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Abstract. The local feature based approaches have become popular for
activity recognition. A local feature captures the local movement and
appearance of a local region in a video, and thus can be ambiguous;
e.g., it cannot tell whether a movement is from a person’s hand or foot,
when the camera is far away from the person. To better distinguish
different types of activities, people have proposed using the combination
of local features to encode the relationships of local movements. Due to
the computation limit, previous work only creates a combination from
neighboring features in space and/or time. In this paper, we propose
an approach that efficiently identifies both local and long-range motion
interactions; taking the “push” activity as an example, our approach can
capture the combination of the hand movement of one person and the
foot response of another person, the local features of which are both
spatially and temporally far away from each other. Our computational
complexity is in linear time to the number of local features in a video.
The extensive experiments show that our approach is generically effective
for recognizing a wide variety of activities and activities spanning a long
term, compared to a number of state-of-the-art methods.

Key words: Activity Recognition, Spatio-Temporal Phrases

1 Introduction

Activity recognition in videos has attracted increasing interest recently. An ac-
tivity can be defined as a certain spatial and temporal pattern involving the
movements of a single or multiple actors. The recognition task requires cap-
turing enough spatial and temporal information to distinguish different activity
categories, while handling the large intra-category variations. Also, most video
analysis applications, such as surveillance, require high computational efficiency.
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Fig. 1: An example co-occurring spatio-temporal (ST) phrase of two video se-
quences. The left images show space-time locations of the local features in each
video. Red points indicate the features composing the co-occurring phrase. The
right images show the frames (sampled at rate 5, frame index is shown) compos-
ing the phrase. Red circles indicate the local features composing the phrase. The
ST phrase captures the causality relationships among body parts from different
individuals of a long time span for the same activity “push”.

The bag-of-words (BoW) model based on local features is very popular for
activity recognition due to its robustness to real-world environments [1–5]. De-
spite its computational efficiency and intra-category invariance, the BoW model
discards any structural spatial and temporal information among the local fea-
tures. However, a local word only captures the local movement of a particular
region, and can be ambiguous sometimes. For example, using the local features
alone, the activities of “push” and “kick” can be quite similar when it is hard to
tell whether a movement is from a person’s hand or foot due to video resolution.

In order to better distinguish different types of activities, many works have
been done to incorporate spatio-temporal relationships among the local features
[6–12]. In particular, approaches that model the mutual relationships among the
words are spatio-temporally shift invariant [6,8,13–15], and thus do not require
the knowledge on where and when the activity occurs in a video. However, due
to the computational concern, these works have one or more of the following
limitations: 1) only create a combination (phrase) with words in a local space or
time neighborhood [8,14,15], and thus cannot capture the long-term interactions
of different body parts, which can be extracted from different individuals; 2) only
consider a pair of local words [6, 13], and therefore cannot encode interactions
among more than two time stamps or local regions; 3) only encode the distances
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between the words, while discarding the temporal ordering and spatial layout
among them [6,13], and thus is incapable of modeling the casuality relationships.

Along the direction of modeling the mutual relationships among words, this
paper presents a generic activity recognition approach that addresses all of the
aforementioned limitations. Our approach is formed around a novel concept
named the “spatio-temporal phrase (ST phrase)”. A ST phrase of length k is
defined as a combination of k words in a certain spatial and temporal structure,
including their order and relative positions. Hence, it encodes rich temporal or-
dering and spatial geometry information of local words. Fig. 1 illustrates example
ST phrases in two videos, both of which include the “push” activity at different
time stamps. The ST phrases capture the patterns, e.g. the hand movement of
one person in one frame and the foot movement of another person several frames
later. The illustrated phrase consists of local movements that do not occur with-
in the same space-time neighborhood region. Moreover, the same phrase, which
characterizes the “push” activity, occurs at different locations and time stamps
in the two videos.

The algorithm for identifying ST-phrases extends a recent work [16] proposed
for image retrieval, which efficiently detects co-occurring 2D phrases in two stat-
ic images. We extend the work to the space-time domain, and show that we
can identify all ST phrases of any length in a video in time linear to the num-
ber of local features. We also provide an algorithm that makes the ST phrases
speed invariant to deal with different speeds or durations of the activities. The
co-occurring ST phrases are further used to compute a kernel for discrimina-
tive learning with SVM, which implicitly determines the importance of different
phrases. In addition, we propose an algorithm that can update the kernel values
incrementally when a new frame arrives, thereby enabling us to efficiently detect
the activities from video streams in an online fashion.

1.1 Related Work

Many techniques have been proposed to incorporate spatial and temporal infor-
mation into the BoW model. Space-time pyramid matching [2] captures absolute
spatio-temporal locations of the local features with quantized space-time bins;
therefore, it is not spatio-temporal shift invariant. Aligned space-time pyramid
matching [10] relaxes the fixed bin matching, and identifies optimal matching
between the bins of two videos. The method is shift invariant at the cost of
discarding the spatio-temporal ordering among different bins. Trajectories of the
local features [12,17,18] are created by feature tracking methods and are capable
of incorporating temporal information of the same feature in a certain period.
However, exploring rich spatio-temporal relationships of different trajectories re-
mains challenging. Hough Voting or the Implicit Shape Model [7, 19] allow the
local features to vote for the action center in both space and time domains, and
can encode space-time information of the words relative to the action center;
however, the recognition process requires an iterative EM process to predict the
center [7] or a preprocess for detecting the bounding box of the person [19]. Mu-
tual word relationships have been explored [6, 8, 13–15]. As discussed in Section
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Fig. 2: 3D correspondence transform. Circles represent local features, and colors
represent word assignments. A co-occurring ST phrase of length 4 is shown.

1, due to the high computational cost, previous works do not capture higher
order and long range dependencies.

2 Approach

In activity recognition, a video can be represented as a collection of visual words
in the xyt-space, which are created by clustering the local descriptors detected at
local space-time volumes. Various promising local feature detectors, descriptors
and clustering methods [1, 3–5] can be adopted. Specifically, a video is denoted
as V = (wi, xi, yi, ti), where wi is the word entry for feature i, and (xi, yi), ti are
the space and time index of the feature respectively.

2.1 Bag of Spatio-Temporal Phrase

A spatio-temporal (ST) phrase of length k is defined as a combination of k local
words in a certain spatial and temporal structure, including their order and
relative positions. We represent a video as a bag of ST phrases (BoP): V = {Pi},
which encodes much richer spatio-temporal information than the BoW model. A
straightforward implementation of using the BoP is to calculate the histogram
of the phrases and then forward to a classifier like SVM. However, the length of
the histogram, which is the number of possible ST phrases, is exponential to the
phrase length k.

2.2 3D Correspondence Transform

Rather than representing a video with an intractably long histogram of phases,
we directly resort to estimating the distance of two videos by finding the co-
occurring ST phrases and such distance can be easily utilized by SVM learning
via the kernel trick. A co-occurring ST phrase of length k in two videos must
have the same k words and the same space-time layout, as shown in Fig. 1. The
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algorithm for identifying co-occurring ST phrases is an extension of the corre-
spondence transform algorithm proposed in [16,20] for 2D images. As illustrated
in Fig. 2, for each pair of local features (wi, xi, yi, ti) and (w′i, x

′
i, y
′
i, t
′
i) that has

the same word assignment (wi = w′i) in the two videos V and V ′, we calculate
their space-time offset as (∆xi, ∆yi, ∆ti) = (xi − x′i, yi − y′i, ti − t′i), and create
a vote in the XY T offset space (∆X,∆Y,∆T ).

In the quantized XY T offset space, if we have k votes at the same location,
we have a co-occurring ST phrase of length k in the two videos with the same
word entries and the same spatio-temporal structure. Thus, to count the number
of co-occurring ST phrases of length k, we can simply use the XY T offset space.
Whenever we have nl (nl ≥ k) votes at the same location l = (∆x,∆y,∆t) in
the offset space, we increase the number of co-occurrences by nl choose k,

(
nl

k

)
,

since the same space-time structure of nl words also indicates the same structure
of
(
nl

k

)
number of k word. Thus, the number of co-occurring length-k ST phrases

Kk(V, V ′) is calculated as:

Kk(V, V ′) =
∑
l

(
nl
k

)
. (1)

Activity Speed Variations: the same activity category can occur with
different speeds and time durations in different videos. For example, people may
“run” at different speeds, or take different time to form a group in order to
“fight”. To explicitly deal with this problem, we would like to detect k words
from two videos as the same ST phrase if their only structural difference is the
temporal rates. To this end, we add another dimension to the offset space, which
indicates the temporal scaling ∆d, and allow each pair of words vote for multiple
∆d. The offset location of a pair of features with the same word assignment is:
(∆xi, ∆yi, ∆ti, ∆d) = (xi − x′i, yi − y′i, ti − t′i ×∆d,∆d).

In this 4D space, if we have k votes at the same location, we have a co-
occurring ST phrase with a particular temporal scale difference ∆d. In the ex-
periments, we set the scale ∆d to 1, 1.5, 1.52, .., 5, which tolerates up to 5 times
speed difference between activities of two videos.

Scale Variations: people in an activity can appear in different scales for
different videos. The scale invariance can be obtained by adding another dimen-
sion to the offset space as scale difference, similar as the solution for the speed
invariance. We can also utilize the detected scales for local features and vote for
only the scale difference that is the same as that of the local features. Therefore,
we still create one vote for each pair of same local words when speed is not
considered.

2.3 ST Phrase Kernel

Using similar proof as [20] for 2D phrases, we can show that the number of co-
occurring ST phrases of length k equals exactly the inner product of the bag of
length-k-ST phrase histograms of two videos. Therefore, we can use the number
of co-occurrences (Eqn. 1), which can be efficiently computed, as the kernel to
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Fig. 3: Illustration of the incremental kernel computing algorithm. The support
vectors (selected training videos) S and their coefficients α (second column) are
obtained during training, while the offset spaces for each support vector (third
column) need to be computed online during testing. The right most image shows
the enlarged offset space between the video segment Vt and support vector S1.

the SVM. The kernel obviously satisfies the Mercer’s condition. The final kernel
value between two videos V and V ′ is a weighted summation of the normalized
kernel values for the ST phrase of all lengths:

K(V, V ′) =

∞∑
k=1

µk Kk(V, V ′)√
Kk(V, V )Kk(V ′, V ′)

, (2)

where µ is a factor (greater than 1) chosen to ensure that the normalized kernel
values for different k are in similar scales, i.e. the values are not too small.

The SVM with the above kernel projects the word space to the higher order
ST phrase space for classification. During training, we use both positive and neg-
ative examples to compute the kernel matrix, which is used to train a SVM. The
SVM will implicitly assign different weights to different ST-phrases by learning
the coefficients for different training videos. Let the training videos that have
non-zero weights (support vectors) be Sj and the coefficients be αj , the decision
score for a test video V of a particular activity category is computed as:

Score(V ) =
∑

jαjK(V, Sj). (3)

2.4 Incremental Kernel Computing for Activity Localization

Some applications, such as surveillance or security monitoring, require online
activity detection from real-time video streams instead of recognizing temporally
segmented video clips in a batch mode. One simple yet commonly used approach
is to make predictions for every frame based on the video segment composed of
the current frame and the previous T frames as the context. If some detection
delay is allowed, the following T ′ frames are also included in the segment.

As illustrated in Fig. 3, to determine the activity category of the current
frame, we need to compute the kernel values of the corresponding video segment
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Algorithm 1: Compute kernels for frame t and a support vector Sj

1. Initialize Kk(Vt, Sj) = Kk(Vt−1, Sj)

2. For each same word pair in video Sj and frame t of the test video
(a) Compute their offset l = (∆x,∆y,∆t)
(b) Increase Kk(Vt, Sj)+ =

(
nl

k−1

)
, (nl is the original votes at l)

(c) Add one vote to location l
Save the list of offset locations contributed by frame t

3. For each saved offset location l of frame t− T
(a) Decrease Kk(Vt, Sj)− =

(
nl−1
k−1

)
(a) Delete one vote from location l

with the support vectors as in Eqn.(3). The essential for obtaining the kernel
value of a video segment Vt and a support vector Sj is to compute the offset
space which is created with the votes from the local features. As discussed in Sec-
tion 2.2, this computational complexity is linear to the number of local features
in the segment.

However, note that the video segment of the current frame and that of the
previous frame have a significant overlap; we can further accelerate the kernel
computation with an incremental updating algorithm. The difference between
the video segments of the current and the previous frame only involves two
frames, i.e., the current frame t, and the frame at t − T (Fig. 3). If we have
stored the offset spaces for the previous frame segment Vt−1, to compute the
new offset space for the current Vt and a support vector Sj , we only need to add
the votes made by the local features of the current frame, and delete the votes
that were contributed by the features of the frame t− T .

When we add a vote at location l in the offset space that originally had
nl votes, the number of co-occurring length-k ST phrases (Eqn.(1)) would be
changed as follows:

Knew
k (V, V ′) = Kold

k (V, V ′)−
(
nl
k

)
+

(
nl + 1

k

)
= Kold

k (V, V ′) +

(
nl

k − 1

)
. (4)

The change for the number of co-occurring length-k ST phrases when we
delete a vote can be calculated similarly.

The algorithm for updating the kernel values is listed in Algorithm 1. Conse-
quently, to compute the kernel values for the current frame and a support vector,
we only need to perform the operations of Eqn.(4) 2Nt times, with Nt being the
number of local features at frame t. This acceleration enables us to consider the
long-term context (a large number of previous frames) without increasing the
recognition time for each frame. This property is especially useful when detecting
complex activities that usually last a long period of time.

2.5 Computational Complexity

The computational complexity for calculating the number of co-occurring ST
phrases (Section 2.2) is linear to the number of same word pairs in two videos.
Let N be the number of local features per video. The computation is O(N2) for
worst case when all the words are the same, but O(N) in practise. For memory
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usage, although the offset space has high dimension (3D or 4D), it is actually
very sparse with most locations having zero votes. Since we only care about the
number of votes that fall to the same location, we can simply store the non-zero
locations, which is again linear to the local feature number per video. Thus, we
have the same O(N) computational complexity with BoW for classifying a video
clip, when BoW uses a non-linear kernel, such as χ2 or Gaussian kernel.

With the incremental kernel computing, computing the kernel value between
a support vector and a video segment defined for the current frame depends only
on the number of words in the current and previous frames. Therefore, making
prediction for one frame requires O(SNt) computations in total, where S is the
number of support vectors, and Nt is the number of words per frame.

3 Experiments

We first perform experiments on single person activities with the KTH dataset [21],
YouTube Action dataset [5], and a hospital surveillance dataset. The KTH
dataset is created in a controlled environment, while the hospital dataset is
collected from real surveillance cameras in a more complex environment and
the YouTube Action dataset includes more pose and scale variations taken with
shaky cameras.

Then we evaluate our performance for the multiple-person activity recog-
nition problem, which is an up-coming topic that recent work are address-
ing [8, 22, 23], with the UT interaction dataset [24] and the MPR dataset [22].
On the MPR dataset, we evaluate our incremental algorithm (2.4) for online
activity detection.

Baseline: We aim to verify that the proposed bag-of-ST-phrase (BoP) rep-
resentation outperforms BoW with exactly the same local features, same visual
words, and same classifier (SVM). For BoW, we use the χ2-kernel, which already
captures the co-occurrence statistics of different words in a video. Therefore, the
comparison of BoW and BoP verifies whether the spatial-temporal layout of
the words helps activity recognition. Moreover, we compare favorably with oth-
er state-of-the-art approaches [2, 13, 19, 25, 26] that incorporate spatial and/or
temporal information to the BoW representation.

3.1 Single Person Activity: KTH Dataset

The KTH dataset includes 2391 videos performed by 25 different subjects. We
use the same local features (HOF) as [2]. Features are computed with the pub-
lished code by the authors 1.

Vocabulary Size: Table 1(a) compares BoP with BoW using different vo-
cabulary sizes under the same settings as [2]: videos from 16 subjects for training
and videos from the other 9 for testing. The performance of BoW decreases when
a smaller vocabulary size is used since local words are more ambiguous. Mean-
while, BoP achieves similar accuracies even with a smaller vocabulary, since the

1 For fair comparison, feature HOF uses version 1.1 code, same as [2].
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Method 500 1000 2000 4000

BoW 90.8 91.2 91.3 91.5

BoP 94.0 93.8 94.1 94.0

(a)

Setting BoW BoP [2] [19] [13] [26]

16 train / 9 test 91.5 94.0 91.8 n/a n/a 91.1

5-fold 92.9 94.6 n/a 92.0 n/a n/a

leave-one-out 91.9 95.5 n/a n/a 94.2 93.8

(b)

Table 1: (a) Classification accuracies (%) with different vocabulary sizes on the
KTH dataset. (b) Accuracies (%) under each train and test setting on the KTH
dataset. We compare BoP with other methods that incorporate spatio-temporal
relationships to BoW.

ST phrases capture the spatio-temporal relationships among the words, thereby
increasing the discrimination.

Comparison: Table 1(b) compares BoP with other methods that encode
spatial relationships into BoW. By capturing higher order and more detailed
spatio-temporal information with the ST phrases, our approach outperforms
other methods: spatio-temporal pyramid matching [2], Hough voting [19], cor-
relogram [13], and predefined spatio-temporal relationship rules [26].

3.2 Single Person Activity: Hospital Surveillance Dataset

This dataset includes the realistic surveillance videos of 6 patients in the private
sickrooms of a hospital2. The goal is to detect abnormal behaviors of the patients
(get up from the bed) from other normal ones, which is also a real application
used in the hospital. The environment of this dataset is much more complex
than the KTH dataset, since the patients conduct many variations of normal
activities and many noisy motion features are detected on non-person objects
or other people; eg. the activity that a nurse cleans the bed may lead to a false
positive. To collect the ground-truth, we segmented the videos into 10-second
clips, and manually labeled each clip. In total, the dataset has 124 positive
(abnormal) examples, and 1067 negative examples. We perform a leave-one-
patient-out cross-validation experiment. We extract similar features as the KTH
dataset, and create a vocabulary of size 500. Figure 4 shows that our approach
outperforms the BoW method.

3.3 Single Person Activity: YouTube Action Dataset

The YouTube action dataset [5] consists of 11 categories with 1168 videos. The
videos are separated into 25 groups, which are taken in different environments
or by different photographers. Following [5], we perform a leave-one-group-out
cross-validation experiment. We extract HOG/HOF features with the code [2],
and create a vocabulary of size 2000 with K-means.

Figure 5 shows the classification performance. The BoW achieves 63.7% ac-
curacy averaged over the 11 categories. Our implementation of BoW achieves

2 For patient privacy, we cannot show the example images from the dataset.
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Fig. 4: Hospital Surveillance Dataset. (a) ROC curve for all patients. (b) The
AUC score for each patient.
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Fig. 5: (a) Accuracies for each category of the YouTube action dataset. Average
accuracies for BoW and BoP for 63.7% and 72.9%, respectively. (b) Confusion
matrix using BoP.

similar performance as the one in [5] (65.4%) when similar (motion) features are
used. With BoP, we improve the performance by 9.2%. Our BoP result (72.9%)
is also better than the final result of [5] (71.2%), where additional static fea-
tures, feature pruning techniques, and semantic vocabulary learning are adopt-
ed. These techniques that improve the local features are complimentary to our
work. Therefore, further improvement can be expected when these techniques
are applied. We notice the main improvement is the discrimination of different
swing activities, and different categories that both involve jump actions, such
as basketball shooting, trampoline jumping, and horse riding. The main reason is
that BoP can capture the ST relationships among the local movements.

3.4 Multiple-Person Activities

We evaluate our approach using the UT interaction dataset [24], which consists
of six activities of two-person interactions: shake hands, hug, kick, point, punch,
and push. There are two sets in the dataset. Set 1 was recorded with relatively
stable camera, while Set 2 was taken on a lawn in a windy day. Background
is moving slightly (e.g. tree leaves move), and the set contains more camera
jitters. For each set, every type of activity has 10 video clips. These high-level
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(a) BoW (b) Hough Voting [25] (c) BoP

Fig. 6: Confusion Matrices on the UT interaction dataset (Set 1).

activities are more complex, and involve a combination of atomic movements of
two people over a period of time. Therefore, the BoW model which only captures
the atomic movements may work poorly. This dataset was used in the activity
recognition contest at ICPR 2010 [24]. We use the cuboid [1] as local features
and a vocabulary of size 500.

Comparison: We compare BoP with BoW and the best results reported in
the contest [25]. We adopt the classification settings described for the contest,
where a 10-fold leave-one-set-out cross validation is performed. Figure 6 shows
the confusion matrix for different methods on Set 1. Our implementation for
BoW with a χ2 kernel for SVM demonstrated 76.7% accuracy, which is similar
to rates of the BoW method reported in the contest. Table 2 (b) compares the
performance on both Set 1 and Set 2. By modeling the atomic moves to the
activity center, the Hough voting based method [25] improves BoW by around
7%. Using BoP, we further outperform the Hough voting method by around 10%.

Analysis: Since the activities in this dataset involve more atomic movement
interactions of different body parts and from different persons, the rich spatio-
temporal interactions modeled with BoP are beneficial. As shown in Fig. 6, BoW
confuses push vs. punch, and shake hands vs. hug, since the local movements of
each body part are similar for these activities. With the ST phrases, we can
capture the spatio-temporal combinations, thereby better discriminating these
activities.

Analysis for Spatial and Temporal Information: We show the benefit
of simultaneous spatial and temporal modeling with ST-phrases in Table 2(a).
To incorporate space alone, we still use the BoP algorithms we proposed in this
paper, but discarding the temporal domain when computing the co-occurring
ST phrases. In other words, the temporal domain is modeled with BoW. To
incorporate time alone, we ignore the space domain. According to the table,
both spatial and temporal information improves BoW, and incorporating spatial
information helps more than incorporating temporal information. Simultaneous
spatial and temporal modeling obtain the best result.
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Accuracy 

Dataset Method Avg. Shake Hug Kick Point Push Punch 

Set 1 

BoW 0.77 0.70 0.80 0.90 1.00 0.50 0.70 

Hough Voting 0.83 0.50 1.00 1.00 1.00 0.70 0.80 

BoP 0.95 1.00 1.00 1.00 0.90 0.90 0.90 

Set2 

BoW 0.73 0.70 0.70 0.80 0.80 0.70 0.70 

Hough Voting 0.80 0.70 0.90 1.00 1.00 0.80 0.40 

BoP 0.90 0.80 1.00 1.00 0.80 0.90 0.90 

(a) (b)

Table 2: Recognition accuracies on UT interact dataset. (a) The performance of
incorporating spatial, temporal, and spatio-temporal information into BoW on
Set 1. Note that ST-phrase is not a simple combination of spatial and temporal
phrases. (b) The accuracies of different methods on both Set 1 and Set 2 of the
dataset. For Hough Voting, we cite the reported results in [25].

(a) group dispersion (b) group formation (c) approaching (d) group flanking (e) group fighting

Fig. 7: Example scenarios we aim to recognize from videos of the MPR dataset.

3.5 Online Group-Level Activity Detection

Finally, we evaluate on group-level activities with the Mock Prison Riot (MPR)
dataset [22]. The dataset has 19 surveillance videos captured in an abandoned
prison yard. Several volunteer correctional officers enact typical behaviors of
the inmates, including 6 group-level events of interest: group formation, group
dispersion, group following, group chasing, group flanking, and group fighting.
The goal is to detect these events of interest from other random behaviors of the
group of people. The duration of each event ranges from 2 to 30 seconds. These
properties of the dataset require the system to use a long duration context when
detecting events at each frame, and thus the speed of the detection algorithm is
essential. Figure 7 gives sample snapshots of the dataset. We extract the same
features as [27], which use a BoW approach on these features.

Online Detection with Incremental Kernel Computing: We perform
experiment for event detection on continuous videos. For this task, we use the
incremental algorithm proposed in Section 2.4. We randomly select 60% out of
the 19 videos for training and the rest for testing. Prediction for every frame is
made using observations from a four-second temporal window ([t − 4s, t]), i.e.,
the previous 4 seconds. Figure 8(a) shows the predicted probabilities for one of
the test videos. Although BoW can detect the events of interest well, it gener-
ates much more false positives than BoP because of the lack of discrimination
of the events of interest with normal behaviors. Figure 8(b) compares BoP with
previous works using the AUC (area under curve) scores of ROC curves for differ-
ent categories. BoP improves the previous works, especially for group forming,
group following, and group fighting events, where the local group changes are
quite confusing with those of random behaviors.
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Ground truth BoW BoP 0.55 0.65 0.75 0.85 0.95

forming

disperse

flank

chasing

follow

fight BoP

BoW
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(a) (b)

Fig. 8: (a) The predicted probabilities (vertical) of various events at each frame
index (horizontal) for a test video. (b) Comparison of area under curve (AUC)
scores for each event category on the whole test dataset. We compare the rule
based method [22], BoW [27], and BoP. Note that the rules for fighting are not
defined in [22].

Running Time: We implement our approach with C++ and Python on an
Intel 2.4G dual-core computer. Excluding person tracking and feature extraction
(around 0.02s per frame), classifying a 640× 480 frame using a 4-second context
takes less than 5 millisecond with the incremental algorithm proposed in Sec-
tion 2.4. Therefore, we can perform event detection in real time for continuous
video streams. In comparison, directly classifying its 4-second context for each
frame takes more than 200 millisecond.

4 Conclusion

We proposed the spatio-temporal (ST) phrases to model rich spatial and tem-
poral relationships among the local features, and present an algorithm which
can identify all ST phrases in time linear to the number of local features in an
video. Experiment results demonstrated that our approach improves the state-of-
the-art approaches in activity recognition. Our approach is independent of local
feature representation and is widely applicable to a large variety of activities, as
illustrated by the diversity of experimental datasets.
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