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Joint Multi-Leaf Segmentation, Alignment, and
Tracking for Fluorescence Plant Videos

Xi Yin, Xiaoming Liu, Jin Chen, David M. Kramer

Abstract—This paper proposes a novel framework for fluorescence plant video processing. The plant research community
is interested in the leaf-level photosynthetic analysis within a plant. A prerequisite for such analysis is to segment all leaves,
estimate their structures, and track them over time. We identify this as a joint multi-leaf segmentation, alignment, and tracking
problem. First, leaf segmentation and alignment are applied on the last frame of a plant video to find a number of well-aligned leaf
candidates. Second, leaf tracking is applied on the remaining frames with leaf candidate transformation from the previous frame.
We form two optimization problems with shared terms in their objective functions for leaf alignment and tracking respectively. A
quantitative evaluation framework is formulated to evaluate the performance of our algorithm with four metrics. Two models are
learned to predict the alignment accuracy and detect tracking failure respectively in order to provide guidance for subsequent
plant biology analysis. The limitation of our algorithm is also studied. Experimental results show the effectiveness, efficiency, and
robustness of the proposed method.

Index Terms—plant phenotyping, Arabidopsis, leaf segmentation, alignment, tracking, multi-object, Chamfer matching
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1 INTRODUCTION

P LANT phenotyping [1] refers to a set of method-
ologies and protocols used to measure plant

growth [2], architecture [3], composition [4], and etc.
In contrast to the manual observation-based meth-
ods, the automatic image-based approaches for plant
phenotyping have gained more attention recently [5],
[6]. As shown in Figure 1, plant researchers conduct
large-scale experiments in a chamber with controlled
temperature and lighting conditions. Ceiling-mounted
fluorescence cameras capture images of a plant during
its growth period [7]. The pixel intensities of the image
indicate the photosynthetic efficiency (PE) of the plant.
Given such a high-throughput imaging system, the
massive data calls for advanced visual analysis in
order to study a wide range of plant physiological
problems [8], e.g., the heterogeneity of PE among
the leaves. Therefore, the leaf-level visual analysis is
fundamental to automatic plant phenotyping.

This paper focuses on the processing of the rosette
plants where the leaves are at a similar height and
form a circular arrangement. Our experiments are
mainly conducted on Arabidopsis thaliana, which is the
first plant to have its genome sequenced [9]. Due to its
rapid life cycle, prolific seed production, and easiness
to cultivate in the restricted space, Arabidopsis is
the most popular and important model plant [10] in
the plant research community. An automatic image
analysis method for Arabidopsis, which is the main
focus of this paper, is of essential importance for high-
throughput plant phenotyping studies. Given a fluo-
rescence plant video, our method performs multi-leaf
Segmentation, Alignment, and Tracking (SAT) jointly.
Specifically, leaf segmentation [11] segments each leaf

Fig. 1. Given a fluorescence plant video captured during its
growth period, our algorithm performs multi-leaf SAT jointly,
i.e., estimating unique and consistent-over-time labels for all
leaves and their individual leaf structure like leaf tips.

from the plant. Leaf alignment [12] estimates the leaf
structure. Leaf tracking [13] associates the leaves over
time. This multi-leaf analysis is a challenging problem
due to several factors. First, the image resolution is
low where the small leaves are even hard to be recog-
nized by humans. Second, there are various degrees
of overlap among leaves, which make it difficult to
segment each leaf boundary. Third, leaves within a
plant exhibit various shapes, sizes, and orientations,
which also change over time. Therefore, an effective
algorithm should be developed to handle all these
challenges.

To the best of our knowledge, there is no previous
work focusing on leaf SAT simultaneously from plant
videos. To solve this new problem, we develop two
optimization algorithms. Specifically, leaf segmenta-
tion and alignment are based on Chamfer Match-
ing (CM) [14], which is a well-known algorithm to
align one object in an image with a given template.
However, classical CM does not work well for align-
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ing multiple overlapping leaves. Motivated by crowd
segmentation [15], where the number and locations
of the pedestrians are estimated simultaneously, we
propose a novel framework to jointly align multiple
leaves in an image. First we generate a large set of
leaf templates with various shapes, sizes, and orien-
tations. Applying all templates to the edge map of a
plant image leads to the same amount of transformed
leaf templates. We adopt the local search method for
optimization to select a subset of leaf candidates that
can best explain the edge map of the test image.

While leaf segmentation and alignment work well
for one image, applying it to every video frame
independently does not enable tracking - associating
aligned leaves over time. Therefore, we formulate leaf
tracking on one frame as a problem of transforming
multiple aligned leaf candidates from the previous
frame. The tracking optimization initialized with re-
sults of the previous frame can converge very fast
and thus results in enhanced leaf association and
computational efficiency.

In order to estimate the alignment and tracking
accuracy, two quality prediction models are learned
respectively. We develop a quantitative analysis with
four metrics to evaluate the multi-leaf SAT perfor-
mance. Furthermore, the limitation of our algorithm
is studied. In summary, we make four contributions:
� We identify a new computer vision problem of

joint multi-leaf SAT from plant videos. We collect a
dataset of Arabidopsis and make it publicly available.
� We propose two optimization algorithms to solve

this multi-leaf SAT problem.
� We develop two quality prediction models to

predict the alignment accuracy and tracking failure.
�We set up a quantitative evaluation framework to

jointly evaluate the performance.
Compared to our earlier work [12], [16], we have

made five main changes: 1) One term is modified in
the tracking objective function. The proposed method
is superior to [12], [16] on a larger dataset. 2) We
develop two quality prediction models. 3) We enhance
the performance evaluation procedure and add one
metric to evaluate segmentation accuracy. 4) We study
the limitation of our tracking algorithm and show
its robustness to leaf template transformation. 5) We
extend our method to apply on RGB images [5] and
compare the segmentation results to [17].

2 PRIOR WORK
Plant image analysis has been studied in computer
graphics [18]–[20] and computer vision [11], [21]. For
example, a leaf shape and appearance model is pro-
posed to render photo-realistic images of a plant [18].
A data-driven leaf synthesis approach is developed to
produce realistic reconstructions of dense foliage [19].
These models may not be applied to fluorescence
images due to the lack of leaf appearance informa-
tion. There are prior computer vision work on tasks

such as leaf segmentation [11], [21], alignment [12],
[22], tracking [13], [16], and identification [23]–[25].
However, most previous studies focus on only one or
two of these tasks. In contrast, our method addresses
three tasks of leaf SAT.
Leaf Segmentation can be classified into two cate-
gories: 1) segmentation of a detached leaf from natu-
ral [22], [26]–[29] or clean background [24]; 2) pixel-
wise segmentation of each leaf from a plant [17], [25].
Methods in the first category are usually used as the
first step for leaf classification or species identification.
[24] uses pixel-based color classification for leaf seg-
mentation from a white background. [25] proposes
active contour deformation method for compound
leaf segmentation and identification.

Our work belongs to the second category. It is very
challenging due to leaf variation and overlapping.
Tsaftaris et al. organized a collation study of leaf
segmentation on rosette plants in 2015 [30], [31]. Our
method is evaluated with other three methods. Two
of them are based on superpixels and watershed
transformation segmentation. [17] uses distance map-
based leaf center detection and leaf split points detec-
tion for leaf segmentation.
Leaf Alignment aims to find the structure of a leaf,
which is useful for leaf segmentation. [26] deforms a
polygonal model to leaf shape fitting, where the base
and tip points are used to define a leaf template. The
same points are used in [22] to model leaf shapes and
deform templates. Similarly, we use these two points
on our leaf templates for alignment. Our novelty lies
in solving leaf segmentation and alignment jointly by
extending CM to align multiple potentially overlap-
ping leaves in an image.
Leaf Tracking models leaf transformation over time.
A probabilistic parametric active contour model is
applied for leaf segmentation and tracking to auto-
matically measure the temperature of leaves in [13].
However leaves on those images are well separated
without any overlap and the active contours are ini-
tialized via the ground truth segments, which is hard
to achieve in real-world applications. [32] segments
all leaves in a video separately and employs a merg-
ing procedure to group the segments by exploiting
the angle properties of the leaves. [33] proposes a
graph-based tracking algorithm by linking leaf de-
tections across neighboring frames. All of them treat
tracking as a post processing after leaf segmentation
on individual frame. In contrast, we employ a leaf
template transformation to transfer the segmentation
and alignment results between continuous frames.

3 OUR METHOD
Figure 2 shows our framework. Given a plant video,
we first apply leaf segmentation and alignment on the
last frame to generate a number of well-aligned leaf
candidates. Leaf tracking is considered as an align-
ment problem with the leaf candidates initialized from
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Fig. 2. Overview of the proposed joint multi-leaf SAT. Given a plant video with t frames, the proposed method outputs the
SAT results on each frame, and two prediction curves on the quality of alignment and tracking for each leaf.

TABLE 1
Notations.

Notation Definition
V ,m the edge map and mask of a test image
U ,M the edge map and mask of a leaf template
Ũ , M̃ the edge map and mask of a transformed leaf template
DT the distance transform image of V

H,S,R the numbers of template shapes, sizes, and orientations
N the total number of leaf templates, N = HSR
N1 the number of transformed leaf templates for optimization
J,G the objective functions for alignment and tracking
a the diagonal length of V

(cx, cy) the center of a plant image
(cxn, c

y
n) the center of the nth leaf candidate

L,L1 the sets of N and N1 transformed templates
A a N1 ×K matrix collecting all M̃n from L1

K the number of pixels in the test image
x a N1-dim 0-1 indicator vector
d a N1-dim vector of CM distances in L1

C a constant value used in J3
D the number of maximum iterations in tracking

Ne, N l the number of estimated and labeled leaves in a frame
M the collection of Ne selected leaf candidates

P
a set of transformation parameters P = {pn}N

e

n=1
pn = [θ, r, tx, ty ]

ᵀ is the parameter for Un

t̂1,2, t1,2 the estimated and labeled tips for one leaf
T̂ ,T the estimated and labeled tips for one frame
T̂,T the collections of estimated and labeled tips for all videos

B̂,B the collections of estimated and groundtruth segmentation
masks for all videos

Nb the total number of labeled leaves
ela the tip-based error normalized by the leaf length
ID a Ne ×N l matrix of leaf correspondence
ER a Ne ×N l matrix of tip-based errors in one frame
ER the collection of all ER for labeled frames
f the number of leaf without correspondence

e1, e2 the tip-based errors used in Algorithm 2
τ a threshold for comparing with tip-based errors

F,E, T the performance metrics
Qa, Qt the quality to predict alignment and tracking
xa,xt the features to learn quality prediction models

λ1,2, µ1,2 the weights used in J and G
α1, α2 the step sizes in the gradient descent of J and G
s the smallest leaf size we use

a previous frame. During tracking, a leaf candidate
whose size is smaller than a threshold is deleted. A
new candidate is detected and added for tracking
when there is a certain region of the image mask that
is not covered by the existing leaf candidates. Two
prediction models are learned to investigate the align-
ment and tracking quality respectively. All notations
are summarized in Table 1.

3.1 Multi-Leaf Segmentation and Alignment
Our segmentation and alignment algorithm consists
of two steps. First, a pre-defined set of leaf templates
is applied to the edge map of a test image to generate
an over-complete set of transformed leaf templates.
Second, we formulate an optimization process to se-
lect an optimal subset of leaf candidates.

3.1.1 Candidate nomination via Chamfer matching
Chamfer Matching (CM) [14] is a well-known method
used to find the best alignment between two edge
maps. Let V = {vi} and U = {ui} be the edge
maps of a test image and a template respectively. CM
distance is computed as the average distance of each
edge point in U with its nearest edge point in V :

d(U ,V ) =
1

|U |
∑
ui∈U

min
vj∈V

‖ui − vj‖2, (1)

where |U | is the number of edge points in U . CM dis-
tance can be computed efficiently via a pre-computed
distance transform image DT(g) = minvj∈V ‖g−vj‖2,
which calculates the distance of each coordinate g to
its nearest edge point in V . During the CM process,
an edge template U is superimposed on DT and
the average value sampled by the template edge
points ui equals to the CM distance, i.e., d(U ,V ) =
1
|U |
∑

ui∈U DT(ui).
Given a fluorescence plant image, it is first trans-

formed to a binary image m by applying a threshold.
The Sobel edge detector is applied to m to generate
an edge map V . The goal of leaf alignment is to
transform the 2D edge coordinates of a template U in
the leaf template space to a new set of 2D coordinates
Ũ in the test image space so that the CM distance is
small, i.e., the leaf template is well aligned with V .
Image Warping: In our framework, there are two
types of transformations involved including forward
and backward warping. We use affine transformation
that consists of scaling, rotation, and translation.

As shown in Figure 3, let W : U 7→ Ũ be a
forward warping function that transfers the 2D edge
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Fig. 3. Forward and backward warping.

points from the template space to the test image space,
parameterized by p = [θ, r, tx, ty ]T :

Ũ = W (U ;p) = r

[
cos θ − sin θ

sin θ cos θ

]
(U−Ū)+

[
tx

ty

]
+Ū ,

(2)
where θ is the in-plane rotation angle, r is the scaling
factor, tx and ty are the translations along x and y axis
respectively. Ū is the center of the leaf, i.e., the average
of all coordinates of U , which is used to model the
leaf scaling and rotation w.r.t. the leaf center.

Let W−1 : Ũ 7→ U be the backward warping from
the image space to the template space. We denote X
as a K × 2 matrix including all coordinates in the test
image space. Thus, W−1(X;p) are the corresponding
coordinates of X in the template space. The purpose
for this backward warping is to generate a K-dim
vector M̃ = M(W−1(X;p)), which is the warped
version of the original template mask M .

Leaf Templates: Since there is a large variation in leaf
shapes, it is infeasible to match leaf with one template.
We manually select H basic templates (the 1st row
in Figure 4) with representative leaf shapes from the
plant videos and compute their individual edge map
U and mask M . We synthesize an over-complete set
of transformed templates by selecting a discrete set
of θ and r, which are expected to cover all potential
leaf configurations in V . This leads to an array of
N = HSR leaf templates where S and R are the
numbers of leaf scales and orientations respectively
(Figure 4). The yellow and green points in Figure 4
are the two labeled leaf tips t, which are used to find
the corresponding leaf tips t̂ in V via Equation 1.

For each template Un, it scans through all possible
locations on V and the location with the minimum
CM distance is selected, which provides tx and ty
optimal to Un. Therefore, with the manually selected
θ, r, and exhaustively chosen tx and ty , N transformed
templates are generated from H basic templates. For
each transformed template, we record the 2D edge
coordinates of its basic template, warped template
mask, transformation parameters, CM distance and
the estimated leaf tips as L = {Un,M̃n,pn, dn, t̂n}Nn=1.
Note that L is an over-completed set of transformed
leaf templates including the true leaf candidates as its
subset. Hence, the critical question is how to select
such a subset of candidates from L.

Shapes�

Sizes�

Orienta-ons�

Fig. 4. Leaf template scaling and rotation from basic tem-
plate shapes. The tip labels are shown in yellow and green.

3.1.2 Objective function
The goal of leaf segmentation and alignment is to
segment each leaf and estimate the structure precisely.
If the leaf candidates are well selected, there should be
no redundant or missing leaves. Each leaf candidate
should be well aligned with the edge map of the test
image. This rationality leads to a three-term objective
function, which seeks the minimal number of leaf
candidates (J1) with small CM distances (J2) to best
cover the test image mask (J3).

Each image contains around 10 leaves while the
number of potential candidates in L is 2, 880 in our
case. The selection space needs to be narrowed down
substantially. To do this, we compute the CM distance
and the overlap ratio of each template to the test
image mask. We remove leaf templates whose CM
distance is larger than the average of all templates
or whose overlap ratio is smaller than 90%. Finally,
we generate a new set L1 with N1 (a few hundreds)
templates. RANSAC [34] is not applicable here for two
reasons. First, it is difficult to define a model or eval-
uation criterion for a random subset of leaf templates.
Second, we have more outliers than inliers, which
makes it hard to select the correct set in consensus.

The objective function is defined on a N1-dim
indicator vector x, where xn = 1 means that the
nth transformed template is selected and xn = 0
otherwise. Hence x uniquely specifies a combination
of transformed templates from L1. The first term is
the number of the selected leaf candidates J1 = ‖x‖1.

We concatenate dn from L1 to form a N1-dim vector
d. The second term, i.e., the average CM distance of
the selected leaf candidates, is formulated as:

J2 =
dT x

‖x‖1
. (3)

The third term is the comparison between the syn-
thesized mask and the test image mask. As shown
in Figure 5, we convert the binary mask to a K-
dim row vector m by raster scan. Similarly, each
warped template mask M̃n is also a K-dim vector.
The collection of M̃n from all transformed templates
is denoted as a N1 × K matrix A. Note that xT A
is indicative of the synthesized mask except that the
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Fig. 5. The process of generating m and A.

pixel values of the overlapping leaves are larger than
1. We employ the arctan(·) function, similar to [35],
[36], to convert all elements in xT A to be in the range
of [0, 1],

f(x) =
1

π
arctan(C(xᵀA− 1

2
)) +

1

2
, (4)

where C is a constant controlling how close arctan(·)
approximates the step function. Note that the actual
step function cannot be used here since it is not differ-
entiable and thus is difficult to optimize. The constant
1
2 within the parentheses is a flip point separating
where the value of xT A will be pushed toward either
0 or 1. Therefore, the third term becomes:

J3 =
1

K
‖f(x)−m‖22. (5)

Finally, our objective function is:

J(x) = J1 + λ1J2 + λ2J3, (6)

where λ1 and λ2 are the weights. These three terms
jointly provide guidance on what constitutes an opti-
mal combination of leaf candidates.

3.1.3 Local search method for optimization

Equation 6 is a pseudo-Boolean function. The basic
algorithm [37] is not applicable because our objective
cannot be written in the required polynomial form.
We adopt the widely used local search method to op-
timize Equation 6. The local search algorithm [38] for
pseudo-Boolean function iteratively searches a small
neighborhood of x and updates x to its neighborhood
that leads to a smaller function value.

First, all elements in x are initialized as 1, i.e.,
all transformed templates are selected. We fix one
element in x at each iteration by searching the neigh-
borhood of x with the nth element being 0 or 1,
denoted as xxn=0 and xxn=1. According to the propo-
sition 6 in [38], a positive gradient indicates 0 in the
corresponding element of the local optimal solution.
Therefore, each iteration, we select the element with
the maximum gradient to remove redundant leaf

templates. The gradient of the objective w.r.t. x is:

dJ

dx
= sign(x) + λ1(

d

‖x‖1
− dT x

‖x‖21
sign(x))

−2λ2C

πK
A

[
(f(x)−m)� (1 + (C(xᵀA− 1

2
))2)

]T
,

(7)
where sign(x) is a function returning the sign of each
element, and� is the element-wise division of vectors.
In each iteration, x is updated by x = x−α1

dJ
dx . The el-

ement xn with the largest gradient is chosen and fixed
to be 0 or 1 based on the smaller value of J(xxn=0)
and J(xxn=1). Once this element is fixed, its value
remains unchanged in the future iterations. The total
number of iterations is the number of transformed leaf
templates N1. Finally, those elements in x equal to 1
provide the combination of leaf candidates.

This joint leaf segmentation and alignment is ap-
plied on the last frame of a plant video to gen-
erate Ne leaf candidates that are used for track-
ing in the remaining video frames. We denote the
set of leaf candidates selected from L1 as M =
{Un,M̃n,pn, dn, t̂n}N

e

n=1, which means the basic leaf
template Un is transformed by pn to result in a leaf
candidate that is well-aligned with the edge map.

3.2 Multi-Leaf Tracking Algorithm
Leaf tracking aims to assign the same leaf ID to the
same leaf through an entire video. In order to track
all leaves over time, one way is to apply leaf segmen-
tation and alignment framework on every frame of
the video and then build leaf correspondence between
consecutive frames. However, the leaf tracking consis-
tency is an issue due to the potentially different leaf
segmentation results on different frames. Therefore,
we form an optimization problem for leaf tracking
based on template transformation.

3.2.1 Objective function
Similar to Equation 6, we formulate a three-term
objective function parameterized by a set of trans-
formation parameters P = {pn}N

e

n=1, where pn is the
transformation parameters for leaf candidate Un.

First, P is updated so that the transformed leaf
candidates are well aligned with the edge map V . The
first term is computed as the average CM distance of
the transformed leaf candidates:

G1 =
1

Ne

Ne∑
n=1

d(W (Un;pn), V ). (8)

The second term is to encourage the synthesized
mask from all transformed candidates to be similar
to the test mask m. The synthesized mask of one
transformed leaf candidate is Mn(W−1(X;pn)), we
formulate the second term as:

G2 =
1

K
‖
Ne∑
n=1

Mn(W−1(X;pn))−m‖22. (9)
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Fig. 6. The angle difference - the long axis of leaves should
point to the plant center.

One property of rosette plants such as Arabidopis is
that the long axes of most leaves point toward the
center of the plant. To take advantage of this domain-
specific knowledge, the third term encourages the
rotation angle θ to be similar to the direction of the
leaf center to the plant center. Figure 6 shows the
geometric relation of the angle difference, which can
be computed as cxn−cx

sn
− sin θn, where (cx, cy) and

(cxn, c
y
n) are the geometric centers of a plant and a leaf,

i.e., the average coordinates of all points in m and
Ũn respectively, sn =

√
(cxn − cx)2 + (cyn − cy)2 is the

distance between the leaf center and the plant center,
and θn is the rotation angle. Furthermore, since this
property is more dominant for leaves far away from
the plant center, we weight the above angle difference
by sn and normalize it by the image size. The third
term is the average weighted angle difference:

G3 =
1

Nea2

Ne∑
n=1

‖(cxn − cx)− sn sin θn‖22. (10)

Finally, the objective function is formulated as:

G(P ) = G1 + µ1G2 + µ2G3, (11)

where µ1 and µ2 are the weights.
Note the differences in two objective functions J

and G. Since the number of leaves is fixed for tracking,
J1 is not needed in the formulation of G. The number
of leaves is relatively small during tracking. Therefore,
arctan(·) is not needed since the synthesized mask is
already comparable to the test image mask.

3.2.2 Gradient descent optimization
Given the objective function in Equation 11, our
goal is to minimize it by estimating P , i.e., P =
argminPG(P ). Since G(P ) involves texture warping,
it is a nonlinear optimization problem without a close-
form solution. We use gradient descent to solve this
problem. The derivation of G1 w.r.t. P can be written
as:
dG1

dpn
=

1

Ne|Un|
(ODTx ∂W

x

∂pn
+ ODTy ∂W

y

∂pn
), (12)

where ODTx and ODTy are the gradient images of
DT at x and y axis respectively. These two gradient
images only need to be computed once for each
frame. ∂W x

∂pn
and ∂W y

∂pn
can be easily computed from

Equation 2 w.r.t. θ, r, tx and ty separately.

Similarly, the derivation of G2 w.r.t. P is:

dG2

dpn
=

2

K

[ Ne∑
n=1

Mn(W−1(X;pn))−m
]
·

(OMx
n

∂W−1
x

∂pn
+ OMy

n

∂W−1
y

∂pn
),

(13)

where OMx
n and OMy

n are the gradient images of the
template mask Mn at x and y axis respectively. ∂W

−1
x

∂pn

and ∂W−1
y

∂pn
can be computed based on the inverse

function of Equation 2.
The derivation of G3 w.r.t. θ is more complex than to

the other three transformation parameters. For clarity,
we only present the derivative over θ:

dG3

dθn
=

2

Nea2
[(cxn − cx)− sn sin θn] ·

[ 1

|Un|
∂Wx

∂θn

−sn cos θn −
2 sin θn
sn|Un|

[(cxn − cx)
∂Wx

∂θn
+ (cyn − cy)

∂Wy

∂θn
]
]
.

(14)
During optimization, P 0 is initialized as the trans-

formation parameters of the leaf candidates from the
previous frame and updated as ptn = pt−1n −α2

dG
dpn

for
each leaf at iteration t. Note that this is a multi-leaf
joint optimization problem because the computation
of dG2

dpn
involves all Ne leaf candidates. The optimiza-

tion stops when G does not decrease or it reaches the
maximum iteration D.

3.2.3 Leaf candidates update
Given a multi-day plant video, we apply leaf segmen-
tation and alignment algorithm on the last frame to
generate M and employ the leaf tracking toward the
first frame. Due to plant growth and leaf occlusion,
the number of leaves may vary throughout the video.
If the area of any leaf candidate at one frame is less
than a threshold s (defined as the number of pixels),
we remove it from the leaf candidates.

On the other hand, a new leaf candidate can be
detected and added to M. To do this, we compute the
synthesized mask of all leaf candidates and subtract
it from the test image mask m to generate a residue
image for each frame. Connected component analysis
is applied to find components that are larger than s.
We then apply a subset of N leaf templates to find a
leaf candidate based on the edge map of the residue
image. The new candidate is assigned with an existing
leaf ID if its overlap to a previous disappeared leaf is
larger than a threshold. Otherwise it will be assigned
with a new leaf ID. The new candidate is added into
M and tracked in the remaining frames.

3.3 Quality Prediction
While many algorithms strive for perfect results, it
is inevitable that unsatisfactory or failed results are
obtained on the challenging samples. It is critical for
an algorithm to be aware of this situation so that
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future analysis does not rely on poor results. One
approach to achieve this goal is to perform the quality
prediction for the task, similar to quality estimation for
fingerprint [39] and face [40]. The key tasks in our
work include leaf alignment, estimating the two tips
of a leaf, and leaf tracking, keeping leaf consistency
over time. Therefore, we learn two quality prediction
models to predict the alignment accuracy and detect
the tracking failure respectively. The prediction can be
used to select a subset of leaves with high quality for
subsequent plant biology analysis [41].

3.3.1 Alignment quality
Suppose Qa is the alignment accuracy of a leaf, which
indicates how well the two tips are aligned. We envi-
sion what factors may influence the estimation of the
two tips. First, the CM distance indicates how well
the template and the test image are aligned. Second, a
well-aligned leaf candidate should have large overlap
with the test image mask and small overlap with
the neighboring leaves. Third, the leaf area, angle,
and distance to the plant center may influence the
alignment result. Therefore, we extract a 6-dim feature
vector xa including: the CM distance d(W (Un;pn),V ),
the overlap ratio with the test image mask 1

|m|1M̃n �m,

the overlap ratio with the other leaves M̃n�(m−M̃n)

|M̃n|1
, the

area normalized by test image mask 1
|m|1 |M̃n|1, the angle

difference |θn− sin−1 c
x
n−cx
sn
| and the distance to the plant

center sn. A linear regression model is learned by
optimizing the following objective on Na training
leaves with ground truth Qa, which is proportional
to the alignment error (details in Sec. 5.3.3).

ω = arg min
ω

Na∑
n=1

‖ Qna − ωxna ‖, (15)

where ω is a 6-dim weighting vector to predict the
alignment accuracy of each leaf.

3.3.2 Tracking quality
Due to the limitation of our algorithm, it is possible
that one leaf might diverge to the location of the
adjacent leaves and results in tracking inconsistency.
We name it as a tracking failure. One example is shown
in Figure 7, where labeled leaf 1 has been assigned
two different IDs (3 and 4) during tracking. The
change happens from frame 3 to frame 2. The goal
of tracking quality prediction is to detect the moment
when tracking starts to fail. We denote tracking qual-
ity as Qt, where Qt = −1 means a tracking failure of
one leaf and Qt = 1 means tracking success.

Similar to Section 3.3.1, we first extract a 6-dim
feature vector xa for one leaf. However xa alone
can not predict the tracking failure because it does
not include temporal information. So we compare the
features xa of one frame with that of a reference frame
x̂a, which is 20 frames before xa. Since a tracking

failure may result in abnormal changes in leaf area,
angle, and distance to the center, we compute the
leaf angle difference, leaf center distance, leaf overlap
ratio between the current and the reference frame.
Finally, we form a 15-dim feature vector denoted as
xt, including xa, xa−x̂a, the leaf angle difference θn−θ̂n,
the leaf center distance

√
(cxn − ĉxn)2 + (cyn − ĉyn)2, and the

leaf overlap ratio Mn(W
−1(X;pn))�M̂n(W

−1(X;p̂n))
Mn(W−1(X;pn))

. Given
a training set Ω = {(xnt , Qnt )} with Qnt ∈ {−1, 1},
a SVM classifier is learned as the tracking quality
model.

4 PERFORMANCE EVALUATION

Leaf segmentation is to segment each leaf from the
image. Leaf alignment is to correctly estimate two
tips of each leaf. Leaf tracking is to keep the leaf ID
consistent over the video. In order to quantitatively
evaluate the performance of joint multi-leaf SAT, we
need to provide the ground truth of the pixel-level
leaf segments in each frame, the two tips of each leaf,
and the leaf IDs for all leaves in the video.

As shown in Figure 7, we label the two tips of each
leaf and manually assign their IDs in several frames
of one video. We record the label results in one frame
as a N l × 4 matrix T , where N l is the number of
labeled leaves and T (n, :) = [tx1 , t

y
1, t

x
2 , t

y
2] records tip

coordinates of nth leaf in this frame. The collection
of all labeled frames in all videos is denoted as T,
where T = T{i, j}(i = 1, 2, ...,m, j = 1, 2, ...n), m is
the number of labeled videos and n is the number
of labeled frames in each video. The total number of
labeled leaves in T is N b.

During template transformation, the corresponding
points of the transformed template tips in V become
the estimated leaf tips [t̂x1 , t̂

y
1, t̂

x
2 , t̂

y
2]. The leaf ID is

assigned in the last frame starting from 1 to the
total number of selected leaves and kept the same
during tracking. Similar to the data structure of T, the
tracking results of all videos over the labeled frames
is written as T̂. Given T̂ and T, Algorithm 2 provides
our detailed performance evaluation, which is also
illustrated by a synthetic example in Figure 7.

There are two concepts involved: frame-to-frame
and video-to-video correspondence. For each esti-
mated leaf, we need to find one corresponding leaf
in the labeled frame. Frame-to-frame correspondence
aims to assign a unique leaf ID to each leaf in the
frame so that the IDs are consistent with our labeled
IDs. As mentioned before, the frame-to-frame corre-
spondence may not be consistent in the whole video
due to the tracking failures or more than one leaf IDs
can be assigned to the same leaf in the video. Video-
to-video correspondence aims to assign consistent and
unique leaf ID to the same leaf in the entire video.

We start by building frame-to-frame leaf correspon-
dence, as in Algorithm 1 and the red dotted box
in Figure 7. To build the leaf correspondence of Ne
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Fig. 7. A toy example of executing Step 1 of Algorithm 2
on one video with 3 frames. In frame 1, we illustrate the
process of Algorithm 1. Each table shows the corresponding
computation of each leaf from tracking results (each row) and
label results (each column).

Algorithm 1: Build leaf correspondence [f,ER, ID] =

leafMatch(T̂ ,T ).

Input: Estimated leaf tips matrix T̂ (Ne × 4) and
labeled leaf tips matrix T (N l × 4).

Output: f = |N l −Ne|, ER, and ID.
Initialize D=ER=ID=0Ne×Nl .
for i = 1, . . . , Ne do

for j = 1, . . . , N l do
D(i, j) = ela(ti, t̂j);

for k = 1, . . . ,min(Ne, N l) do
[emin, i, j] = min(D);
D(i, :) = Inf; D(:, j) = Inf;
ID(i, j) = 1; ER(i, j) = emin.

estimated leaves with N l labeled leaves, a Ne × N l

matrix D is computed, which records all tip-based
errors of each estimated leaf tips t̂1,2 with every
labeled tips t1,2 normalized by the labeled leaf length:

ela(t̂1,2, t1,2) =
||t̂1 − t1||2 + ||t̂2 − t2||2

2||t1 − t2||2
. (16)

Algorithm 2: Performance evaluation process.

Input: Tracking results T̂, label results T.
Output: F , E, and T .
Initialize f = 0, e1 = e2 = [].

1.for i = 1, . . . ,m do
ER = cell(Ne, N l), ID = 0Ne×Nl .

for j = 1, . . . , n do
T̂ = T̂{i, j}; T = T{i, j};
[f0,ER0, ID0] = leafMatch(T̂ ,T );
f = f + f0; e1 = [e1,ER0(ER0 6= 0)];
ER = ER+ER0; ID = ID + ID0;

for k = 1, . . . ,min(Ne, N l) do
[IDmax, i, j] = max(ID);
ID(i, :) = Inf; ID(:, j) = Inf;
e2 = [e2,ER{i, j}];

2.for τ = 0 : 0.01 : 1 do
F (τ) = f+sum(e1>τ)

Nb ; E(τ) = mean(e1 ≤ τ);
T (τ) = sum(e2≤τ)

Nb .

We build the leaf correspondence by finding a num-
ber of min(Ne, N l) minimum errors in D that do not
share columns or rows, which results in min(Ne, N l)
leaf pairs and f = |N l − Ne| leaves without cor-
respondence. Finally, it outputs the number of un-
matched leaf f , ER recording tip-based errors and
ID recording the leaf correspondence. This frame-to-
frame correspondence is built on all 3 frames and the
results are added into ER and ID. We build the video-
to-video leaf correspondence using the accumulated
ID. e1 and e2 are the tip-based errors of leaf pairs
with frame-to-frame and video-to-video correspon-
dence respectively. The difference of e1 and e2 is from
estimated leaf 4. While it is well aligned with labeled
leaf 1 in frame 3, it does not have leaf correspondence
in all 3 frames together.

Finally we compute three metrics by varying a
threshold τ . Unmatched leaf rate F is the percentage
of unmatched leaves w.r.t. the total number of labeled
leaves N b. F attributes to two sources, f leaves with-
out correspondence and correspondent leaves with
tip-based errors larger than τ . Landmark error E
is the average of all tip-based errors in e1 that are
smaller than τ . Tracking consistency T is the per-
centage of leaf pairs whose tip-based errors in e2 are
smaller than τ w.r.t. N b. These three metrics jointly
estimate the accuracy in leaf counting (F ), alignment
(E), and tracking (T ).

In order to quantitatively evaluate the segmentation
accuracy, we annotate each image to generate a leaf
segmentation mask where the pixels of the same leaf
are assigned with the same number over the video.
We add the metric “Symmetric Best Dice” (SBD) [5]
to compute the similarity between the estimated and
the ground truth segmentation masks. It is averaged
across all labeled frames. These four metrics are used
to evaluate the performance of our joint framework.
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5 EXPERIMENTS AND RESULTS

5.1 Dataset and Templates

Our dataset includes 41 Arabidopsis Thaliana videos
taken in a 5-day period, which is sufficient to model
the plant growth [42]. Each video has 389 frames,
with the image resolution ranging from 40 × 40 to
100× 100. For each video, we label the two tips of all
visible leaves and segmentation masks of 5 frames,
each being the middle frame of a day. In total we
labeled N b = 1, 807 leaves. We select 10 videos to form
the training set for template generation and parameter
tuning. The remaining 31 videos are used for testing.
The collection of all labeled tips and segmentation
masks are denoted as T and B.

To generate leaf templates, we select 10 leaves with
representative shapes and label the two tips for each
leaf, as in Figure 4. We select 12 scales for each leaf
shape to guarantee the scaled templates can cover
all possible leaf sizes in the dataset. For each scaled
leaf template, we rotate it every 15◦ in the 360◦

space. Finally, the total number of leaf templates is
N = SHR = 2, 880 with S = 10, H = 12, R = 24 1.

5.2 Experimental Setup

For each testing video, we apply our approach and
compare with four methods: Baseline Chamfer Match-
ing, Prior Work [12], [16], and Manual Results.
Proposed Method N templates are applied to the
edge map of the last video frame to generate the same
amount of transformed templates. Leaf segmentation
and alignment generate Ne leaf candidates for leaf
tracking, which iteratively updates P according to
Equation 11 towards the first frame.
Baseline Chamfer Matching The basic idea of CM
is to align one object in an image. To align multiple
leaves in a plant image, we design the baseline CM to
iteratively align one leaf at one time. In each iteration,
we apply all N templates to the edge map of a
test image to generate N transformed leaf templates,
which is the same as our first step. The transformed
template with the minimum CM distance is selected
and denoted as a leaf candidate. We update the edge
map by deleting the matched edge points of the
selected leaf candidate. The iteration continues until
90% of the edge points are deleted. We apply this
method to the labeled frames of each video and build
the leaf correspondence based on leaf centers.
Multi-leaf Alignment [12] The optimization in [12] is
the same as our proposed leaf alignment on the last
frame. We apply [12] on all labeled frames and build
the leaf correspondence based on leaf center distances.
Multi-leaf Tracking [16] The difference between the
proposed method and [16] includes the modified G3

1. The dataset, labels, and templates are publicly available at:
http://cvlab.cse.msu.edu/project-plant-vision.html.

in Equation 11. And [16] do not have the scheme to
generate a new leaf candidate during tracking.
Manual Results In order to find the upper bound of
our proposed method, we use the ground truth labels
T to find the optimal set of T̂. For each labeled leaf,
we find the leaf candidate with the smallest tip-based
error ela from N transformed templates.

For all methods, we record the estimated tip co-
ordinates of all leaf candidates in the labeled frames
as T̂. The transformed template masks are used to
generate an estimated segmentation mask for each
frame. We record the estimated segmentation masks
of all labeled frames as B̂. T̂ and T are used to evaluate
F , E, and T . B̂ and B are used to evaluate SBD.

5.3 Experimental Results
5.3.1 Performance comparison
Qualitative Results Figure 8 shows the results on
the labeled frames of one video. Since the baseline
CM only considers CM distance to segment each leaf
separately, leaf candidates are likely to be aligned
around the edge points, which result in large land-
mark errors. While [16] can keep the leaf ID consistent,
it does not include the scheme to generate a new leaf
candidate during tracking (e.g., leaf 8 in Figure 8). Our
proposed method performs substantially better than
others. It has the same segmentation as the labeled
results and all leaves are well tracked. Leaf 5 is deleted
when it gets too small. Due to the limitation of a
finite amount of templates, the manual results are not
perfect. However, in our tracking method, we allow
template transformation under any parameters in P
without limiting to a finite number.
Quantitative Results We first evaluate the SAT ac-
curacy w.r.t. F , E, and T . We set the threshold τ to
vary in [0.05 : 0.01 : 1] and generate the accuracy
curves for all methods, as shown in Figure 9. When
τ is small, i.e., we have very strict requirements on
the accuracy of tip estimation, all methods work well
for easy-to-align leaves. With the increase of τ , more
and more hard-to-align leaves with relatively large
tip-based errors are considered as well-aligned leaves
and contribute to the landmark error E and tracking
consistency T . Therefore, detecting more leaves will
result in higher E and T . It is noteworthy that our
method achieves lower landmark error and higher
tracking consistency while segmenting more leaves.

The baseline CM segments less leaves with higher
landmark error and lower tracking consistency. The
manual results are the upper bound of our algorithm.
Obviously F will be 0 and T will be 1 with the
increase of τ because we enforce the correspondence
of all labeled leaves. But E will not be 0 due to the
limitation of a finite template set. Overall, the pro-
posed method performs much better than the baseline
CM and our prior work. The improvement over [12]
is mainly in a higher T , and it improves [16] in all

http://cvlab.cse.msu.edu/project-plant-vision.html
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Fig. 8. Qualitative results: (a) ground truth labels; (b) baseline CM; (c) [16]; (d) proposed method; and (e) manual results.
Each column is one frame in the video (day/frame). Yellow/green dots are the estimated outer/inner leaf tips. Red contour is
W (U ;p). Blue box encloses the edge points matching W (U ;p). The number on a leaf is the leaf ID. Best viewed in color.
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Fig. 9. Accuracy comparison of F , E, and T vs. τ for all different methods based on Algorithm 2.

three metrics. However there is still a gap between
the proposed method and the manual results, which
calls for future research.

The SBD-based segmentation accuracy is shown in
Table 2. The proposed method is again superior to the
baseline algorithm and the prior work.
Efficiency Results Table 2 shows the average exe-
cution time, which is calculated based on a Mat-
lab implementation on a conventional computer. Our
method is superior to the baseline CM and [12]. It is a
little slower than [16] because of the updated G3 and
the scheme to add leaf candidates during tracking.
Segmentation Accuracy While there is no prior work
focuses on the joint multi-leaf SAT, leaf segmentation

TABLE 2
SBD and efficiency comparison (sec./image).

Baseline [12] [16] Proposed Manual
SBD 61.0 63.0 64.4 65.2 74.9
Time 51.28 16.42 1.98 2.15 -

TABLE 3
Leaf segmentation SBD accuracy (±std) comparison.

A1 A2 A3 all
[17] 74.2(±7.7) 80.6(±8.7) 61.8(±19.1) 73.5(±11.5)

Ours 78.5(±5.5) 77.4(±8.1) 76.1(±14.1) 78.0(±7.8)

has been studied especially on RGB imagery. For
example, state-of-the-art performance [17] is reported
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Fig. 10. Alignment parameter tuning. We show the accuracy in E, F , and SBD when varying the coefficients of each
objectve (a) and the template set size (b,c,d).

in the 2014 Leaf Segmentation Challenge (LSC) [30].
We apply our segmentation and alignment algorithm
to the LSC dataset [5], which consists of three sets of
Arabidopsis (A1, A2) and tobacco (A3). Two examples
from A2 and A3 are shown in Figure 11. Note that pre-
processing of the RGB imagery is employed in order
to extend our proposed method to this LSC dataset.
We compare the segmentation accuracy with [17] in
Table 3. Our algorithm achieves higher SBD in A1,
A3, and in average. The segmentation accuracy on
the LSC dataset is much higher than that of our flu-
orescence dataset because images in [5] are of higher
resolution.

(a) (b) (c) (d)

Fig. 11. Leaf segmentation results on LSC: (a) input image;
(b) alignment result; (c) estimated segmentation mask; (d)
ground truth segmentation mask.

5.3.2 Parameter tuning
We explore the sensitivity of the parameters in our
method. We use the 10 training videos for parameter
tuning in our framework. For alignment parameter
tuning, we test on all labeled frames independently
and evaluate the accuracy without using tracking
consistency T . For tracking parameter tuning, we test
on the labeled frames of each video and evaluate the
accuracy using all four metrics.

Figure 10 (a) shows the alignment parameter tun-
ing results of the weights for each objective term in
Equation 6. We first search for the optimal setting to
be: λ1 = 4 and λ2 = 300. We then fix one parameter
and change the other and evaluate the performance
at τ = 0.4. We observe that λ1 is relatively robust
with some improvement from 0 to 4. The performance
increases tremendously as λ2 increases, indicating that
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Fig. 12. Tracking parameter tuning. Accuracy w.r.t. the
coefficients in the objective and the number of iterations.

J3 is crucial. Without either term (λ1 = 0 or λ2 = 0),
the performance is not optimal.

In order to analyze the impact of the number of leaf
templates, we reduce the value in one of H , S, and
R at a time. As shown in Figure 10, the performance
increases as the number of templates increases in all
three parameters. However, orientation is the most
important as leaves with different orientations are
more likely to have higher CM distances than leaves
with different shapes or scales.

Figure 12 (a,b) shows the parameter tuning results
in leaf tracking framework. Similarly, we first find the
optimal weights to be: µ1 = 1 and µ2 = 15. We fix
one parameter and change the other and evaluate the
performance at τ = 0.4. µ1 and µ2 are relatively robust
to changes. However, they are still useful as without
either term, the performance decreases.

To study the impact of the number of iterations be-
tween two frames, we change D and evaluate the per-
formance. As shown in Figure 12 (c), the performance
increases as D increases. However, it stabilizes when
D is larger than 300 because the algorithm already
converges before reaching the maximum iteration.

In summary, all parameters used in our algorithm
are set as: λ1 = 4, λ2 = 300, C = 3, µ1 = 1, µ2 = 15,
D = 300, α1 = 0.001, α2 = 0.001, and s = 40.

5.3.3 Quality prediction
Alignment Quality Model Data samples for evaluat-
ing our alignment quality model are selected from e1
in Algorithm 2, which contains the tip-based errors
of all leaf pairs with 90% of them are less than 0.5.
We select 100 samples from e1 for each interval of tip-
based error within [0 : 0.1 : 0.5]. Sample duplication is
employed when the number of sample in a particular
interval is less than 100. All samples with tip-based
error larger than 0.5 will also be selected but without
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duplication. Finally we select 625 samples and extract
features xa for each sample. We assign Qa = 2ela to
make the output in the range of [0, 1]. And Qa = 1 for
all samples with ela > 0.5. We randomly select 100
samples as the test set and the remaining samples are
used to train the model. Figure 13 (a) shows the results
of the model on both training and testing samples.

We use R2 to measure how well the model fits our
data. It is defined as:

R2 = 1−
∑

(Qa − Q̂a)2∑
(Qa − Q̄a)2

, (17)

where Q̂a is the predicted quality value and Q̄a is
the mean of Qa. In our model, R2 = 0.769 and the
correlation coefficients for all testing samples is 0.813.
Both values indicate a high correlation of Qa and Q̂a.
This quality model is used to predict the alignment
accuracy and generate one predicted curve for each
leaf, as shown in Figure 2.
Tracking Quality Model We visualize the results of
our method and find 15 videos that have a tracking
failure of one leaf. As the goal for tracking quality
model is to detect when the tracking failure starts,
we label two frames when the failure starts and
ends in each video. The starting frame is when a
leaf candidate starts to change its location toward
its neighboring leaves. The ending frame is when a
leaf candidate totally overlaps another leaf. Among
all failure samples, the shortest tracking failure length
is 5 frames and the average length is 12 frames.

We select 2-3 frames near the ending frame as
the negative training samples with Qt = −1 and
5 frames evenly distributed before the failure starts
as the positive training samples with Qt = 1. The
features xt are extracted as discussed in Section 3.3.2
and used to train a SVM classifier. The learned model
is applied to all frames to predict the tracking quality.
Figure 13 (b) shows an example of the output. We
apply a Gaussian filter to remove outliers and delete
the failure whose length is less than 5 frames (the
shortest length of failure samples).

We compare the first frame of a predicted failure

Fig. 14. Leaf alignment results on synthetic leaves with
various amount of overlap. From left to right, the overlap ratio
w.r.t. the smaller leaf is 10%, 15%, 22%, 23%, 36%, and 59%.

with that of a labeled failure. When their distance
is less than 12 frames (the average length of the
failure samples), it is considered as a true detection.
Otherwise it is a false detection. Using the leave-
one-video-out testing scheme, the quality model
generates 11 true detections and 16 false detections
over 15 labeled failures. Similarly, this quality model
is applied during tracking and outputs a prediction
curve for each leaf (shown in Figure 2).

5.3.4 Limitation analysis

Any algorithm has its limitation. Hence, it is impor-
tant to explore the limitation of the proposed method.
First, one interesting question is to what extend our
segmentation and alignment method can correctly
segment leaves in the overlapping region. We answer
this question using a simple synthetic example. As
shown in Figure 14, our method performs well when
the overlap ratio is less than 23%. Otherwise it iden-
tifies two leaves as one leaf, which appears to be
reasonable when the overlap ratio is high (e.g., 59%).

Second, our leaf tracking starts from a good initial-
ization of the leaf candidates from the previous frame.
Another interesting question is to what extend our
tracking method can succeed with bad initializations.
To study this, 6 frames with good tracking results are
selected from 6 videos (one for each). We change the
transformation parameters P to synthesize different
amount of distortions and apply our tracking algo-
rithm on these 6 frames. The leaf candidate is deleted
only if it becomes one point and the tip-based error
is set to be 1. We compute the average tip-based error
of all leaf candidates.

We vary the rotation angle θ, the scaling factor
r, and the translation ratio txy , which is defined as

txy =

√
t2x+t

2
y√

(tx1−tx2 )2+(ty1−t
y
2)

2
and the direction is randomly

selected. The average and range of the tip-based errors
for all 6 frames are shown in Figure 15 . Our tracking
method reduces the initial tip-based error to a small
value. It is most robust to r and most sensitive to txy .

Figure 16 shows some examples. For rotation angle
less than 45◦, our method works well for different
amounts of leaf rotations. For the scaling factor, as
long as the leaf candidate is not too small, our method
is very robust even if we enlarge the original leaf
candidates to be 2.5 times larger. For the translation
ratio, it is sensitive because the direction is randomly
selected and leaf candidates are very likely to shift to
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Fig. 15. Mean tip-based error with different initializations. The axes on top of the figures show the initial tip-based errors.

Fig. 16. Example results: the first row shows the initialization, and the second row shows the tracking results.

the locations of the neighboring leaves. Furthermore,
changing the initialization of θ and r for 4 separate
leaves (leaf 1, 4, 5, 8 in Figure 16) leads to better perfor-
mance than that of 4 neighboring leaves (leaf 1, 3, 6, 7
in Figure 16) because neighboring leaves will have
overlap with each other and therefore influence the
tracking results. Overall, as the distortion increases,
the average tip-based error increases while some of
the leaf candidates can still be well aligned.

6 CONCLUSIONS

In this paper, we identify a new computer vision
problem of leaf segmentation, alignment, and tracking
from fluorescence plant videos. Leaf alignment and
tracking are formulated as two optimization prob-
lems based on Chamfer matching and leaf template
transformation. Two models are learned to predict the
quality of leaf alignment and tracking. A quantitative
evaluation scheme is designed to evaluate the perfor-
mance. The limitations of our algorithm are studied
and experimental results show the effectiveness, effi-
ciency, and robustness of the proposed method.

With the leaf boundary and structure information
over time, the photosynthetic efficiency can be computed
for each leaf, which paves the way for leaf-level
photosynthetic analysis and high-throughput plant
phenotyping. The proposed method and the evalu-
ation scheme are potentially applicable to other plant
videos, as shown in the results on the LSC dataset.

REFERENCES
[1] Fabio Fiorani and Ulrich Schurr, “Future scenarios for plant

phenotyping,” Annual Review of Plant Biology.
[2] Marcus Jansen et al., “Simultaneous phenotyping of leaf

growth and chlorophyll fluorescence via growscreen fluoro
allows detection of stress tolerance in arabidopsis thaliana and
other rosette plants,” Functional Plant Biology, 2009.

[3] Samuel Trachsel, Shawn M Kaeppler, Kathleen M Brown, and
Jonathan P Lynch, “Shovelomics: high throughput phenotyp-
ing of maize (zea mays l.) root architecture in the field,” Plant
and Soil, 2011.

[4] Larissa M Wilson, Sherry R Whitt, Ana M Ibáñez, Torbert R
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