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Abstract

We address the problem of group-level event recognition
from videos. The events of interest are defined based on the
motion and interaction of members in a group over time.
Example events include group formation, dispersion, fol-
lowing, chasing, flanking, and fighting. To recognize these
complex group events, we propose a novel approach that
learns the group-level scenario context from automatically
extracted individual trajectories. We first perform a group
structure analysis to produce a weighted graph that repre-
sents the probabilistic group membership of the individuals.
We then extract features from this graph to capture the mo-
tion and action contexts among the groups. The features are
represented using the “bag-of-words” scheme. Finally, our
method uses the learned Support Vector Machine (SVM) to
classify a video segment into the six event categories. Our
implementation builds upon a mature multi-camera multi-
target tracking system that recognizes the group-level events
involving up to 20 individuals in real-time.

1. Introduction

Recognizing events of interest from surveillance videos
is an important topic and has been extensively studied.
Applications include monitoring transportation hubs, pub-
lic venues, and yards for security and safety. In general,
the efforts can be organized into three main categories:
(i) action recognition [2, 12, 18, 20], such as recognizing
if a person is walking or chatting, where the analysis of
the body articulation is essential; (ii) interaction recogni-
tion [9, 14,22] between a few individuals or with respect
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Figure 1. Overview: Learning group context words. Given a
video we extract feature histograms for each frame to represent
their group connectivity and motion features. To extract features
from a frame, we go through three steps as illustrated at the bot-
tom of the figure. The feature histogram image shown is column-
wise stacked, where the red indicates large value and blue indi-
cates small value. Group context words learned from the feature
histograms are visualized in the middle, where each word is cre-
ated with the histogram of four consecutive frames, and each row
in a word depicts a histogram for a frame.

to an object, such as determining if two people are meet-
ing or exchanging items, where both the overall motion and
articulation are useful cues; and (iii) crowd event recogni-
tion [11,13,16,19,21,26,28,31], such as detecting abnor-
mal traffic or aggressive fight involving groups of individu-
als, where the scenario is most complicated, since a diverse
range of activities could occur in a crowded scene.

In this paper, we are interested in recognizing events in-
volving groups of people and the interaction among them.
Example scenarios including group dynamic analysis such
as group formation, dispersion, and one or more groups ap-



(a) group dispersion

(b) group formation

(d) group flanking

(e) group fighting

Figure 2. Example scenarios we aim to recognize from videos. Typical behaviors of interest include group formation and dispersion, a
group approaching, following or chasing another group, one or more groups aggressively surrounding another group (flanking), which

likely suggests a fight, and the actual group fighting.

proaching another group. We are also interested in detect-
ing group-level behaviors such as chasing and aggression
among groups, which are likely related to potential fight-
ing and security concerns. Our task is different from those
crowd event recognition tasks that are mainly based on mo-
tion analysis of dense crowds [1,13,21,28], and focus on the
macro-analysis of the crowd rather than the micro-dynamics
of groups and the interaction of individuals. Figure 2 il-
lustrates typical scenarios that we aim to recognize from
surveillance videos.

We propose a novel learning-based framework for group
event recognition that automatically learns the group con-
text for different event categories. The group context refers
to the group-level interactions among people over time. An
overview of our approach is illustrated in Figure 1. We first
detect and track people in the video using standard meth-
ods [4,30]. Based on the tracking, we analyze the group-
level structure and motion, and then extract the group con-
text features based on the probabilistic (soft) group struc-
ture analysis results (Figure 3). We can then recognize
group-level behaviors and detect events of interest using the
learned group context features.

A key step towards robust event detection is the ability to
recognize the temporal co-occurrence of similar group con-
text patterns that appear in videos, which can occur at differ-
ent locations, scales, and times. To illustrate the challenge,
a video containing group formation could possibly involve
a variable number of people getting together in a variable
length of time. Thus, the occurrence and co-occurrence of
different group context patterns are the key to recognize this
particular scenario. In order to achieve robust event recogni-
tion, we first define several robust features that model the in-
teraction and motion between individuals among the groups
(group context), which can be detected on a per-frame or
per-segment basis (Figure 1). Second, to capture the tempo-
ral co-occurrences of these features exacted from different
frames in a video, we adopt the “bag-of-words” scheme [7]
by clustering them into group context words. Finally we
train a SVM with bags of group context words to classify
the videos into different event categories.

We summarize our contributions as follows: (1) we de-
velop a novel machine learning based framework to robustly
recognize group-level events from videos; (2) we propose
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robust features that model the group context of individuals
with motion tracking; and (3) we implement our algorithm
with a multi-camera tracking system and demonstrate it in a
real-time event recognition system in surveillance applica-
tions.

2. Related Works

With the prevalence of surveillance cameras, event
recognition has drawn increasing attention from the com-
puter vision community. Some works consider the prob-
lem of recognizing actions performed by a single person,
such as [2,12,18,20,23,27,29]. Activity categories such as
walking or running are defined and detected straight from
analyzing body part movements of a person.

More relevant to our work is the recognition of events
involving multiple agents in a crowd scene. Existing works
typically focus on events defined by the movements of in-
dividuals or the entire crowd. Typical applications include
the detection of cars or people with abnormal movements
in a traffic scene. There are mainly two types of ap-
proaches in this category. The first type is object centric
[1,24], where the trajectories of detected targets are ana-
lyzed for recognition. The second type is view or flow cen-
tric [11,13,16,19,21,25,26,28,31], which avoids object
tracking, and instead models the crowd motions with dense
optical flows, or the gradients and appearances of the spatio-
temporal subvolumes. The non-object centric approach is
also popular for general event or action categorization from
movies or youtube videos [8,15,17]. Motion or appearance
features are extracted from spatio-temporal subvolumes de-
tected at interest points. Usually a visual word representa-
tion is followed for the final event categorization.

We focus on the type of events that are defined not only
by the motion information but also by the interactions of
groups or the individuals among groups, such as “group
fighting” and “flanking” (a group of people surrounding an-
other group). Previous works on this type of events mainly
use the logic or rule based methods, which require manual
creation of rules [3,4, 10, 14, 22] for each event category.
Chang et al. [4] recognize various group events by com-
bining the results from probabilistic group structure analy-
sis and motion analysis and checking against a list of event
models, which are defined manually using scenario-specia



predicates. To explicitly model the temporal constraints
pertaining to complex events, different probabilistic logical
inference engines have been built, such as the Markov Logic
Networks [22] and probabilistic event logic [3]. These
works use rule or logic based approach, and thus require
experts to manually create person-person or person-object
rules with domain knowledge. Therefore, the performance
of event recognition highly depends on how well the rules
are defined. The learning curve for a general operator to
define a set of compatible rules could be sharp. Moreover,
the rules in these methods often rely on clean input obser-
vations, which are hardly the case for results obtained from
automatic detection and tracking algorithms.

The learning-based approach of Choi et al. [5, 6] is rel-
evant to us. They focus more on atomic actions such as
people queuing and talking, thus only human pose and spa-
tial distance cues are considered for event recognition. In
comparison, our events of interest involve group context and
require further analysis on the group-level motion and inter-
action cues that could possibly change over time.

3. Approach

We propose to extract robust group context features from
video and adopt a bag-of-words learning scheme to recog-
nize group-level events. Figure 1 illustrates our overall ap-
proach. Given an input video segment, we first perform per-
son detection and tracking. We then perform group struc-
ture analysis of the tracked individuals, as a mean to extract
group context features. Following [4], we retain a proba-
bilistic group representation, such that the group-level in-
formation can be reliably captured. Specifically, the group
analysis produces a weighted connectivity graph for each
frame, where the nodes of the graph are the detected indi-
viduals and the weight of an edges is the probability of two
individuals being in the same group. From the connectiv-
ity graph, we extract features that capture pair-wise group
relationships among the individuals and their motion infor-
mation. Finally we cluster the extracted features into group
context words and use “bag of group context words” to train
a SVM to classify the input video segment into an event cat-
egory. In the following sections, we will explain the details
of each step in our approach.

3.1. Video Tracking System

We briefly explain the multi-view, multi-target tracking
system that is used as a baseline component. Note that the
event recognition algorithm introduced in this paper is gen-
eral and can be applied to tracking results from other sys-
tems.

We take the videos from three standard CCTV cameras
of overlapping views. All cameras are calibrated and syn-
chronized. Figure 3 gives a snapshot of our system in oper-
ation, where the movements of the individuals are tracked

251

Figure 3. Video tracking system performing person detection and
tracking from one or more views. A top-down synthesized view is
generated to visualize the probabilistic grouping connectivity w;;
between individuals under tracking.

cooperatively across cameras. Person detections from each
view are projected onto the ground plane in 3D and fed into
a centralized tracker which is implemented with a Kalman
filter.

3.2. Group Analysis

Given the tracking of individuals, we incorporate a prob-
abilistic grouping strategy similar to [4] to perform group
analysis and to extract group-level motion and interaction
features. As opposed to approaches that rely on hard,
agglomerative or divisive clustering techniques to define
groups, the probabilistic grouping without a hard segmen-
tation of groups keeps more reliable information about the
dynamics of groups that will be later on used to calculate
the group context features.

For each frame ¢, we define a connectivity graph G* to
represent the connectivity (or the probability) of two indi-
viduals ¢ and j belonging to a group at frame time ¢. Specifi-
cally, for each edge ef; in G', the edge weight w; represents
the probability that individuals ¢ and j belong to the same
group, 0 < wfj < 1. The definition of the connectivity wfj
is motivated by two lines of thoughts: (1) a track-to-track
connectivity that considers the motion of the two individu-
als ¢ and j under tracking, including the spatial distance and
moving direction calculated from a small period of time in
the tracking history, and (2) a path-based connectivity that
considers the existence of neighboring individuals that in-
crease the overall grouping strength of nearby individuals
all together. The bottom-right image in Figure 3 illustrates
an example of the probabilistic grouping graph G! from a
synthesized top-down view of the tracked individuals.

3.3. Feature Extraction

In order to achieve the recognition of group-level events
that could occur in variable time scales, we propose to use
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Figure 4. Feature histograms for example videos from four event
categories. Red denotes higher value, and blue denotes lower
value. See text for explanation of how the histograms capture
group context features.

robust features that can be efficiently extracted and can cap-
ture information about the group structure, motion, and dy-
namics. Our solution is to extract the following four types
of features: (1) group connectivity, (2) connectivity change,
(3) motion direction, and (4) motion speed (Figure 4).

Group connectivity. This feature models the group
structures in a frame ¢ by creating a histogram of the edge
weights w}; from the group connectivity graph G*. The his-
togram is normalized by the total number of edges so that
the number of people will not bias the measurement. Figure
4(a) shows the group connectivity histograms of example
videos from four event categories (group dispersion, for-
mation, following, and fighting), where each row depicts a
histogram at a frame, and the column axis indicates time.
Observe that in the beginning of a group dispersing event,
the bins correspond to high connectivity values have more
counts, and as the event unfolds in time, the bins of low
connectivity values receive more counts. In other words,
the strength of group connectivities decreases over time. In
the contrary, for the group forming event, the strength of
group connectivity increases over time. For the group fol-
lowing and fighting events, people mostly have high con-
nectivity values, since people maintain tight groups in these
events. These observations verify that this novel feature
captures discriminative cues to distinguish various group-
level events.

Connectivity change. This feature models the group

Fighting

Fighting
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connectivity change between the current frame ¢ and a pre-
vious frame ¢ (' =t — 1/S second), for each pair of indi-
viduals ¢ and j who are detected in both frames. The con-
nectivity difference for ¢ and j is A}, = w}; — wf; where
wfj is the weight for the edge between individual ¢ and j
in G*. The connectivity change feature is the histogram
of such differences of all person pairs in the current frame,
and again the histogram is normalized by the total number
of edges. Figure 4(b) shows the connectivity change his-
tograms for four event categories. The center of a histogram

represents no connectivity change (Aﬁj ~ 0); bins to the

left correspond to negative changes (wf; < wf;-), that is,
the group connectivity of the current frame is smaller than
the one in the previous frame; bins to the right correspond
to positive changes. The figure shows that the connectivity
changes are mostly negative for the group dispersing event
and positive for the group forming event. The connectiv-
ity change is almost O for the group fighting and following
events since the group structures are reasonably stable dur-
ing these events.

Motion direction. We also record the moving direction
of each person i by the velocity direction d! € [0,27). To
deal with camera rotations and view point changes, we nor-
malize the direction d! of each person by subtracting the
mean of them d, in the [0, 27) periodic space: dt = dt —d,.
This normalized motion direction cf‘; is used to compute the
motion direction histogram. Figure 4(c) shows example
motion direction histograms for different event categories.
In a group following event, people tend to have similar mo-
tion directions, since that direction is the one all are head-
ing towards. For other events, the moving directions have a
wider distribution.

Motion speed. This feature captures the motion speed
s! (magnitude of velocity) for each person i. Observe in
Figure 4(d) that people do not move much when they are
engaged in a fight; while for the dispersion and following
events, people show larger motion speeds over time.

All four features can be extracted directly and efficiently
from trajectories obtained from the tracker. These features
robustly capture group structure and dynamic changes over
time. We will next describe how we formulate our bag-of-
words learning scheme based on these features.

3.4. Learning Group Context Words

After feature extraction, a video can be represented as
a sequence of feature histograms (Figure 1). Direct learn-
ing of classifiers on these sequences is difficult, especially
when we have a long video. Moreover, the video of an event
can have variable lengths, and the starting and ending time
of the event are unknown, rendering the problem more diffi-
cult. We propose to cluster the feature histograms into a few
representative clusters, which we refer to as group context
words.



To create such words, we first represent each frame by
concatenating the histograms of the current and previous
consecutive 7" frames. This concatenated histogram models
local histogram changes and smoothes out the noise in the
observations from a single frame. Then we cluster the con-
catenated histograms using K-means into a vocabulary of
|V'| words. A word represents a certain pattern of the local
histograms. Since we have four types of features, we create
a vocabulary for each feature type. Thus for each feature
type, a video will be represented as a sequence of words.

We adopt the “bag-of-words” model, which represents a
video as a histogram of words. We create a bag-of-words
histogram for each feature type and concatenate them to-
gether. These concatenated word histograms are used to
train a SVM to classify the input video into different event
categories.

4. Experiments

We evaluate our approach on part of the Mock Prison
Riot (MPR) dataset (http://mockprisonriot.orq)
as in [4]. The dataset has 19 surveillance videos taken in
an abandoned prison yard in West Virginia. In these videos,
several volunteer correction officers enact typical behaviors
of the prisoners. The length of each video varies from 3 to 6
minutes. Example snapshots of the dataset can be found in
Figure 2. We report our performance for the following six
categories of group-level events: (1) group formation, (2)
group dispersion, (3) group following, (4) group chasing,
(5) group flanking, and (6) group fighting.

4.1. Event Recognition

The first experiment we performed is to classify an en-
tire input video into one of the six pre-defined event cat-
egories, i.e., to determine whether an event occurs or not.
For this experiment, we manually segmented the videos in
the dataset into 177 non-overlapping small video segments
of 2 to 30 seconds. For each video segment, we label all
events occurred in the segment. Some events may overlap
with others and occur at the same time. If no events of inter-
est occurred in a segment, we label it as “random”, which
serves as negative examples for all other categories. Note
that we do not need to label a clear start and end point for
each event in the video. We randomly select 60% of the
videos for training and the rest for testing.

We illustrate the words of the “connectivity change” fea-
ture that occur most frequently in the videos of the four
event categories (dispersing, forming, following, and fight-
ing) in Figure 5. As described in Section 3.4, a word is con-
structed with the histograms of consecutive 7' frames (we
use 7' = 4). In the figure, each row of a word image rep-
resents a “connectivity change” feature histogram exacted
from a frame. Notice these feature histograms show similar
observations as those visualized in Figure 4(b). The most
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Figure 5. The “connectivity change” words that occur most fre-
quently in the videos of different event categories. Each word is
created with the histograms from four consecutive frames. For
each word image, one row corresponds to a histogram exacted
from one frame.
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8 10

frequent words for the group dispersing event are those that
represent the frames where the group connectivities among
people decrease as compared to the previous frames. On
the contrary, the top words for the group forming event are
those that show the opposite pattern. For the group fighting
and group following events, the top words correspond to the
histograms where the group connectivity change is close to
ZEero.

We train an one-vs-all SVM for each event category, and
evaluate the recognition performance with the ROC curves
drawn with the probabilistic scores generated by the SVMs.
Figure 6 shows the ROC curve for three example event
categories using different feature types. The “combined”
one uses all four feature types concatenated as described in
Section 3.4. As shown in the figure, for the group form-
ing event, the group connectivity and connectivity change
features are more useful, compared to the motion direction
and speed features. While for the group fighting event, the
group connectivity feature outperforms other feature types.
The combined one achieves the best performance. We also
show the ROC curve for the random group, which indi-
cates the performance for distinguishing behaviors of inter-
est from normal behaviors. We show the AUC (area un-
der curve) scores for all categories in Figure 7. Similar
to the results for the forming event, “group connectivity”
and “connectivity change” features are more discriminative
for recognizing group dispersing. The speed feature per-
forms better for group chasing events, since people move
fast in the chasing events, which is a very distinct feature
for this particular event category as compared to the other
five. The speed feature also works well for the following
category, since people keep relatively constant speed over
time when following each other. The performance with the
combined features is the best for all event categories except
for the fighting category, where the combined feature per-
forms worse but still comparable to the connectivity feature.
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Figure 7. The AUC scores of the ROC curves for different event
categories using different types of features.

We achieve more than 90% AUC scores for all categories.
4.2. Event Detection

In the second experiment we perform online event de-
tection, that is, to determine whether any event of interest
occurs at each frame in the input video. We label the start
and end points of the occurred events for the videos in our
dataset. This scenario is useful to provide real-time alerts to
the operators. Since clear start and end points are difficult to
determine for several events, we label the one second period
around the start and end points of an event as ambiguous
frames, and do not use them for evaluation. We randomly
select 60% of the 19 videos in the dataset for training, and
the rest for testing. We make prediction at every 4! frame
in a video, using observations from a four-second tempo-
ral window ([t — 4s,t]), i.e., the previous 4 seconds. Other
aspects of the algorithm remain the same.

We compare the performance of our approach against the
state-of-the-art approach introduced in [4], which adopts a
rule-based method for event detection. Probabilistic rules
are created manually for each event category and proba-
bilistic decisions are made at each frame. Figure 8 shows
the prediction results on an example test video. The rule-
based method generates much more false positives than our
method. One main reason is that the rule-based method is
more sensitive to the person detection errors, since the er-
rors are not considered when creating the rules, whereas
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Figure 8. The predicted probabilities for a test video. Red lines
represent the ground truth labels. Green lines denote the proba-
bilities at each frame using the rule-based method [4]. Blue lines

denote the probabilities using our approach.

Dispersing| Forming|Flanking|Following| Chasing | Fighting
rule-based | 0.592 0.658 | 0.921 0.667 0.981 N/A
ours 0.926 0.811 | 0.959 0.827 1.000 0.834

Table 1. The AUC scores of the ROC curves using the rule-based
method [4] and our method.

our method can tolerate more observation noise by learn-
ing from the training data. The other reason is that the rules
in [4] only consider the past several frames when making
the decision for the current frame, while our method uses a
much larger temporal window (4 seconds) and is thus able
to remove some local noise. Table 1 shows the AUC score
comparison for different event categories. Our method out-
performs the rule-based method [4] on all categories. Note
that the “fighting” event is not defined in [4], since its oc-
currence in a video usually spans a long duration. As we
already discussed, the rules in [4] are usually defined with
only a few frames.

We implement our approach with C++ and Python. On
an Intel 2.4G dual-core computer, the entire event detec-



tion system, including person detection and tracking, takes
around 0.02 second to process a 640x480 frame. Therefore,
we can detect events of interest in real-time.

5. Conclusion

We proposed a novel learning based framework for
group-level event recognition. Unlike most existing event
recognition works, which define the events based on the
movements of an individual or the entire crowd, the events
discussed in this paper focus more on the interactions
among people. We designed robust features that can cap-
ture the group context of individuals in a video. We built
a system with the proposed algorithm, which can process a
video and detect the events in real-time. The performance
of the system significantly outperforms the state-of-the-art
method on a challenging dataset.

Future work. First, we would like to explore more in-
teresting event categories. Second, we are interested in de-
veloping algorithms that can combine different types of fea-
tures in a more sophisticated way, rather than concatenating
them with the same weights. Finally, instead of the “bag-
of-words” method, we plan to develop algorithms that can
model the temporal order among the words.
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