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Multi-Task Convolutional Neural Network for
Pose-Invariant Face Recognition
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Abstract—This paper explores Multi-Task Learning (MTL) for
face recognition. First, we propose a multi-task Convolutional
Neural Network (CNN) for face recognition where identity
classification is the main task and Pose, Illumination, and
Expression (PIE) estimations are the side tasks. Second, we
develop a dynamic-weighting scheme to automatically assign the
loss weights to each side task, which solves the crucial problem
of balancing between different tasks in MTL. Third, we propose
a pose-directed multi-task CNN by grouping different poses to
learn pose-specific identity features, simultaneously across all
poses in a joint framework. Last but not least, we propose
an energy-based weight analysis method to explore how CNN-
based MTL works. We observe that the side tasks serve as
regularizations to disentangle the PIE variations from the learnt
identity features. Extensive experiments on the entire Multi-PIE
dataset demonstrate the effectiveness of the proposed approach.
To the best of our knowledge, this is the first work using all data
in Multi-PIE for face recognition. Our approach is also applicable
to in-the-wild datasets for pose-invariant face recognition and
achieves comparable or better performance than state of the art
on LFW, CFP, and IJB-A datasets.

Index Terms—multi-task learning, pose-invariant face recog-
nition, CNN, disentangled representation

I. INTRODUCTION

FACE recognition is a challenging problem that has been
studied for decades in computer vision. The large intra-

person variations in Pose, Illumination, Expression (PIE),
and etc. will challenge any state-of-the-art face recognition
algorithms. Recent CNN-based approaches mainly focus on
exploring the effects of 3D model-based face alignment [49],
larger datasets [49], [41], or new metric learning algo-
rithms [45], [41], [32], [53] on face recognition performance.
Most existing methods consider face recognition as a single
task problem. We believe that face recognition is not an iso-
lated problem — often tangled with other tasks. This motivates
us to explore multi-task learning for face recognition.

Multi-Task Learning (MTL) aims to learn several tasks
simultaneously to boost the performance of the main task or
all tasks. It has been successfully applied to face detection [7],
[59], face alignment [62], pedestrian detection [50], attribute
estimation [1], and so on. Despite the success of MTL in
various vision problems, there is a lack of study on MTL for
face recognition. In this paper, we study face recognition as
a multi-task problem where identity classification is the main
task with PIE estimations being the side tasks. The goal is
to leverage the side tasks to improve the performance of the
main task, i.e., face recognition.

Xi Yin and Xiaoming Liu are with the Department of Computer Science
and Engineering, Michigan State University, East Lansing, MI 48824. Corre-
sponding author: Xiaoming Liu, liuxm@cse.msu.edu

CNN 

PIE-variant 
training data 

entangled  
features 

weights in 
FC layer 

W d

W p

disentangled 
features 

identity  
classification 

pose 
classification 

PIE-invariant  
identity features 

Fig. 1. We propose MTL for face recognition with identity classification as
the main task and PIE classifications as the side tasks (only pose is illustrated
in this figure for simplicity). A CNN framework learns entangled features from
the data. The weight matrix in the fully connected layer of the main task is
learnt to have close-to-zero values for PIE features in order to exclude PIE
variations, which results in PIE-invariant identity features for face recognition.

We answer the questions of how and why PIE estimations
can help face recognition. Regarding how, we propose a multi-
task CNN (m-CNN) framework for joint identity classification
and PIE classifications, which learns a shared embedding.
Regarding why, we conduct an energy-based weight analysis
and observe that the side tasks serve as regularizations to
inject PIE variations into the shared embedding, which is
further disentangled into PIE-invariant identity features for
face recognition. As shown in Figure 1, a shared embedding
is learnt from PIE-variant training images through a CNN
framework. A fully connected layer is connected to the shared
features to perform classification of each task. The shared
features entangles both identity and PIE variations, and the
weight matrix in the fully connected layer performs feature
selection for disentanglement.

One crucial problem in MTL is how to determine the
importance of each task. Prior work either treats each task
equally [57] or obtains the loss weights by greedy search [50].
It may not be fair to assume that each task contributes equally.
However, it will be very time consuming or practically impos-
sible to find the optimal weights for all side tasks via brute-
force search. Instead, we propose a dynamic-weighting scheme
where we only need to determine the overall loss weight for
the PIE estimations, and the CNN can learn to dynamically
assign a loss weight to each side task during training. This is
effective and efficient as will shown in Section IV.

Since pose variation is the most challenging one among
other non-identity variations, and the proposed m-CNN al-
ready classifies all images into different pose groups, we
propose to apply divide-and-conquer to the CNN learning.
Specifically, we develop a novel pose-directed multi-task CNN
(p-CNN) where the pose labels can categorize the training data
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TABLE I
COMPARISON OF THE EXPERIMENTAL SETTINGS THAT ARE COMMONLY USED IN PRIOR WORK ON MULTI-PIE. (* THE 20 IMAGES
CONSIST OF 2 DUPLICATES OF NON-FLASH IMAGES AND 18 FLASH IMAGES. IN TOTAL THERE ARE 19 DIFFERENT ILLUMINATIONS.)

setting session pose illum exp train subjects / images gallery / probe images total references
I 4 7 1 1 200 / 5, 383 137 / 2, 600 8, 120 [4], [28]
II 1 7 20 1 100 / 14, 000 149 / 20, 711 34, 860 [65], [57]
III 1 15 20 1 150 / 45, 000 99 / 29, 601 74, 700 [54]
IV 4 9 20 1 200 / 138, 420 137 / 70, 243 208, 800 [66], [51]
V 4 13 20 1 200 / 199, 940 137 / 101, 523 301, 600 [58]

ours 4 15 20* 6 200 / 498, 900 137 / 255, 163 754, 200

into three different pose groups, direct them through different
routes in the network to learn pose-specific identity features
in addition to the generic identity features. Similarly, the loss
weights for extracting these two types of features are learnt
dynamically in the CNN framework. During the testing stage,
we propose a stochastic routing scheme to fuse the generic
identity features and the pose-specific identity features for face
recognition, which is more robust to pose estimation errors.
We find this technique to be very effective for pose-invariant
face recognition especially for in-the-wild faces, where pose
classification error is more likely to happen compared to
controlled datasets with discrete pose angles.

This work utilizes all data in the Multi-PIE dataset [16],
i.e., faces with the full range of PIE variations, as the main
experimental dataset — ideal for studying MTL for PIE-
invariant face recognition. To the best of our knowledge, there
is no prior face recognition work that studies the full range
of variations on Multi-PIE. We also apply our method to in-
the-wild datasets for pose-invariant face recognition. Since the
ground truth label of the side task is unavailable, we use the
estimated poses as labels for training.

In summary, we make four contributions.
• We formulate face recognition as an MTL problem and

explore how it works via an energy-based weight analysis.
• We propose a dynamic-weighting scheme to learn the loss

weights for each side task automatically in the CNN.
• We develop a pose-directed multi-task CNN to learn

pose-specific identity features and a stochastic routing
scheme for feature fusion during the testing stage.

• We perform a comprehensive and the first face recogni-
tion study on the entire Multi-PIE. We achieve compa-
rable or superior performance to state-of-the-art methods
on Multi-PIE, LFW [20], CFP [42], and IJB-A [26].

II. RELATED WORK

A. Face Recognition

Recent progress in face recognition has been mainly focused
on developing metric learning algorithms including center
loss [53], A-softmax [33], N-pair [44], etc. In this work, we
study Pose-Invariant Face Recognition (PIFR) via CNN-based
multi-task learning. Therefore, we focus our review on PIFR
and MTL-based approaches.
Pose-Invariant Face Recognition According to [11], existing
PIFR methods can be classified into four categories including:
multi-view subspace learning [27], [2], pose-invariant feature

extraction [6], [41], [39], face synthesis [64], [19], [58],
and a hybrid approach of the above three [51], [57]. For
example, FF-GAN [58] incorporates a 3D Morphable Model
(3DMM) [5] into a CNN framework for face frontalization
with various loss functions. The frontalized faces can be
used to improve the face recognition performance especially
for large-pose faces. By modeling the face rotation process,
DR-GAN [51] learns both a generative and discriminative
representation from one or multiple face images of the same
subject. This representation can be used for PIFR and face
image synthesis.

Our work belongs to the second category, i.e., pose-invariant
feature extraction. Previous work in this category treats each
pose separately. For example, Masi et al. [34] propose a pose-
aware face recognition method by learning a specific model
for each type of face alignment and pose group. And the
results are fused together during the testing stage. The idea
of divide-and-conquer is similar to our work. Differently, we
learn the pose-invariant identity features for all poses jointly in
one CNN framework and propose a stochastic routing scheme
during the testing stage for feature fusion, which is more
efficient and robust. Xiong et al. [54] propose a conditional
CNN for PIFR, which discovers the modality information
automatically during training. In contrast, we utilize the pose
labels as a side task to better disentangle pose variation from
the learnt identity features. Peng et al. [39] use the pose
classification as a side task to learn a rich embedding, which is
further disentangled via pair-wise reconstruction. However, it
need to be trained on datasets with non-frontal and frontal face
pairs, which is not widely available especially for in-the-wild
scenario.
MTL for Face Recognition For MTL-based face recognition
method, Ding et al. [12] propose to transform the features
of different poses into a discriminative subspace, and the
transformations are learnt jointly for all poses with one task
for each pose. [57] develops a deep neural network to rotate
a face image. The reconstruction of the face is considered
as a side task. This multi-task framework is more effective
than the single task model without the reconstruction part.
Similar work [66], [51] have developed along this direction
to extract robust identity features and synthesize face images
simultaneously. In this work, we treat face recognition as a
multi-task problem with PIE estimations as the side tasks. It
sounds intuitive to have PIE as side tasks for face recognition,
but we are actually the first to consider this and we have
explored how it works.
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B. Multi-Task Learning

Multi-task learning has been widely studied in machine
learning [15], [3] and computer vision [50], [62]. We focus
our review on different regularizations in MTL, CNN-based
MTL, and the importance of each task in MTL.
Regularizations The underlying assumption for most MTL
algorithms is that different tasks are related to each other.
Thus, a key problem is how to determine the task relatedness.
One common way is to learn shared features for different
tasks. The generalized linear model parameterizes each task
with a weight vector. The weight vectors of all tasks form a
weight matrix, which is regularized by l2,1 norm [3], [37] or
trace norm [22] to encourage a low-rank matrix. For example,
Obozinski et al. [37] propose to penalize the sum of l2
norm of the blocks of weights associated with each feature
across different tasks to encourage similar sparsity patterns.
Lin et al. [30] propose to learn higher order feature interaction
without limiting to a linear model for MTL. Other work [14],
[61], [31] propose to learn the task relationship from a task
covariance matrix computed from the data.
CNN-based MTL It is natural to fuse MTL with CNN to
learn the shared features and the task-specific models. For
example, [62] proposes a deep CNN for joint face detection,
pose estimation, and landmark localization. Misra et. al. [35]
propose a cross-stitch network for MTL to learn the sharing
strategy, which is difficult to scale to multiple tasks. This
requires training one model for each task and introduces
additional parameters in combining them. In [59], a task-
constrained deep network is developed for landmark detection
with facial attribute classifications as the side tasks. However,
unlike the regularizations used in the MTL formulation in the
machine learning community, there is no principled method
to analysis how MTL works in the CNN framework. In this
paper, we propose an energy-based weight analysis method to
explore how MTL works. We discover that the side tasks of
PIE estimations serve as regularizations to learn more discrim-
inative identity features that are robust to PIE variations.
Importance of Each Task It is important to determine the
loss weight for each task in MTL. The work of [57] uses
equal loss weights for face recognition and face frontalization.
Tian et al. [50] propose to obtain the loss weights of all side
tasks via greedy search within 0 and 1. Let t and k be the
number of side tasks and searched values respectively. This
approach has two drawbacks. First, it is very inefficient as
the computation scales to the number of tasks (complexity
tk). Second, the optimal loss weight obtained for each task
may not be jointly optimal. Further, the complexity would be
kt if searching all combinations in a brute-force way. Zhang
et al. [62] propose a task-wise early stopping to halt a task
during training when the loss no longer reduces. However, a
stopped task will never resume so its effect may disappear.
In contrast, we propose a dynamic-weighting scheme where
we only determine the overall loss weight for all side tasks
(complexity k) and let CNN learn to automatically distribute
the weights to each side task. In this case when one task is
saturated, we have observed the dynamic weights will reduce
without the need of early stopping.

III. THE PROPOSED APPROACH

In this section, we present the proposed approach by using
Multi-PIE dataset as an example and extend it to in-the-wild
datasets in the experiments. First, we propose a multi-task
CNN (m-CNN) with dynamic weights for face recognition
(the main task) and PIE estimations (the side tasks). Second,
we propose a pose-directed multi-task CNN (p-CNN) to tackle
pose variation by separating all poses into different groups and
jointly learning pose-specific identity features for each group.

A. Multi-Task CNN

We combine MTL with CNN framework by sharing some
layers between different tasks. In this work, we adapt CASIA-
Net [56] with three modifications. First, Batch Normalization
(BN) [21] is applied to accelerate the training process. Second,
the contrastive loss is excluded for simplicity. Third, the
output dimension of the fully connected layer is changed
according to different tasks. Details of the layer parameters
are shown in Figure 2. The network consists of five blocks
each including two convolutional layers and a pooling layer.
BN and ReLU [36] are used after each convolutional layer.
Similar to [56], no ReLU is used after conv52 layer to learn
a compact feature representation, and a dropout layer with a
ratio of 0.4 is applied after pool5 layer.

Given a training set T with N images and their labels:
T = {Ii,yi}Ni=1, where Ii is the image and yi is a vector
consisting of the identity label ydi (main task) and the side task
labels. In our work, we consider three side tasks including pose
(ypi ), illumination (yli), and expression (yei ). We eliminate the
sample index i for clarity. As shown in Figure 2, the proposed
m-CNN extracts a high-level feature embedding x ∈ RD×1:

x = f(I;k,b,γ,β), (1)

where f(·) represents the non-linear mapping from the input
image to the shared features. k and b are the sets of filters and
bias of all the convolutional layers. γ and β are the sets of
scales and shifts in the BN layers [21]. Let Θ = {k,b,γ,β}
denote all parameters to be learnt to extract the features x.

The extracted features x, which is pool5 in our model,
are shared among all tasks. Suppose Wd ∈ RD×Dd and
bd ∈ RDd×1 are the weight matrix and bias vector in the
fully connected layer for identity classification, where Dd is
the number of different identities in T. The generalized linear
model can be applied:

yd = Wdᵀx + bd. (2)

yd is fed to a softmax layer to compute the probability of
x belonging to each subject in the training set:

softmax(yd)n = p(ŷd = n|x) = exp(yd
n)∑

j exp(y
d
j )
, (3)

where yd
j is the jth element in yd. The softmax(·) function

converts the output yd to a probability distribution over all
subjects and the subscript selects the nth element. Finally, the
estimated identity ŷd is obtained via:

ŷd = argmax
n

softmax(yd)n. (4)
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Fig. 2. The proposed m-CNN and p-CNN for face recognition. Each block reduces the spatial dimensions and increases the feature channels. The parameter
format for the convolutional layer is: filter size / stride / filter number. The parameter format for the pooling layer is: method / filter size / stride. The feature
dimensions after each block are shown on the bottom. The color indicates the component for each model. The dashed line represents the batch split operation
as shown in Figure 3. The layers with the stripe pattern are the identity features used in the testing stage for face recognition.

The cross-entropy loss is employed:

L(I, yd) = − log(p(ŷd = yd|I,Θ,Wd,bd)). (5)

Similarly, we formulate the losses for the side tasks. Let
W = {Wd,Wp,Wl,We} represent the weight matrices for
identity and PIE classifications. The bias terms are eliminated
for simplicity. Given the training set T, our m-CNN aims to
minimize the combined loss of all tasks:

argmin
Θ,W

αd

N∑
i=1

L(Ii, y
d
i ) + αp

N∑
i=1

L(Ii, y
p
i )+

αl

N∑
i=1

L(Ii, y
l
i) + αe

N∑
i=1

L(Ii, y
e
i ),

(6)

where αd, αp, αl, αe control the importance of each task.
It becomes a single-task model (s-CNN) when αp,l,e = 0.
The loss drives the model to learn both the parameters Θ
for extracting the shared features and W for the classification
tasks. In the testing stage, the features before the softmax layer
(yd) are used for face recognition by applying a face matching
procedure based on cosine similarity.

B. Dynamic-Weighting Scheme

In MTL, it is an open question on how to set the loss weight
for each task. Prior work either treats all tasks equally [57] or
obtains the loss weights via brute-force search [50], which
is very time-consuming especially considering the training
time for CNN models. To solve this problem, we propose a
dynamic-weighting scheme to automatically assign the loss
weights to each side task during training.

First, we set the weight for the main task to 1, i.e. αd = 1.
Second, instead of finding the loss weight for each task, we
find the summed loss weight for all side tasks, i.e. ϕs = αp+
αl + αe, via brute-force search on a validation set. Our m-
CNN learns to allocate ϕs to three side tasks. As shown in
Figure 2, we add a fully connected layer and a softmax layer
to the shared features x to learn the dynamic weights. Let
ωs ∈ RD×3 and εs ∈ R3×1 denote the weight matrix and
bias vector in this fully connected layer,

µs = softmax(ωs
ᵀx + εs), (7)

where µs = [µp, µl, µe]
ᵀ are the dynamic weight percentages

for the side tasks with µp + µl + µe = 1 and µp,l,e ≥ 0. So
Equation 6 becomes:

argmin
Θ,W,ωs

N∑
i=1

L(Ii, y
d
i ) + ϕs

[
µp

N∑
i=1

L(Ii, y
p
i )+

µl

N∑
i=1

L(Ii, y
l
i) + µe

N∑
i=1

L(Ii, y
e
i )
]

s.t. µp + µl + µe = 1, µp,l,e ≥ 0

(8)

The multiplications of the overall loss weight ϕs with the
learnt dynamic percentage µp,l,e are the dynamic loss weights
for each side task, i.e., αp,l,e = ϕs · µp,l,e.

We use mini-batch Stochastic Gradient Descent (SGD) to
solve the above optimization problem where the dynamic
weights are averaged over a batch of samples. Intuitively,
we expect the dynamic-weighting scheme to behave in two
different aspects in order to minimize the loss in Equation 8.
First, since our main task contribute mostly to the final loss
(ϕs < 1), the side task with the largest contribution to the
main task should have the highest weight in order to reduce
the loss of the main task. Second, our m-CNN should assign
a higher weight for an easier task with a lower loss so as to
reduce the overall loss. We have observed these effects as will
shown in the experiments.

C. Pose-Directed Multi-Task CNN

It is very challenging to learn a non-linear mapping to
estimate the correct identity from a face image with arbitrary
PIE, given the diverse variations in the data. This challenge
has been encountered in classic pattern recognition work. For
example, in order to handle pose variation, [29] proposes
to construct several face detectors where each of them is in
charge of one specific view. Such a divide-and-conquer scheme
can be applied to CNN learning because the side tasks can
“divide” the data and allow the CNN to better “conquer” them
by learning tailored mapping functions.

Therefore, we propose a novel task-directed multi-task CNN
where the side task labels categorize the training data into
multiple groups, and direct them to different routes in the
network. Since pose is considered as the primary challenge
in face recognition [54], [60], [66], we propose pose-directed
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Fig. 3. Illustration of the batch split operation in p-CNN. The first row shows
the input images and the second row shows a matrix representing the features
x for each sample. After batch split, one batch of samples is separated into
three batches where each of them only consists of the samples belonging to
the specific pose group.
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Fig. 4. The proposed pose-directed multi-task CNN aims to learn pose-
specific identity features jointly for all pose groups.

multi-task CNN (p-CNN) to handle pose variation. However,
it is applicable to other variation.

As shown in Figure 2, p-CNN is built on top of m-CNN
by adding the pose-directed branch (PDB). The PDB groups
face images with similar poses to learn pose-specific identity
features via a batch split operation. We separate the training set
into three groups according to the pose labels: left profile (Gl),
frontal (Gf ), and right profile (Gr). As shown in Figure 3, the
goal of the batch split is to separate a batch of N0 samples
(X = {xi}N0

i=1) into three batches Xl, Xf , and Xr, which are
of the same size as X. During training, the ground truth pose
is used to assign a face image into the correct group. Let us
take the frontal group as an example to illustrate the batch
split operation:

Xf
i =

{
xi, if ypi ∈ G

f

0, otherwise,
(9)

where 0 denotes a vector of all zeros with the same dimension
as xi. The assignment of 0 is to avoid the case when no
sample is passed into one group, the next layer will still have
valid input. As a result, X is separated into three batches
where each batch consists of only the samples belonging to the
corresponding pose group. Each group learns a pose-specific
mapping to a joint space, resulting in three different sets of
weights: {Wl,Wf ,Wr}, as illustrated in Figure 4. Finally
the features from all groups are merged as the input to a
softmax layer to perform robust identity classification jointly.

Left 
frontal 
right 

0.2 
0.3 
0.5 

0.4 
0.3 
0.3 

1	

Fig. 5. Blue bars are the generic identity features and purple bars are the
pose-specific features. The numbers are the probabilities of each input image
belonging to each pose group. The proposed stochastic routing in the testing
stage taking account of all pair comparisons so that it is more robust to pose
estimation errors.

Our p-CNN aims to learn two types of identity features:
Wd is the weight matrix to extract the generic identity features
that is robust to all poses; Wl,f,r are the weight matrices to
extract the pose-specific identity features that are robust within
a small pose range. Both tasks are considered as our main
tasks. Similar to the dynamic-weighting scheme in m-CNN,
we use dynamic weights to combine our main tasks as well.
The summed loss weight for these two tasks is ϕm = αd+αg .
Let ωm ∈ RD×2 and εm ∈ R2×1 denote the weight matrix
and bias vector for learning the dynamic weights,

µm = softmax(ωm
ᵀx + εm). (10)

We have µm = [µd, µg]
ᵀ as the dynamic weights for generic

identity classification and pose-specific identity classification.
Finally, the loss of p-CNN is formulated as:

argmin
Θ,W,ω

ϕm

[
µd

N∑
i=1

L(Ii, y
d
i ) + µg

G∑
g=1

Ng∑
i=1

L(Ii, y
d
i )
]
+

ϕs

[
µp

N∑
i=1

L(Ii, y
p
i ) + µl

N∑
i=1

L(Ii, y
l
i) + µe

N∑
i=1

L(Ii, y
e
i )
]

s.t. µd + µg = 1, µp + µl + µe = 1, µd,g ≥ 0, µp,l,e ≥ 0

(11)

where G = 3 is the number of pose groups and Ng is the
number of training images in the g-th group. ω = {ωm,ωs}
is the set of parameters to learn the dynamic weights for both
the main and side tasks. We set ϕm = 1.
Stochastic Routing Given a face image in the testing
stage, we can extract the generic identity features (yd), the
pose-specific identity features ({yg}3g=1), as well as estimate
the probabilities ({pg}3g=1) of the input image belonging to
each pose group by aggregating the probabilities from the
pose classification side task. As shown in Figure 5, for face
matching, we can compute the distance of the generic identity
features and the distance of the pose-specific identity features
by selecting the pose group with the largest probability (red
underline). However, the pose estimation error may cause in-
ferior feature extraction results, which is inevitable especially
for unconstrained faces.

To solve this problem, we propose a stochastic routing
scheme by taking into account of all comparisons, which is
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TABLE II
PERFORMANCE COMPARISON (%) OF SINGLE-TASK LEARNING (S-CNN), MULTI-TASK LEARNING (M-CNN) WITH ITS VARIANTS, AND POSE-DIRECTED

MULTI-TASK LEARNING (P-CNN) ON THE ENTIRE MULTI-PIE DATASET.

model loss weights rank-1 (all / left / frontal /right) pose illum exp
s-CNN: id αd = 1 75.67 / 71.51 / 82.21 / 73.29 – – –
s-CNN: pos αp = 1 – 99.87 – –
s-CNN: exp αl = 1 – – 96.43 –
s-CNN: illum αe = 1 – – – 92.44
s-CNN: id+L2 αd = 1 76.43 / 73.31 / 81.98 / 73.99 – – –
m-CNN: id+pos αd = 1, αp = 0.1 78.06 / 75.06 / 82.91 / 76.21 99.78 – –
m-CNN: id+illum αd = 1, αl = 0.1 77.30 / 74.87 / 82.83 / 74.21 – 93.57 –
m-CNN: id+exp αd = 1, αe = 0.1 77.76 / 75.48 / 82.32 / 75.48 – – 90.93
m-CNN: id+all αd = 1, αp,l,e = 0.033 77.59 / 74.75 / 82.99 / 75.04 99.75 88.46 79.97
m-CNN: id+all (dynamic) αd = 1, ϕs = 0.1 79.35 / 76.60 / 84.65 / 76.82 99.81 93.40 91.47
p-CNN ϕm = 1, ϕs = 0.1 79.55 / 76.14 / 84.87 / 77.65 99.80 90.58 90.02

more robust to pose estimation errors. Specifically, the distance
c between a pair of face images (I1 and I2) is computed as the
average between the distance of the generic identity features
(yd

1 , yd
2) and weighted distance of the pose-specific identity

features ({yg
1}, {y

g
2}):

c =
1

2
h(yd

1 ,y
d
2) +

1

2

3∑
i=1

3∑
j=1

h(yi
1,y

j
2) · pi1 · p

j
2, (12)

where h(·) is the cosine distance metric used to measure the
distance between two feature vectors. The proposed stochastic
routing accounts for all combinations of the pose-specific
identity features weighted by the probabilities of each combi-
nation. We treat the generic features and pose-specific features
equally, and fuse them for face recognition.

IV. EXPERIMENTS

We evaluate the proposed m-CNN and p-CNN under two
settings: (1) face identification on Multi-PIE with PIE estima-
tions being the side tasks; (2) face verification/identification on
in-the-wild datasets including LFW, CFP, and IJB-A, where
pose estimation is the only side task. Further, we analyze
the effect of MTL on Multi-PIE and discover that the side
tasks regularize the network to learn a disentangled identity
representation for PIE-invariant face recognition.

A. Face Identification on Multi-PIE

Experimental Settings The Multi-PIE dataset consists of
754, 200 images of 337 subjects recorded in 4 sessions. Each
subject was recorded with 15 different cameras where 13 are at
the head height spaced at 15◦ interval and 2 are above the head.
For each camera, a subject was imaged under 19 different
illuminations. In each session, a subject was captured with 2
or 3 expressions, resulting in a total of 6 different expressions
across all sessions.

All previous work [10], [18], [12], [17], [25], [28], [54],
[55], [60], [64], [66] studies face recognition on a subset
of PIE variations on Multi-PIE. In our work, we use the
entire dataset including all PIE variations. For the two cameras
above the head, their poses are labeled as ±45◦. The first 200
subjects are used for training. The remaining 137 subjects are

used for testing, where one image with frontal pose, neutral
illumination, and neutral expression for each subject is selected
as the gallery set and the remaining as the probe set.

We use the landmark annotations [13] to align each face to
a canonical view of size 100×100. The images are normalized
by subtracting 127.5 and dividing by 128, similar to [53]. We
use Caffe [23] with our modifications. The momentum is set to
0.9 and the weight decay to 0.0005. All models are trained for
20 epochs from scratch with a batch size of 4 unless specified.
The learning rate starts at 0.01 and reduces at 10th, 15th, and
19th epochs with a factor of 0.1. The rank-1 identification rate
is reported as the face recognition performance. For the side
tasks, the mean accuracy over all classes is reported.

We randomly select 20 subjects from the training set to
form a validation set to find the optimal overall loss weight
for all side tasks. We obtain ϕs = 0.1 via brute-force search.
For p-CNN model training, we split the training set into
three groups based on the yaw angle of the image: right pro-
file (−90◦,−75◦,−60◦, −45◦), frontal (−30◦, −15◦, 0◦, 15◦,
30◦), and left profile (45◦, 60◦, 75◦, 90◦).
Effects of MTL Table II shows the performance comparison
of single-task learning (s-CNN), multi-task learning (m-CNN),
and pose-directed multi-task learning (p-CNN) on the entire
Multi-PIE. First, we train four single-task models for identity
(id), pose (pos), illumination (illum), and expression (exp)
classification respectively. As shown in Table II, the rank-1
identification rate of s-CNN is only 75.67%. The performance
of the frontal pose group is much higher than those of the
profile pose groups, indicating that pose variation is indeed
a big challenge for face recognition. Among all side tasks,
pose estimation is the easiest task, followed by illumination,
and expression as the most difficult one. This is caused by
two potential reasons: 1) discriminating expression is more
challenging due to the non-rigid face deformation; 2) the
data distribution over different expressions is unbalanced with
insufficient training data for some expressions.

Second, we train multiple m-CNN models by adding only
one side task at a time in order to evaluate the influence of
each side task. We use “id+pos”, “id+illum”, and “id+exp” to
represent these variants and compare them to the performance
of adding all side tasks denoted as “id+all”. To evaluate the
effects of the dynamic-weighting scheme, we train a model
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Fig. 6. The learnt dynamic weights and the losses of each task for m-CNN and p-CNN models during the training process.

TABLE III
MULTI-PIE PERFORMANCE COMPARISON ON SETTING III OF TABLE I.

±15◦ ±30◦ ±45◦ ±60◦ ±75◦ ±90◦ avg.
Fisher Vector [43] 93.30 87.21 80.33 68.71 45.51 24.53 66.60
FIP 20 [65] 95.88 89.23 78.89 61.64 47.32 34.13 67.87
FIP 40 [65] 96.30 92.98 85.54 69.75 49.10 31.37 70.90
c-CNN [54] 95.64 92.66 85.09 70.49 55.64 41.71 73.54
c-CNN Forest [54] 96.97 94.05 89.02 74.38 60.66 47.26 76.89
s-CNN (ours) 98.41 96.89 85.18 88.71 82.80 76.72 88.45
m-CNN (ours) 99.02 97.40 89.15 89.75 84.97 76.72 90.08
p-CNN (ours) 99.19 98.01 90.34 92.07 87.83 76.96 91.27

TABLE IV
MULTI-PIE PERFORMANCE COMPARISON ON SETTING V OF TABLE I.

0◦ ±15◦ ±30◦ ±45◦ ±60◦ ±75◦ ±90◦ avg.[−60◦, 60◦] avg.[−90◦, 90◦]
FIP [65] 94.3 90.7 80.7 64.1 45.9 – – 72.9 –
Zhu et al. [66] 95.7 92.8 83.7 72.9 60.1 – – 79.3 –
Yim et al. [57] 99.5 95.0 88.5 79.9 61.9 – – 83.3 –
DR-GAN [51] 97.0 94.0 90.1 86.2 83.2 – – 89.2 –
FF-GAN [58] 95.7 94.6 92.5 89.7 85.2 77.2 61.2 91.6 85.2
s-CNN (ours) 95.9 95.1 92.8 91.6 88.9 84.9 78.6 92.5 89.2
m-CNN (ours) 95.4 94.5 92.6 91.8 88.4 85.3 82.2 92.2 89.6
p-CNN (ours) 95.4 95.2 94.3 93.0 90.3 87.5 83.9 93.5 91.1

with fixed loss weights for the side tasks as: αp = αl = αe =
ϕs/3 = 0.033. The summation of the loss weights for all side
tasks are equal to ϕs for all m-CNN variants in Table II for a
fair comparison.

Comparing the rank-1 identification rates of s-CNN and m-
CNNs, it is obvious that adding the side tasks is always helpful
for the main task. The improvement of face recognition is
mostly on the profile faces with MTL. The m-CNN “id+all”
with dynamic weights shows superior performance to others
not only in rank-1 identification rate, but also in the side
task estimations. Further, the lower rank-1 identification rate
of “id+all” w.r.t “id+pos” indicates that more side tasks do
not necessarily lead to better performance without properly
setting the loss weights. In contrast, the proposed dynamic-
weighting scheme effectively improves the performance to
79.35% from the fixed weighting of 77.59%. As will be
shown in Section IV-B, the side tasks in m-CNN help to
inject PIE variations into the shared representation, similar to
a regularization term. For example, an L2 regularization will
encourage small weights. We add L2 regularization on the
shared representation to s-CNN (“id+L2”), which improves
over s-CNN without regularization. However it is still much
worse than the proposed m-CNN.

Third, we train p-CNN by adding the PDB to m-CNN
“id+all” with dynamic weights. The loss weights are ϕm = 1
for the main tasks and ϕs = 0.1 for the side tasks. The pro-
posed dynamic-weighting scheme allocates the loss weights
to both two main tasks and three side tasks. P-CNN further
improves the rank-1 identification rate to 79.55%.

Dynamic-Weighting Scheme Figure 6 shows the dynamic
weights and losses during training for m-CNN and p-CNN.
For m-CNN, the expression classification task has the largest
weight in the first epoch because it has the highest chance to be
correct with random guess with the least number of classes.
As training goes on, pose classification takes over because
it is the easiest task (highest accuracy in s-CNN) and also
the most helpful for face recognition (compare “id+pos” to
“id+exp” and “id+illum”). αp starts to decrease at the 11th
epoch when pose classification is saturated. The increased
αl and αe lead to a reduction in the losses of expression
and illumination classifications. As we expected, the dynamic-
weighting scheme assigns a higher loss weight for the easiest
and/or the most helpful side task.

For p-CNN, the loss weights and losses for the side tasks
behave similarly to those of m-CNN. For the two main tasks,
the dynamic-weighting scheme assigns a higher loss weight to
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top-left is a zoom-in view of the bottom-right; (c) the face recognition performance with varying feature dimensions.

the easier task at the moment. At the beginning, learning the
pose-specific identity features is an easier task than learning
the generic identity features. Therefore the loss weight αg is
higher than αd. As training goes on, αd increases as it has a
lower loss. Their losses reduce in a similar way, i.e., the error
reduction in one task will also contribute to the other.
Compare to Other Methods As shown in Table I, no
prior work uses the entire Multi-PIE for face recognition. To
compare with state of the art, we choose to use setting III and
V to evaluate our method since these are the most challenging
settings with more pose variation. The network structures and
parameter settings are kept the same as those of the full set
except that the outputs of the last fully connected layers are
changed according to the number of classes for each task. Only
pose and illumination are used as the side tasks.

The performance on setting III is shown in Table III. Our
s-CNN already outperforms c-CNN forest [54], which is an
ensemble of three c-CNN models. This is attributed to the deep
structure of CASIA-Net [56]. Moreover, m-CNN and p-CNN
further outperform s-CNN with significant margins, especially
for non-frontal faces. We want to stress the improvement
margin between our method 91.27% and the prior work of
76.89% — a relative error reduction of 62%.

The performance on setting V is shown in Table IV.
For fair comparison with FF-GAN [58], where the models
are finetuned from pre-trained in-the-wild models, we also
finetune s-CNN, m-CNN, p-CNN models from the pre-trained
models on CASIA-Webface for 10 epochs. Our performance is
much better than previous work with a relative error reduction
of 60%, especially on large-pose faces. The performance gap
between Table III / IV and II indicates the challenge of face
recognition under various expressions, which is less studied
than pose and illumination variations on Multi-PIE.

B. How does m-CNN work?

It is well known in both the computer vision and the
machine learning communities that learning multiple tasks
together allows each task to leverage each other and improves
the generalization ability of the model. For CNN-based MTL,
previous work [63] has found that CNN learns shared features
for facial landmark localization and attribute classifications,
e.g. smiling. This is understandable because the smiling at-

tribute is related to landmark localization as it involves the
change of the mouth region. However in our case, it is not
obvious how the PIE estimations can share features with the
main task. On the contrary, it is more desirable if the learnt
identity features are disentangled from the PIE variations.
Indeed, as we will show later, the PIE estimations regularize
the CNN to learn PIE-invariant identity features.

We investigate why PIE estimations are helpful for face
recognition. The analysis is done on m-CNN model (“id+all”
with dynamic weights) in Table II. Recall that m-CNN learns
a shared embeding x ∈ R320×1. Four fully connected lay-
ers with weight matrices Wd

320×200, Wp
320×13, Wl

320×19,
We

320×6 are connected to x to perform classification of
each task (200 subjects, 13 poses, 19 illuminations, and 6
expressions). We analyze the importance of each dimension
in x to each task. Taking the main task as an example, we
calculate an energy vector sd ∈ R320×1 whose element is
computed as:

sdi =

200∑
j=1

|Wd
ij | . (13)

A higher value of sdi indicates that the ith feature in x is
more important to the identity classification task. The energy
vectors sp, sl, se for all side tasks are computed similarly.
Each energy vector is sorted and shown in Figure 7 (a). For
each curve, we observe that the energy distributes unevenly
among all feature dimensions in x. Note that the indexes of
the feature dimension do not correspond among them since
each energy vector is sorted independently.

To compare how each feature in x contributes to differ-
ent tasks, we concatenate the weight matrix of all tasks as
Wall

320×238 = [Wd,Wp,Wl,We] and compute its energy
vector as sall. We sort the rows in Wall based on the
descending order in energy and visualize the sorted Wall in
Figure 7 (b). The first 200 columns represent the sorted Wd

where most energy is distributed in the first ∼ 280 feature
dimensions (rows), which are more crucial for face recognition
and less important for PIE classifications. We observe that x
are learnt to allocate a separate set of dimensions/features for
each task, as shown in the block-wise effect in the zoom-in
view. Each block shows the most essential features with high
energy for PIE classifications respectively.
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TABLE V
PERFORMANCE COMPARISON ON LFW DATASET.

Method #Net Training Set Metric Accuracy ± Std (%)
DeepID2 [45] 1 202, 599 images of 10, 177 subjects, private Joint-Bayes 95.43
DeepFace [49] 1 4.4M images of 4, 030 subjects, private cosine 95.92± 0.29
CASIANet [56] 1 494, 414 images of 10, 575 subjects, public cosine 96.13± 0.30
Wang et al. [52] 1 404, 992 images of 10, 553 subjects, public Joint-Bayes 96.2± 0.9
Littwin and Wolf [32] 1 404, 992 images of 10, 553 subjects, public Joint-Bayes 98.14± 0.19
MultiBatch [48] 1 2.6M images of 12K subjects, private Euclidean 98.20
VGG-DeepFace [38] 1 2.6M images of 2, 622 subjects, public Euclidean 98.95
Wen et al. [53] 1 0.7M images of 17, 189 subjects, public cosine 99.28
FaceNet [41] 1 260M images of 8M subjects, private L2 99.63± 0.09
s-CNN (ours) 1 494, 414 images of 10, 575 subjects, public cosine 97.87± 0.70
m-CNN (ours) 1 494, 414 images of 10, 575 subjects, public cosine 98.07± 0.57
p-CNN (ours) 1 494, 414 images of 10, 575 subjects, public cosine 98.27± 0.64
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Fig. 9. Energy vectors of m-CNN models with different overall loss weights.

Based on the above observation, we conclude that the PIE
classification side tasks help to inject PIE variations into the
shared features x. The weight matrix in the fully connected
layer learns to select identity features and ignore the PIE
features for PIE-invariant face recognition. To validate this
observation quantitatively, we compare two types of features

for face recognition: 1) xn : a subset of x with n largest
energies in sd, which are more crucial in modeling identity
variation; 2) yd

200×1 = Wd
n×200

ᵀ
xn×1 + bd, which is the

multiplication of the corresponding subset of Wd and xn.
We vary n from 100 to 320 and compute the rank-1 face
identification rate on the entire Multi-PIE testing set. The
performance is shown in Figure 7 (c). When xn is used, the
performance improves with increasing dimensions and drops
when additional dimensions are included, which are learnt to
model the PIE variations. In contrary, the identity features
yd can eliminate the dimensions that are not helpful for
identity classification through the weight matrix Wd, resulting
in continuously improved performance w.r.t. n.

We further analyze how the energy vectors evolve over time
during training. Specifically, at each epoch, we compute the
energy vectors for each task. Then we compute the mean and
standard deviation of each energy vector, as shown in Figure 8.
Despite some local fluctuations, the overall trend is that the
mean is decreasing and standard deviation is increasing as
training goes on. This is because in the early stage of training,
the energy vectors are more evenly distributed among all
feature dimensions, which leads to the higher mean values
and lower standard deviations. In the later stage of training,
the energy vectors are shaped in a way to focus on some key
dimensions for each task, which leads to the lower mean values
and higher standard deviations.

The CNN learns to allocate a separate set of dimensions
in the shared features to each task. The total number of
dimensions assigned to each task depends on the loss weights.
Recall that we obtain the overall loss weight for the side
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tasks as ϕs = 0.1 via brute-force search. Figure 9 shows
the energy distributions with ϕs = 0.2 and ϕs = 0.3, which
are compared to Figure 7 (a) where ϕs = 0.1. We have two
observations. First, a larger loss weight for the side tasks
leads to more dimensions being assigned to the side tasks.
Second, the energies in sd increase in order to compensate the
fact that the dimensions assigned to the main task decrease.
Therefore, we conclude that the loss weights control the energy
distribution between different tasks.

C. Unconstrained Face Recognition

Experimental Settings We use CASIA-Webface [56] as our
training set and evaluate on LFW [20], CFP [42], and IJB-
A [26] datasets. CASIA-Webface consists of 494, 414 images
of 10, 575 subjects. LFW consists of 10 folders each with
300 same-person pairs and 300 different-person pairs. Given
the saturated performance of LFW mainly due to its mostly
frontal view faces, CFP and IJB-A are introduced for large-
pose face recognition. CFP is composed of 500 subjects with
10 frontal and 4 profile images for each subject. Similar to
LFW, CFP includes 10 folders, each with 350 same-person
pairs and 350 different-person pairs, for both frontal-frontal
(FF) and frontal-profile (FP) verification protocols. IJB-A
dataset includes 5, 396 images and 20, 412 video frames of
500 subjects. It defines template-to-template matching for both
face verification and identification.

In order to apply the proposed m-CNN and p-CNN, we need
to have the labels for the side tasks. However, it is not easy to
manually label our training set. Instead, we only consider pose
estimation as the side task and use the estimated pose as the
label for training. We use PIFA [24] to estimate 34 landmarks
and the yaw angle, which defines three groups: right profile
[−90◦,−30◦), frontal [−30◦, 30◦], and left profile (30◦, 90◦].
Figure 10 shows the distribution of the yaw angle estimation
and the average image of each pose group. CASIA-Webface
is biased towards frontal faces with 88% faces belonging to
the frontal pose group based on our pose estimation.

The network structures are similar to those experiments on
Multi-PIE. All models are trained from scratch for 15 epochs
with a batch size of 8. The initial learning rate is set to 0.01 and
reduced at the 10th and 14th epoch with a factor of 0.1. The
other parameter settings and training process are the same as
those on Multi-PIE. We use the same pre-processing as in [56]
to align a face image. Each image is horizontally flipped for
data augmentation in the training set. We also generate the
mirror image of an input face in the testing stage. We use the
average cosine distance of all four comparisons between the
image pair and its mirror images for face recognition.
Performance on LFW Table V compares our face veri-
fication performance with state-of-the-art methods on LFW
dataset. We follow the unrestricted with labeled outside data
protocol. Although it is well-known that an ensemble of
multiple networks can improve the performance [46], [47], we
only compare CNN-based methods with one network for fair
comparison. Our implementation of the CASIA-Net (s-CNN)
with BN achieves much better results compared to the original
performance [56]. Even with such a high baseline, m-CNN

and p-CNN can still improve, achieving comparable results
with state of the art, or better results if comparing to those
methods trained with the same amount of data. Since LFW is
biased towards frontal faces, we expect the improvement of
our proposed m-CNN and p-CNN to the baseline s-CNN to
be larger if they are tested on cross-pose face verification.
Performance on CFP Table VI shows our face verification
performance comparison with state-of-the-art methods on CFP
dataset. For FF setting, m-CNN and p-CNN improve the
verification rate of s-CNN slightly. This is expected, as there
is little pose variation. For FP setting, p-CNN substantially
outperforms s-CNN and prior work, reaching close-to-human
performance (94.57%). Note our accuracy of 94.39% is 9%
relative error reduction of the previous state of the art [39] with
93.76%. Therefore, the proposed divide-and-conquer scheme
is very effective for in-the-wild face verification with large
pose variation. And the proposed stochastic routing scheme
improves the robustness of the algorithm. Even with the
estimated pose serving as the ground truth pose label for MTL,
the models can still disentangle the pose variation from the
learnt identity features for pose-invariant face verification.
Performance on IJB-A We conduct close-set face iden-
tification and face verification on IJB-A dataset. First, we
retrain our models after removing 26 overlapped subjects
between CASIA-Webface and IJB-A. Second, we fine-tune
the retrained models on the IJB-A training set of each fold
for 50 epochs. Similar to [52], we separate all images into
“well-aligned” and “poorly-aligned” faces based on the face
alignment results and the provided annotations. In the testing
stage, we only select images from the “well-aligned” faces for
recognition. If all images in a template are “poorly-aligned”
faces, we select the best aligned face among them. Table VII
shows the performance comparison on IJB-A. Similarly, we
only compare to the methods with a single model. The
proposed p-CNN achieves comparable performance in both
face verification and identification.

V. CONCLUSIONS

This paper explores multi-task learning for face recognition
with PIE estimations as the side tasks. To solve the problem of
balancing each task in MTL, we propose a dynamic-weighting
scheme to automatically assign the loss weights to each side
task during the training process. This scheme is shown to as-
sign a larger loss weight to an easier side task and/or the most
helpful side task. We also propose a pose-directed multi-task
CNN to learn pose-specific identity features during training
and a stochastic routing scheme for feature fusion in the testing
stage. A comprehensive study on the entire Multi-PIE dataset
has shown the effectiveness of the proposed approach for PIE-
invariant face recognition. An in-depth weight matrix analysis
has shown why PIE estimations can help face recognition to
learn a disentangled representation.

The proposed method is applicable to in-the-wild datasets
with estimated pose serving as the label for training. However,
we do not see large improvement on LFW and IJB-A as that
on Multi-PIE. This may due to several factors. First, both m-
CNN and p-CNN rely on the pose estimation, which is limited
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TABLE VI
PERFORMANCE COMPARISON ON CFP DATASET. RESULTS REPORTED ARE THE AVERAGE ± STANDARD DEVIATION OVER THE 10 FOLDS.

Method ↓ Frontal-Frontal Frontal-Profile
Metric (%) → Accuracy EER AUC Accuracy EER AUC
Sengupta et al. [42] 96.40± 0.69 3.48± 0.67 99.43± 0.31 84.91± 1.82 14.97± 1.98 93.00± 1.55
Sankarana. et al. [40] 96.93± 0.61 2.51± 0.81 99.68± 0.16 89.17± 2.35 8.85± 0.99 97.00± 0.53
Chen, et al. [9] 98.67± 0.36 1.40± 0.37 99.90± 0.09 91.97± 1.70 8.00± 1.68 97.70± 0.82
DR-GAN [51] 97.84± 0.79 2.22± 0.09 99.72± 0.02 93.41± 1.17 6.45± 0.16 97.96± 0.06
Peng, et al. [39] 98.67 – – 93.76 – –
Human 96.24± 0.67 5.34± 1.79 98.19± 1.13 94.57± 1.10 5.02± 1.07 98.92± 0.46
s-CNN (ours) 97.34± 0.99 2.49± 0.09 99.69± 0.02 90.96± 1.31 8.79± 0.17 96.90± 0.08
m-CNN (ours) 97.77± 0.39 2.31± 0.06 99.69± 0.02 91.39± 1.28 8.80± 0.17 97.04± 0.08
p-CNN (ours) 97.79± 0.40 2.48± 0.07 99.71± 0.02 94.39± 1.17 5.94± 0.11 98.36± 0.05

TABLE VII
PERFORMANCE COMPARISON ON IJB-A.

Method ↓ Verification Identification
Metric (%) → @FAR=0.01 @FAR=0.001 @Rank-1 @Rank-5
OpenBR [26] 23.6± 0.9 10.4± 1.4 24.6± 1.1 37.5± 0.8
GOTS [26] 40.6± 1.4 19.8± 0.8 44.3± 2.1 59.5± 2.0
Wang et al. [52] 72.9± 3.5 51.0± 6.1 82.2± 2.3 93.1± 1.4
PAM [34] 73.3± 1.8 55.2± 3.2 77.1± 1.6 88.7± 0.9
DR-GAN [51] 77.4± 2.7 53.9± 4.3 85.5± 1.5 94.7± 1.1
DCNN [8] 78.7± 4.3 – 85.2± 1.8 93.7± 1.0
s-CNN (ours) 75.6± 3.5 52.0± 7.0 84.3± 1.3 93.0± 0.9
m-CNN (ours) 75.6± 2.8 51.6± 4.5 84.7± 1.0 93.4± 0.7
p-CNN (ours) 77.5± 2.5 53.9± 4.2 85.8± 1.4 93.8± 0.9

by the state-of-the-art pose estimation methods. Second, a
large training set might diminishes the benefits of multi-
task learning for unconstrained face recognition. Third, both
LFW and IJB-A have large variations other than pose such as
expression, blurring, etc. that cannot be well handled by the
proposed method. Nevertheless, for dataset like CFP where
pose variation is the major variation, we achieve state-of-the-
art performance on the frontal-to-profile verification protocol.
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