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Abstract

This paper presents a novel algorithm for performing

video matting, which is built upon a proposed image matting

algorithm that is fully automatic. The proposed algorithm

utilizes a PCA-based shape model as a prior for guiding

the matting process, so that manual interactions required by

most existing image matting methods are unnecessary. We

specifically consider a surveillance environment in which

foreground windows are identified via a person detector. By

applying the image matting algorithm to these foreground

windows, on a per frame basis, we aim to fully automate

the video matting process. Due to the inherent inaccuracy

of any person detector, it is critical that the shape model

be aligned with the object. We achieve this in a framework

where the estimation of the alpha matte guided by the shape

prior model, and the alignment process are simultaneously

optimized based on a quadratic cost function. We report

very promising results on a people data set collected from

surveillance environments.

1. Introduction

Image matting is an important operation in photo editing

[2, 11, 12, 7] that allows the user to extract and composite

a foreground region onto a background of choice, and is ac-

complished by estimating the foreground opacity or “alpha

matte” at every pixel and extracting those pixels that have

a high foreground opacity. The biggest challenge here lies

in extracting, with high confidence, initial foreground and

background regions that would then guide the matting pro-

cess in fully determining the foreground opacity at every

pixel. To accomplish this, most existing methods, such as

[14, 12], rely on manual input that indicates foreground and

background regions. Most notably, the work by Levin et

al. [9, 10] are excellent examples of recent advances along

this direction, where the alpha matte can be estimated ef-

ficiently in close form through an elegant formulation of a

Figure 1. Guided by a shape prior, and given image windows from

video, we present a fully automatic matting algorithm.

quadratic cost function [9].

The use of manual interactions is, however, unsuit-

able for performing video matting, a process in which one

wishes to estimate the matte of a foreground object from

a video sequence. This is a much more challenging prob-

lem when compared to image matting, since it is obvious

that manually marking foreground and background regions

for every frame of a video sequence comprising a large

number of image frames is impractical. Several attempts

to automate the matting process includes the work in [2],

where foreground and background regions in keyframes are

marked, followed by interpolation based on background and

optical flow estimation. Along the same direction, a re-

cent paper by Levin et al. in [10] has proposed an exten-

sion of their matting work [9] towards unsupervised mat-

ting by utilizing cues from spectral segmentation. Since it

is well known that the image segmentation problem itself

is an ill-posed problem, manual interactions are inevitable

if one wishes to achieve a reasonable level of accuracy. In

this paper, we sought a matting algorithm that is fully auto-

matic, but yet capable of producing good results. We partic-

ularly consider a surveillance environment, whereby a per-

son detector would provide us with foreground windows,

per frame, in which we can perform image matting automat-

ically (Figure 1). In this context, it is important to point out

that a typical person detector (e.g., [15, 17]) is inherently
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inaccurate, and an automatic matting algorithm that is ca-

pable of determining foreground opacity accurately would

be extremely valuable.

Towards this end, this paper proposes a fully automatic

algorithm built upon the work by Levin et al. [9], who pro-

posed a quadratic cost function that could efficiently com-

pute the matte in closed form. We incorporate into this

quadratic cost function a shape prior that has been built from

a set of training data, which essentially replaces the manual

inputs required to “kickstart” the matting process. The ap-

plication of shape prior in this paper has been largely moti-

vated by its successful application to several domains, most

notably object segmentation, where learned shape priors are

used for guiding the segmentation process [3, 4, 8, 13], as

opposed to segmentation algorithms such as [1, 11, 12] that

require manual interactions. Additionally, we adopt a PCA-

based approach towards learning the shape priors. Such

approach can also be found in other work that include the

PCA-based shape representation used in the level-set seg-

mentation algorithm described in [13]. More sophisticated

shape model can also be found in work such as [3].

Given our interest in the surveillance domain, it is impor-

tant to consider the spatial alignment of the shape prior to

the object, since, as mentioned, it is common knowledge

that existing person detectors are incapable of providing

“perfect” foreground windows. In fact, it is typical to see

an offset between the true location of the person and the

center of the window due to localization uncertianties in the

training data. Even under the assumption of static back-

ground so that typical background subtraction algorithm

can be employed, the presence of shadows or changes in

lighting would still cause such a mis-alignment problem. To

address this issue, we will show that the unknown transfor-

mation parameters of aligning the shape prior to the detec-

tion window can be recovered using Gauss-Newton method

simultaneously during the optimization process.

The contributions of this paper can thus be summarized

as follow: (1) a fully automatic image matting algorithm,

guided by a shape model, is proposed towards achieving au-

tomatic video matting in surveillance environments, (2) in

contrast to previous work that uses shape priors, which still

need small amount of manual interactions to help deal with

mis-alignment between the applied shape prior and the ob-

ject region, our approach is capable of recovering the trans-

formation parameters automatically, and (3) our approach

elegantly unifies the estimation of the matte guided by the

shape model and the alignment of the shape prior with the

object in a single objective function.

The rest of the paper is organized as follow. In the next

section, we will look at the objective function, to which we

will incorporate the shape model in Section 3 and the align-

ment parameters in Section 4. Optimization of the unified

objective function is then described in Section 5. Finally,

experimental results are given in Section 6, and conclusions

in Section 7.

2. Laplacian Matting

To compute the alpha matte given an image I , one can

consider the color of the ith pixel, Ii, as a linear combina-

tion of the foreground and background colors

Ii = αiFi + (1− αi)Bi, (1)

where αi, referred to as the foreground opacity, controls

the contribution of the foreground, Fi, and background, Bi,

terms. Estimating these unknown quantities is, however, an

underconstrained problem, since each pixel of a 3-channel

color image would be associated with three equations and

seven unknowns.

Consequently, it is impossible to solve for Eq. 1 without

introducing additional constraints. Such constraints have

indeed been proposed previously by Levin et al. [9]. They

proved that if an assumption of color linear model could

be made, then in a small window, w, around each pixel, F

and B could be represented with a linear mixture of two

colors. As a result the compositing equation in Eq. 1 can be

transformed and approximated by a 4D linear model:

αi ≈
∑

c

acIci + b, ∀i ∈ w (2)

where Ici is the cth channel color value of ith pixel, and ac

and b are unknown variables related to the foreground and

background colors of pixels in the local window w.

By manipulating Eq. 2, Levin et al. [9] derived a cost

function that is quadratic in α and in which the a and b

terms can be eliminated

J(α) = α
T
Lα. (3)

L, referred to as the matting Laplacian, is a square matrix

of size M ×M , that captures the local color properties of

the input image containing M pixels. Its (i, j)th element is

given as

∑

k|(i,j)∈wk

(δij−
1

|wk|
(1+(Ii−µk)

T (Σk+
ε

|wk|
I3)

−1(Ij−µk))),

(4)

where δij is the Kronecker delta function. Within wk, the

color distribution is described by a 3× 3 covariance matrix,

Σk, and a 3 × 1 vector, µk, representing the mean pixel

colors. I3 is a 3× 3 identity matrix.

If there are no other constraints, it is obvious that any α

vector that lies in the null space of L constitutes a valid so-

lution. On the other hand, any meaningful solution would

have to be consistent with a well-defined notion of the fore-

ground and background regions. To obtain such informa-

tion, we can rely on manual interactions for explicitly mark-

ing initial foreground and background regions so that a valid



Figure 2. Sample training images used to learn the PCA-based

shape prior model.

solution can subsequently be obtained by minimizing

argmin
α

J(α) = argmin
α

α
T
Lα+λ(α− bs)

T
Ds(α− bs), (5)

where λ is a weighting factor, Ds is a diagonal matrix

whose diagonal elements contain 1 for marked pixels and

0 otherwise, and bs is a vector containing the user-specified

alpha values for the marked pixels and 0 for all other pixels.

The optimal solution can then be obtained by computing the

derivative of Eq. 5 over α, setting it to 0, and then solving a

sparse linear system equation as follows

(L+ λDs)α = λbs. (6)

3. Adding Shape Prior

While the closed form solution in Eq. 6 is appealing, its

dependency on manual interactions makes it unsuitable for

video matting. The task of marking foreground and back-

ground regions in every frame of a video sequence is pro-

hibitive. To overcome such a problem, we propose in this

paper the utilization of a shape model that would essentially

be used to replace manual interactions.

Given a shape database for an object category of inter-

est, S = {S1, S2, . . . , SN}, where Si is the ith shape train-

ing data represented as a binary map and all shape images

are spatially registered, we train a PCA-based shape prior

model through eigen-analysis. The trained model can then

be used to represent a shape as

S(u) = V u+∆ =
N
∑

i=1

Viui +∆, (7)

where ∆ is the mean shape, V = [V1, V2, . . . , VN ] are the

shape bases, and u = [u1, u2, . . . , uN ] are the basis coef-

ficients. Figure 2 shows some training examples we have

used to learn the shape model for walking people. Some

learned PCA-shape bases are shown in Figure 1. Incorpo-

rating such a shape prior model would then modify the cost

function to

argmin
α,u

J(α, u)

= argmin
α,u

α
T
Lα+ λ(α− (V u+∆))T (α− (V u+∆)),

(8)

which can be easily solved with the following sparse linear

system
(

(L+ λI) −λV
−V T V TV

)(

α

u

)

=

(

λ∆
−V T∆

)

. (9)

Figure 3. Alignment through a spatial transformation.

4. Shape-Object Alignment

So far, we have implicitly assumed that the shape model

is properly aligned with the object. Such an assumption is

frequently violated, particularly due to our interest in the

surveillance domain, where it is impractical to assume that

the foreground window provided by a person detector is

well-aligned with the object. The spatial transformation

that would re-align the shape model with the object (see

Figure 3 for an example) is, however, an unknown property

until we can correctly solve for the foreground matte. To

overcome such a dilemma, we propose solving both estima-

tion problems simultaneously through the following itera-

tive optimization process.

Let ω(x; t) be the spatial transformation that maps a

pixel from an image location, x, to a location ω(x; t) in the

shape model coordinate system. Here, t = [t1, t2, . . . , tq]
denotes the unknown parameter vector of ω. It is also im-

portant to point out that the spatial transformation from im-

age to shape model, as opposed to the reverse, is computa-

tionally desirable since we only need to compute the Lapla-

cian matrix, L, once for each input image (note that such

an “input image”, in our case, would come from the fore-

ground window provided by a person detector).

After applying the transformation to obtain

V (ω(x; t)) = [V1(ω(x; t)), V2(ω(x; t)), . . . , VN (ω(x; t))],
and mean shape ∆(ω(x; t)), our task is then to find an

optimal (α, u, t) that minimizes the quadratic cost defined

over L, i.e., we have

arg min
α,u,t

J(α, u, t)

= arg min
α,u,t

α
T
Lα+ λ‖α− (V (ω(x; t))u+∆(ω(x; t)))‖.

(10)

With this formulation, there are three unknowns to be esti-

mated simultaneously, namely α the unknown matte, u the

shape basis coefficients, and t the transformation parame-

ters. Such a cost function is quadratic over α and u, but

nonconvex over t, since Vi(ω(x; t)) is essentially nonlinear

over ω(x; t), and solving it may require some type of costly

global optimization procedure. For this reason, we make a

concession and assume that the unknown center of the ob-

ject is near the center, t0, of the input image (see Figure 3),

which is a valid assumption in most cases (e.g., [6]). Start-



ing from t0, we can now iteratively solve for a transforma-

tion update δt through the Gauss-Newton method. Specifi-

cally, we propose to solve these three unknowns in two iter-

ative steps, which update (α, u) and t respectively.

5. Unified Optimization

5.1. Solving α and u

Given an updated transformation parame-

ter t
′

= t + δt, we warp the shape model as

V
′

= [V1(ω(x; t
′

)), V2(ω(x; t
′

)), . . . , VN (ω(x; t
′

))]
and mean shape ∆

′

= ∆(ω(x; t
′

)), and solve α and u

using Eq. 9.

Recall that the left hand side matrix (LHSM) of the linear

equation in Eq. 9 is a block matrix comprising four blocks.

(L + λI) is the largest sub-matrix in this LHSM with di-

mension M ×M , where M is the number of pixels in the

input image. V
′

, the shape prior space, is a M × N ma-

trix, where N is the number of learned shape bases and is

typically much smaller than M . In addition, the Laplacian

matrix L does not change during iteration due to the spatial

transformation from image space to shape model space. As

a result, the inverse of (L + λI) need only be computed

once. We then compute the inverse of LHSM using the

efficient method in [5]. Though this block matrix inverse

involves an inverse computation of a M ×M sub-matrix,

defined by [(L+λI)−λV
′

(V
′TV

′

)−1V
′T ], we can, due to

its symmetric form, simplify this inverse operation by using

matrix inversion lemma [5]. This means that in every itera-

tion, only the inverse of the V
′TV

′

needs to be computed,

which is only a N × N matrix, and thus much cheaper to

compute.

5.2. Solving t

Once we obtained an updated (α
′

, u
′

) and current esti-

mate t, we look for an update δt that minimizes the cost

function in Eq. 10. Since we fix (α
′

, u
′

) at this stage, it is

equivalent to minimizing the quantity

argmin
δt

J(δt)

= argmin
δt
‖α

′

− (V (ω(x; t+ δt))u
′

+∆(ω(x; t+ δt)))‖

=argmin
δt
‖α

′

− (

N
∑

i=1

Vi(ω(x; t+ δt))u
′

i +∆(ω(x; t+ δt)))‖.

(11)

The term Vi(ω(x; t + δt)) could then be expanded using a

first-taylor expansion around its current t, i.e.,

Vi(ω(x; t+ δt)) = Vi(ω(x; t)) + Ji(t)δt, (12)

where Ji is the Jacobian matrix of Vi with respect to t. This

is a M × q matrix that could be written in column form as

Ji(t) = [Vi,t1ω(x; t)|Vi,t2ω(x; t)| . . . |Vi,tqω(x; t)]. (13)

Similar linear expansion can also be applied to the mean

shape vector ∆(ω(x; t+ δt)) to obtain its Jacobian J∆(t).
After expansion, the cost function defined in Eq. 11 be-

comes quadratic with respect to δt, so that the solution can

now be obtained in closed form by solving a linear equation.

The biggest problem, however, is that we are faced with

computing the Jacobian matrices Ji(t) of all shape bases

Vi, i ∈ [i, N ] during each iteration, which is expensive.

This computational burden can, fortunately, be reduced

by realizing that we do not have to compute the Jacobian

terms for the shape basis and mean shape separately due to

the linear relationship between them. Rather, we can define

a new term as

β(ω(x; t+δt)) =
N
∑

i=1

Vi(ω(x; t+δt))u
′

i+∆(ω(x; t+δt)), (14)

where β(ω(x; t + δt)) is essentially the reconstructed

matte from the updated shape prior, and conduct a taylor-

expansion around the new term instead. The transformation

update δt can now be derived as

δt = (Jβ(t)
T
Jβ(t))

−1
Jβ(t)

T (α
′

− β(ω(x; t))), (15)

which solves a q × q matrix inverse problem, and thus can

be computed very efficiently.

The above two-step optimization is then conducted iter-

atively until either the maximum number of iterations al-

lowed is reached or little improvement is observed, noting

that we have found that a good solution can typically be

found within 20 iterations.

6. Experiments

The proposed matting algorithm was evaluated with real-

world images of people walking in typical indoor and out-

door surveillance environments. In all experiments, we set

λ = 0.01.

We first evaluated our algorithm on still images and com-

pare the results quantitatively with the method due to Levin

et al. [9]. It is important to point out that the latter method

was run with extensive manual interactions, whereby fore-

ground and background regions were repeatedly marked as

required to get the best possible matting results. Compara-

tively, we run our method in a fully unsupervised manner.

That is, the goal here is to demonstrate quantitatively the

“closeness” of the performance of our method to the user-

guided method, with the expectation that the user-guided

method would logically produce better results.

Upon establishing from the still image experiments the

efficacy of our method, we proceeded to conduct experi-

ments for evaluating the utility of our method when applied

to video sequence. The quality of the video sequences used

in these experiments, being captured from typical CCTV

cameras, is naturally much poorer than those datasets used



Figure 4. A subset of the test samples used in our experiments,

captured from both indoor and outdoor surveillance scenes.

in most previous work. Despite that, the video results

demonstrate the capability of our method in consistently

producing good matte maps, unsupervised, for a video se-

quence. Testing on these real-world video sequences thus

reinforce the efficacy of our method for practical usage.

6.1. Shape Database

To learn the PCA-based shape prior, we manually la-

beled 215 binary images of the foreground of people. Each

training image was resized to a standard 80×40 pixels, i.e.,

M = 3200, and spatially aligned. Some training samples

are shown in Figure 2. We kept 99% of the sample covari-

ance, leading to a total of N = 182 shape bases. A subset

of learned PCA shape bases is shown in Figure 1. The set

of shape bases was then used for both the still image and

video experiments as shape priors.

6.2. Still Image Results

A set of 375 images were then collected, and the im-

age patch containing the walking people was cropped and

used as input, as shown in Figure 4. Note that while the

windows containing subjects were manually selected here,

so that we have the ground truths, in the real applications,

these windows are presumably provided by a person detec-

tor. To simulate the scenario that the foreground window

may not be well aligned with the center of the image win-

dow, we then randomly perturb the bounding box location

around the true location. Based on the ground truths, we

proceeded to measure the accuracy of the spatial aligning

capability of our algorithm. For simplicity, we applied only

translation to the test images, i.e., ω(x; t) does not contain

any rotational component. In practice, specifically under

a surveillance context where people are expected to walk

upright, this is generally a valid simplification. However,

as presented in Section 4, complex transformation should

also be recoverable under our framework. We also selected

a subset of test samples to perform a pixel-wise quantita-

tive comparison with Levin’s algorithm [9]. As mentioned,

manual interactions were provided as required to achieve

the best results from the algorithm. We then compared these

results with those of our algorithm by computing pixel-wise

differences in the matte values.

In Figure 5, we first show some of the matting results

Figure 5. Sample matting results using the proposed approach. Top

Row: original test images, Bottom Row: matting results. For more

results, please refer to the supplemental video submission.

using our algorithm. The top row displays the original test

images, and the bottom row shows the computed mattes. As

seen in the figure, the matte maps are qualitatively able to

match the body shapes, with the poses correctly estimated.

In this case, even though there were significant distractions

from background clutters (notice the cars in Figure 5), the

algorithm manages to return good matte maps that are spa-

tial aligned automatically.

Figure 6. Comparative study between the results obtained using

the proposed approach and Levin’s method [9]. Left Col: original

test images, Second Col: manual stroke inputs, Third Col: results

using Levin’s method [9], Right Col: results from the proposed

approach.

The results returned by our automatic approach and

Levin’s method [9] are shown in Figure 6. The left col-

umn shows the original images, the second column displays

manual inputs required by Levin’s method [9], the third col-

umn shows the results using Levin’s method [9], and the

right column shows our results. Qualitatively, the differ-

ence between these two approaches are relatively minor.

The main difference is that the matte map obtained through

our method is relatively darker, due to the PCA-based shape

prior, which provides a probabilistic score instead of a bi-



Figure 7. The average pixel-wise matte difference between our re-

sults and the results obtained by Levn’s method [9].

narized score as in Levin’s method [9].

Figure 7 plots the average pixel-wise matte difference

between the results returned by our approach and those by

Levin’s method [9] for a subset of the test images. The

average difference here is less than 0.14, which is a good

indication that our unsupervised method achieves matting

accuracy close to the interactive matting method.

Figure 8. Comparative study between the results obtained using

the proposed approach and those obtained using shape prior with-

out spatial alignment. Left Col: original test images, Middle Col:

results using shape prior without spatial alignment, Right Col: re-

sults with the full approach. Without spatial alignment, the matting

results are much worse.

We also look at the qualitative effect of not conducting

spatial alignment. Figure 8 demonstrates the necessity of

spatial alignment. The left column shows the original im-

ages, the middle column displays the results obtained by

directly applying the shape prior without dealing with align-

ment, and the right column shows the results of the full

approach. It is obvious that without spatially aligning the

shape priors, the results are much worse.

Finally, to quantify the accuracy of conducting spatial

alignment simultaneously in the optimization process, we

compared the spatial alignment estimated by our algorithm

Figure 9. The estimated shift and ground truth shift on a subset

along X direction (Left) and Y direction (Right).

and the actual amount of alignment required based on the

ground truths, as shown in Figure 9, using the same image

subset in Figure 7. The shifting is computed along x and y

direction respectively. In most cases, the estimated amount

is close to the actual amount. The average alignment error

between the estimation and ground truth over this subset is

1.25 pixels and 2.18 pixels along x and y direction respec-

tively. Overall, with respect to the size of the test images

(80× 40), the performance of the proposed alignment algo-

rithm is very promising.

6.3. Video Results

At this point, the results obtained from the still image ex-

periments are very promising, and we proceed on to demon-

strate the true value of our algorithm, which is its capabil-

ity to perform unsupervised video matting. We applied our

method, on a per frame basis, to an indoor and outdoor se-

quence. Figure 10 shows the results, where each row of

video frames is followed by the corresponding matte maps.

The results demonstrate the utility of our algorithm for per-

forming unsupervised video matting.

7. Conclusions

7.1. Summary

We have presented a fully automatic matting algorithm,

and shown that the algorithm is capable of consistently

generating good matting results when applied to video se-

quences. Towards achieving a fully unsupervised matting

algorithm, we conjecture that utilizing shape priors is more

reliable than, for example, cues from spectral segmentation

as proposed by [10], due to the lower ambiguities. Here,

we reiterate two important points. Firstly, we were able to

perform video matting in a fully unsupervised fashion while

producing good matting results. This, in our view, has made

a significant contribution towards automatic video matting;

our experiences with most existing methods reveal that it is

very hard to achieve good matting results without extensive

manual interactions. Secondly, the difficulty of our experi-

mental setup is clear. We had to work with video sequences



Figure 10. Video matting results.

acquired from typical CCTV cameras, of which the quality

are generally poor.



7.2. Extensions and Applications

However, such an experimental setup is necessary as we

are motivated by the successful application of our algorithm

to the surveillance domain, which demands an algorithm

that works in practical situations. In a surveillance context,

several potential applications of our algorithm can be con-

sidered. One example where such an automatic matting al-

gorithm can be extremely useful is the area of foreground

detection. It is commonly understood that the computed

matte can be used to guide the foreground detection pro-

cess, but the supervised nature of the matting process has

so far prohibited such synergy. In the surveillance commu-

nity, researchers are also frequently faced with difficulties

in conducting experiments, where privacy issues often pre-

vent them from running experiments on unsuspecting sub-

jects, or, where there is often a lack of subjects. The need

for video synthesis is becoming increasingly evident due to

such reasons, but synthesizing video is unfortunately a very

hard problem. An automatic matting algorithm is however a

big step forward in this direction where the user could con-

ceivably extract participating subjects from video sequences

for the purpose of synthesizing new video sequences. Addi-

tionally, visual appearance modeling and signature learning

of humans, which are mainly used for person tracking and

identity recognition in a typical surveillance scene, can also

benefit from this automatic matting method [16], because a

soft matte provides a more detailed confidence measure for

these methods to choose the right pixels in order to learn

their models.

7.3. Limitations

Despite the promising results and applicability of our

method, the biggest challenge we faced comes from the lack

of details in our results. For most existing work, the level

of details in the reported results were excellent. This can

be seen in results reported by [2], [9], etc, where the mat-

ting algorithm was able to extract contour of object as fine

as, say, a strand of hair. Admittedly, our algorithm in its

current form is not able to match these algorithms from this

perspective. While this can be credited to the use of manual

interactions in these algorithms, the level of details that can

be captured by a shape prior is also limited. On the other

hand, as mentioned, it is with the guidance of the shape

prior that we are able to automate the video matting pro-

cess. Possible future work could thus extend our algorithm

to preserve desirable details in the extracted matte map.
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