23-30 years of age except for one elderly
subject. All the subjects performed 5 repetitions of each ac-
tion, which correspond to about 82 minutes of total record-
ing time. There are 35 joints accurately extracted according
to the 3D marker trajectory. We follow the protocol in [8],
in which 384 sequences corresponding to the first 7 subjects
are used for training and the 275 sequences of the remaining
5 subjects are for testing.

4.2. Dataset Related Parameters
Since the number of joints are not the same among differ-

ent datasets, we list the dimension of each feature in Tab. 3.
Note that we do not follow the definition of J c in SBU-
Kinect. Because two persons’ skeletons are recorded si-
multaneously, transforming the camera coordinates to ei-
ther one of them is not reasonable, and hence we use the
raw coordinates instead. Another noted difference is that
lines between wrist and hand are ignored for simplicity in
Berkeley MHAD, since these two joints always appear in
the same position.

We evaluate how the number of neuron in LSTM influ-
ences the performance. We find that the neuron size has
little influence on the final results, as long as the number of
neurons is roughly proportional to the number of input fea-
ture dimension. For example, the relation between JL d-
based performance and the number of neurons is shown in
Fig. 6. The numbers of neurons used in the experiment are
listed in Tab. 4. All three layers of LSTM contain the same
number of neurons.

4.3. Performance Comparison
We summarize the action recognition rate comparison

of all four benchmark datasets in Tab. 5. We choose the
baseline algorithms that are typically reported in prior work,
such as [24, 16, 38]. ST-LSTM [16] achieves the highest
accuracy in four dataset among all previous works. Each
ST-LSTM neuron contains two hidden units, one for the
previous joint and the other for the previous frame. Each
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Figure 6: The action recognition rates of the JL d feature
on NTU-RGB+D, with different numbers of neurons.

ST-LSTM neuron corresponds to one of the skeletal joints.
During training, neurons’ states are transformed in a tree
structure based on skeletal connections. A new gating
mechanism within LSTM is developed to handle the noise
in raw skeleton data. Contrast to the comprehensive de-
sign in ST-LSTM, our approach further improves the perfor-
mance on all datasets, except the already saturated Berkeley
MHAD. This improvement is especially remarkable in the
context that we are simply using geometric features on top
of the conventional LSTM architecture.

We observe an impressive improvement in SBU-Kinect.
Since there are more relations in two persons’ interaction
than action performed by a single person, using joint-line
distance is easier to discover relations than using joint co-
ordinates. We also find that the improvement margin in
the NTU-RGB+D cross-view protocol is higher than NTU-
RGB+D cross-subject. This can be attributed by the fol-
lowing observation. Skeletons captured by Kinect are more
accurate in the front view than the side view; hence ad-
ditional errors may be introduced when transforming the
camera coordinates to body coordinates. This is a neces-
sary preprocessing step for using joint coordinates as the
input. In contrast, the joint-line distance can be calculated
without coordinate transformation, which avoids these ad-
ditional errors. Due to the same reason, we make improve-
ment in UT-Kinect, which is also recorded in a variety of



Method SBU-Kinect NTU-RGB+D UT-Kinect Berkeley MHADcross-subject cross-view
Yun et al. [35] 80.3% - - - -
Ji et al. [13] 86.9% - - - -

CHARM [15] 83.9% - - - -
HOG2 [22] - 32.24% 22.27% - -

Super Normal Vector [32] - 31.82% 13.61% - -
Skeleton Joint Features [39] - - - 87.9% -

HON4D [23] - 30.56% 7.26% - -
Skeletal Quads [9] - 38.62% 41.36% - -

FTP Dynamic Skeletons [12] - 60.23% 65.22% - -
Elastic functional coding [1] - - - 94.9% -

Kapsouras et al. [14] - - - - 98.18%
Chaudhry et al. [4] - - - - 100%

Ofli et al. [21] - - - - 95.37%
Lie Group [27] - 50.08% 52.76% 93.6% 97.58%
HBRNN-L [8] 80.35% 59.07% 63.97% - 100%
P-LSTM [24] - 62.93% 70.27% - -

Co-occurrence LSTM [38] 90.41% - - - 100%
ST-LSTM [16] 93.3% 69.2% 77.7% 95.0% 100%

J c 77.55% 63.02% 62.21% 90.91% 98.18%
JJ d 97.54% 64.89% 79.69% 87.88% 97.45%
JJ o 95.13% 69.36% 60.74% 84.85% 96.00%
JL d 99.02% 70.26% 82.39% 95.96% 100%
LL a 84.74% 66.90% 80.60% 94.95% 98.18%
JP d 71.92% 55.82% 62.26% 74.75% 67.64%
LP a 64.43% 54.77% 62.92% 78.79% 34.18%
PP a 21.52% 30.46% 33.17% 27.27% 31.64%

Table 5: Performance comparison. The performances of baseline skeleton-based methods are obtained from [24, 16].

view angles.

4.4. Discussion

4.4.1 Feature Discriminative Analysis
To further understand the effect of different features on deep
LSTM network, we visualize the weights learned in the
first LSTM layer using histograms. All experiments in this
section are conducted on NTU-RGB+D dataset with cross-
subject settings. As shown in Fig. 7, each element repre-
sents the average weight among LSTM neurons calculated
by Eqn. (2),

si =
1

N

N∑
i=1

‖Wxi(i, j)‖ (j = 1, 2...M), (2)

where Wxi(i, j) is essentially Wxi corresponding to ith
neuron and jth input in the first LSTM layer shown in
Eqn. (1), N is the number of neurons in the first LSTM
layer, M is the dimension of the input feature.

From Fig. 7, we observe that the weight distributions of
JJ d, JL d, LL a, JP d and LP a are relatively sparse.
In contrast, J c, JJ o, and PP a do not show such a spar-
sity because they have a lower abstraction level and more
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Figure 7: The histogram of si calculated by Eqn. (2). x axis
represents the value of si and y axis represents the percent-
age of si with the same value.

intra-dependencies among feature elements compared to
features such as JL d. Given the sparsity, we hypothesize
that only a small set of geometric features is sufficiently dis-
criminative.

To verify our hypothesis, we rank all feature elements
in JL d based on si and test their recognition rates on
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Figure 8: Testing action recognition rates with different top
JL d feature numbers.

the selected top 16, 32, 64, 128, 256 and 512 elements
with the highest average weight, respectively. We find
that the recognition rate increases rapidly when the feature
number is small (<64), and after that the increasing is
slowed down. The results are shown in Fig. 8. When
the feature number is above 500, the performance does
not show notable improvement with the growing feature
number. Therefore, this shows that a small set of features
is effective. In practice, if there is a validation set, we
could learn the feature subset and only use it for testing.
In addition, four JL d feature elements with the highest
weights are: Jhead to Lbase of spine→middle of spine,
Jleft wrist to Lleft hand→left thumb, Jright wrist to
Lleft wrist→left ankle, and Jmiddle of spine to Lhead→neck.
This is reasonable since most of actions in the NTU-
RGB+D dataset correspond to hands and head. Taking
an example of “drinking water”, the distance from hand
to spine and the distance from head to spine change
simultaneously.

4.4.2 Feature Combination

In NTU-RGB+D cross-subject protocol, combining all of
the eight types of geometric features achieves 66.74% and
in cross-view settings, the recognition rate is 72.44%, which
are lower than using only the JL d feature. Previous work
that combines multiple kinds of geometric features as in-
put also shows no improvement compared to a single type
of feature [35]. This may be caused by the weak ability of
LSTM in distinguishing useful information from many dif-
ferent types of, and somewhat less discriminative, features.

4.4.3 Data Sample Size

Most hand-crafted features demand fewer data samples for
training than the raw data input. This is also true when we
use LSTM as a learning model. We observe that using JL d
requires fewer samples for training compared to J c, shown
in Fig. 9.

4.4.4 Overfitting Problem

Experimentally we observe that our hand-crafted features
suffer from the overfitting problem in large datasets such as
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Figure 9: Influence of training data samples. The perfor-
mance of the LSTM model using JL d decreases slower
than using J c, with decreasing training samples.
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Figure 10: Performance of four features in NTU-RGB+D
cross-subject settings. Solid and dashed lines represent the
training and testing accuracies respectively.

NTU-RGB+D, despite achieving the state-of-the-art perfor-
mance. We compare three overfitted features (JJ d, JL d
and LL a) with J c and show their training and testing ac-
curacies in Fig. 10. As we can see, these features achieve
higher accuracies than J c in both the training set and test-
ing set, which confirms that geometric features are more
discriminative than J c. Due to J c’s weak discriminative
ability, optimization is rather difficult, which is the potential
reason why J c is less overfitted than others.

5. Conclusions
In this paper, we summarize the evolution of previous

work on RNN-based 3D action recognition using skeletons
and hypothesize that exploring relations among all joints
may lead to better performance. Following the intuition, we
design eight geometric relational features and evaluate them
in a 3-layer LSTM network. Extensive experiments show
the distance between joints and selected lines outperforms
other features and achieves the state-of-the-art performance
in four benchmark datasets. Moreover, we show that using
a subset of joint-line distances can achieve comparative re-
sults and using joint-line distances as input requires fewer
samples for training compared to joint coordinate input.
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