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Joint Multi-Leaf Segmentation, Alignment, and
Tracking from Fluorescence Plant Videos

Xi Yin, Xiaoming Liu, Jin Chen, David M. Kramer

Abstract—This paper proposes a novel framework for fluorescence plant video processing. Biologists are interested in the leaf-
level photosynthetic analysis within a plant. A prerequisite for such analysis is to segment all leaves, estimate their structures and
track them over time. We treat this as a joint multi-leaf segmentation, alignment, and tracking problem. First, leaf segmentation
and alignment are applied on the last frame of a plant video to find a number of well-aligned leaf candidates. Second, leaf
tracking is applied on the remaining frames with leaf candidate transformation from the previous frame. We form two optimization
problems with shared terms in their objective functions for leaf alignment and tracking respectively. Gradient descent is used to
solve the proposed optimization problems. A quantitative evaluation framework is formulated to evaluate the performance of our
algorithm with three metrics. Two models are learned to predict the alignment accuracy and detect tracking failure respectively.
We also study the limitation of our proposed alignment and tracking framework. Experimental results show the effectiveness,
efficiency, and robustness of the proposed method.

Index Terms—leaf segmentation, alignment, tracking, gradient descent, multi-object, Chamfer matching
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1 INTRODUCTION

P LANTS are the major organisms that can produce
biomass and oxygen by absorbing solar energy.

One key problem in plant growth study is to un-
derstand the photosynthetic activities of plants under
various external stimulus or genetic variations. For
this purpose, plant researchers conduct large-scale
experiments in a chamber, as shown in the left part
of Fig. 1, where the temperature and light conditions
can be controlled, and ceiling-mounted fluorescence
cameras capture images of the plants during their
growth period [1]. The pixel intensity of the fluores-
cence image indicates the photosynthetic efficiency (PE)
of the plants. Given such a high-throughput imaging
system, the massive amount of resultant visual data
calls for advanced visual analysis in order to study a
wide range of plant physiological problems [2].

Leaves at different developmental ages may re-
spond differently to changes of environmental condi-
tions [3]. For example, biologists may be interested
in the heterogeneity of PE among leaves, the het-
erogeneity of PE over time, and whether the PE of
younger leaves is more sensitive to the change of
light conditions. Therefore, it is important to provide
a leaf-level visual analysis, which answers the essential
questions such as how many leaves are there, what are
their structures, and how do they change over time.
These problems are the main focus of this paper.

As shown in Fig. 1, given a fluorescence video as
input, our algorithm performs multi-leaf segmenta-
tion, alignment, and tracking jointly. Specifically, leaf
segmentation [4] detects the edge of each leaf and
thus the total number of leaves in one plant. Leaf
alignment [5] estimates the leaf structure by aligning
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Fig. 1. Leaf-level plant analysis. Given a fluorescence
plant video captured during its growth period, our algorithm
performs multi-leaf segmentation, alignment, and tracking
jointly, i.e., estimating unique and consistent-over-time labels
for all leaves and their individual leaf structure like leaf tips.

with labeled leaf templates. Leaf tracking [6] asso-
ciates the leaves over time. This multi-leaf analysis is a
challenging problem due to a number of factors. First,
fluorescence images are of low resolution and result
in very small leaf sizes that can be hard for humans to
clearly recognize every leaf. Second, there are various
degrees of overlap among leaves, which pose signif-
icant challenges in estimating their leaf boundaries
and structures. Third, leaves of a single plant may
exhibit various shapes, sizes, and orientations, which
also change over time. Therefore, effective algorithms
should be developed to handle all these challenges.

To the best of our knowledge, there is no previous
study focusing on leaf segmentation, alignment, and
tracking simultaneously from plant videos. To solve
this new problem, we develop two optimization-
based algorithms for multi-leaf alignment and track-
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ing respectively. Specifically, leaf alignment is based
on the well-known Chamfer matching (CM) algo-
rithm [7], which is used to align one object instance
in an image with a given template. However, classical
CM may not work well for aligning multiple overlap-
ping leaves. Motivated by the crowd segmentation
work [8], where both the number and locations of
pedestrians are estimated simultaneously, this paper
proposes a novel framework to jointly align multiple
leaves in an image. We first generate a large set of
leaf templates with various shapes, sizes, and orien-
tations. Applying all templates to the edge map of a
plant image leads to the same amount of transformed
leaf templates. Our leaf alignment is an optimization
process to select a subset of leaf candidates to best
explain the test image.

While leaf alignment works well for one image,
applying it to every video frame independently does
not enable tracking - associating aligned leaves over
time. Therefore, we formulate leaf tracking on one
frame as a problem of transforming multiple aligned
leaf candidates from the previous frame. Due to the
slow plant growth, the tracking optimization initial-
ized with results of the previous frame can converge
very fast and thus result in enhanced leaf association
and computational efficiency.

In order to predict the alignment accuracy as well as
tracking performance, two quality prediction models
are learned respectively. We develop a quantitative
analysis with three metrics to evaluate the multi-leaf
segmentation, alignment, and tracking performance
simultaneously. It is implemented by using the leaf
structure labels of fluorescence plant videos. The ex-
perimental results demonstrate the effectiveness and
robustness of our proposed approach.

In summary, this paper has four main contributions:
� We identify a novel computer vision problem of

joint leaf segmentation, alignment, and tracking from
fluorescence plant videos. We collect a dataset for
this novel problem and make it publicly available to
facilitate future research and comparison.
� We propose two optimization processes for leaf

alignment and tracking respectively. By optimizing
designed objective functions, our method estimates
the leaf number and structure over time effectively.
�We build two quality prediction models to predict

the alignment accuracy of a leaf in each frame and
detect tracking failure of a leaf over time, which is
used during the tracking process.
� We set up a quantitative evaluation framework

with three metrics to jointly evaluate the performance
of segmentation, alignment, and tracking.

Compared to the earlier work [5], [9], four main
changes have been made: (1) One term is added to
the objective function for leaf alignment and one term
is modified in the objective function for leaf tracking.
The proposed method is shown to be superior to [5],
[9] on a larger dataset. (2) We build two quality

prediction models to estimate the alignment accuracy
and tracking performance for every leaf at each frame.
(3) We enhance the performance evaluation procedure
so that error caused by tracking failure does not
influence the alignment accuracy. (4) We study the
limitation of our tracking algorithm and find it is very
robust to leaf template transformation.

2 PRIOR WORK
There are a lot of well-studied problems on leaves in
computer graphics. For example, a shape and appear-
ance model [10] of leaves is proposed to render photo-
realistic images of plants. A data-driven leaf synthesis
approach [11] is proposed to produce realistic recon-
structions of dense foliage. However, these models
may not be applied to fluorescence images due to the
lack of leaf appearance information.

Computer vision has prior work on tasks such
as leaf segmentation [4], [12], alignment [5], [13],
tracking [6], [9], and identification [14]–[16]. However,
most of prior work focuses on only one or two of these
tasks. In contrast, our method addresses leaf segmen-
tation, alignment, and tracking simultaneously.

Image segmentation is a well-studied topic with
lots of prior work. For example, a marker-controlled
watershed segmentation method [17] is introduced to
segment leaf images with complicated background.
Teng et al. [4] develop a leaf segmentation and classi-
fication system from natural images with the manual
assistance from humans. A similar system is also
developed by using 3D points from a depth cam-
era [12]. The existing work on leaf segmentation are all
targeting at images either with a single leaf on a clean
background [13], [18], or with the single dominant leaf
in the natural setting [19], [20].

In contrast, the multiple overlapping leaves in our
application make it hard to isolate the segmentation
and alignment problems. Therefore, we solve these
two problems simultaneously using a novel extension
of Chamfer matching (CM) [7]. The well-known CM
is widely used to align two images based on their
edge maps. However, CM, its extensions [21], [22],
and other image alignment methods, e.g., ASM [23],
AAM [24], are all designed to align a single object
instance within a test image. Our work extends CM
to align multiple potentially overlapping object instances
in an image.

Leaf tracking models the leaf transformations
over time. A probabilistic parametric active contours
model [6] is applied for leaf segmentation and track-
ing to automatically measure the average temperature
of leaves. However leaves of those images are well
separated without any overlap. And the initialization
of the active contours is based on the groundtruth
segments. In contrast, our leaf alignment framework
can handle leaves with overlap, and leaf tracking
is initialized from leaf candidates of previous frame
without using any groundtruth labels.
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Fig. 2. Overview of joint leaf segmentation, alignment, and tracking method.

With respect to tracking performance evaluation,
there are many different measures used by various
authors. A recent study [25] narrows down the set
of potential measures to only two complementary
ones: the average overlap and failure rate. However,
this is the performance evaluation for tracking alone.
We develop a novel and comprehensive evaluation
scheme to measure the performance of multi-leaf joint
segmentation, alignment, and tracking.

3 OUR METHOD

As shown in Fig. 2, given a fluorescence plant video,
we first apply leaf segmentation and alignment si-
multaneously on the last frame of the video to find a
number of well-aligned leaf candidates. Leaf tracking
can be treated as an alignment problem of all leaf
candidates initialized from a previous frame. During
the tracking process, a leaf candidate whose size is
smaller than a threshold will be deleted. And a new
candidate will be generated and added for tracking
once there is a certain region of the plant image
mask that has not been explained by the existing leaf
candidates. Two prediction models are learned and
applied to all leaf candidates in real time to predict the
alignment quality and tracking performance respec-
tively. For clarity, all used notations are summarized
in Table 1.

3.1 Multi-leaf Alignment Algorithm
Our multi-leaf alignment algorithm mainly consists
of two steps, as shown in Fig. 2. First, a set of
leaf templates is applied to the edge map of a test
image to find an over-complete set of transformed leaf
templates. Second, we formulate an optimization pro-
cess to estimate an optimal subset of leaf candidates
according to a joint objective function.

3.1.1 Candidate nomination via chamfer matching
Chamfer matching (CM) is a well-known technique
used to find the best alignment between two edge
maps. Let U = {ui} and V = {vi} be the edge

TABLE 1
Notations.

Notation Definition
V V = {vi}: 2D coordinates of an edge map
U U = {ui}: 2D coordinates of a leaf template
Ũ 2D coordinates of a transformed leaf template
m a K-dim row vector of a plant image mask
M a leaf template mask
M̃ a K-dim row vector of a transformed template mask

H,S,R numbers of leaf template shapes, sizes, and orientations
N the total number of leaf templates, N = HSR
J,G objective functions for alignment and tracking
DT the distance transform image of V
a the diagonal length of V

(cx, cy) the center of a plant image
(cxn, c

y
n) the center of the nth leaf candidate

L a collection of N transformed templates
A a N ×K matrix collecting all M̃n from L
x a N -dim 0-1 indicator vector
d, l a N -dim vector of CM distances and angle errors in L
C a constant value used in J

Ne, N l the number of estimated and labeled leaves in a frame
M a collection of Ne selected leaf candidates

P
a set of transformation parameters P = {pn}n=1,...,A

pn = [θ, r, tx, ty ]
T is the parameter for Un

t̂1,2, t1,2 estimated and labeled tips for one leaf
T̂ ,T estimated and labeled tips for one frame
T̂,T collections of estimated and labeled tips for all videos
Nb the total number of labeled leaves
ela the tip-based error normalized by leaf length
ID a Ne ×N l matrix of leaf correspondence
ER a Ne ×N l matrix of tip-based errors in one frame
ER a collection of all ER for labeled frames
f the number of leaf without correspondence

e1, e2 vectors to save tip-based errors used in Algorithm 2
τ a threshold for performance evaluation
F performance metric 1: unmatched leaf rate
E performance metric 2: landmark error
T performance metric 3: tracking consistency
Qa the quality to predict alignment accuracy
Qt the quality to predict tracking failure

xa,xt features to learn quality prediction models
λ1, λ2, λ3 weights used in J
µ1, µ2 weights used in G
α1, α2 step sizes in the gradient descent of J and G
s the smallest leaf size our algorithm can process

maps of a template and a test image respectively. CM
distance is computed as the average distance of each
point in U with its nearest edge point in V :

d(U ,V ) =
1

|U |
∑
ui∈U

min
vj∈V

‖ui − vj‖2, (1)
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Fig. 3. Forward and backward warping.

where |U | is the number of edge points in U . CM dis-
tance can be computed efficiently via a pre-computed
distance transform image DT(g) = minvj∈V ‖g−vj‖2,
which calculates the distance of each coordinate g
to its nearest edge point in V . During the Chamfer
matching process, an edge template U is superim-
posed on DT and the average value sampled by the
template edge points ui equals to the CM distance,
i.e., d(U ,V ) = 1

|U |
∑

ui∈U DT(ui).
Given a test image with multiple leaves, we first

apply Sobel edge detector to generate an edge map V
and a distance transform image DT. The basic idea of
leaf alignment is to transform the 2D edge coordinates
of a template U in the leaf template space to a new
set of 2D coordinates Ũ in the test image space so that
the CM distance is small, i.e., the leaf template is well
aligned with V .
Image warping: There are two types of transforma-
tions involved in our multi-leaf alignment framework,
as shown in Fig. 3. Both transformations include
scaling, rotation and translation. Let W : U 7→ Ũ
be a forward warping function that transfers 2D edge
points from the template space to the test image space,
parametered by p = [θ, r, tx, ty]T :

Ũ = W (U ;p) = r

[
cos θ − sin θ

sin θ cos θ

]
(U−Ū)+

[
tx

ty

]
+Ū ,

(2)
where θ is the in-plane rotation angle, r is the scaling
factor, tx and ty are the translations along x and y
axis respectively. Ū is the center of the leaf, i.e., the
average of all coordinates of U . Including Ū allows
us to model the leaf scaling and rotation w.r.t. the
individual leaf center – a typical phenomenon in plant
growth.

The second transformation is the backward warping:
W−1 : Ũ 7→ U , from the image space to the template
space. We denote X as a K × 2 matrix including all
coordinates in the test image space. Thus, W−1(X;p)
are the corresponding coordinates of X in the tem-
plate space. The purpose for this backward warping
is to generate a K-dim vector M̃ = M(W−1(X;p)),
which is the warped version of the original template
mask M .
Transformed templates and leaf candidates: Because
there are large variations in the shapes of all leaves in
V , it is infeasible to match leaf with only one template.
We manually select H basic templates (first row in
Fig. 4) with representative leaf shapes from the plant

Shapes�

Sizes�

Orienta-ons�

Fig. 4. Leaf template scaling and rotation from basic
template shapes.

videos and compute their individual edge map U and
mask M .

While aligning the basic templates to a test image,
we choose to synthesize an over-complete set of trans-
formed templates by selecting a discrete set of θ and
r. This leads to an array of N leaf templates shown
in Fig. 4, where N = HSR, and S, R are the numbers
of leaf sizes and orientations respectively, which are
expected to include all potential leaf configurations in
V . For each template Un, it goes through all possible
locations on V and the location with the minimum
CM distance provides the tx and ty optimal to Un.
Note that the yellow and green points in Fig. 4
are the two labeled leaf tips, which will be used to
find the corresponding leaf tips t̂ in V according
to Eqn. 1. Therefore, with the manually selected θ,
r, and exhaustive chosen tx and ty , N transformed
templates are generated from H basic templates. For
each transformed template, we record the 2D edge
coordinates of its basic template, warped template
mask, transformation parameters, CM distance and
the estimated leaf tips as L = {Un,M̃n,pn, dn, t̂n}Nn=1.

Note that L is an over-completed set of transformed
leaf templates including the true leaf candidates as its
subset. Hence, the critical question is how to select
such a subset of candidates from L based on certain
objectives.

3.1.2 Objective function
The goal of leaf segmentation and alignment is to
discover the correct number of leaves and estimate the
structure of each leaf precisely. If the candidates are
well selected, there should not be redundant leaves or
missing leaves (Fig. 5 (a,b)). And each leaf candidate
should be well aligned with the edge map, i.e., with
a small CM distance and the long leaf axis pointing
toward the plant center. The rationality behind our
method leads to a four-term objective function used
to optimize the joint selection of all leaf candidates,
which seeks the minimal number of leaf candidates
(J1) with small CM distances (J2) and small angle
differences (J4) to best cover the test image mask (J3).

The objective function is defined on a N -dim in-
dicator vector x, where xn = 1 means that the
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Fig. 6. The process of generating m and A.

nth transformed template is selected and xn = 0
otherwise. Hence x uniquely specifies a combination
of transformed templates from L. ‖x‖1 denotes the
number of selected leaf candidates. And it is the first
term J1 = ‖x‖1.

We concatenate all dn from L to be a N -dim vector
d. The second term, i.e., the average CM distance of
selected leaf candidates, can be formulated as:

J2 =
dTx

‖x‖1
. (3)

The third term is the comparison of the synthesized
mask and the test image mask. As shown in Fig. 6,
given a test image, we obtain its image mask by
foreground segmentation and convert it to a K-dim
row vector m by raster scan. Similarly, each warped
template mask M̃n is a K-dim vector with its pixel
being 1 indicating the leaf region and 0 elsewhere.
The collection of M̃n from all transformed templates
is denoted as a N × K matrix A. Note that xTA
is indicative of the synthesized mask except that the
values of overlapping pixels are larger than 1. In order
to make it in the range of 0 to 1 so as to be comparable
with m, we employ the arctan() function, similar to
prior image alignment work [26], [27],

f(x) =
1

π
arctan(C(xTA− 1

2
)) +

1

2
, (4)

where C is a constant controlling how closer the
arctan() function approximates the step function.
Note that the actual step function cannot be used here
since it is not differentiable and thus is difficult to
optimize. The constant 1

2 within the parentheses is a
flip point separating where the value of xTA will be
pushed toward either 0 or 1. Therefore, the third term

Fig. 7. The angle difference - the long axis of leaves
should point to the plant center.

becomes:

J3 =
1

K
‖f(x)−m‖2. (5)

One property of Arabidopsis plant is that the
long axes of most leaves point toward the center of
the plant. To take advantage of this domain-specific
knowledge, the fourth term encourages the rotation
angle θ of transformed leaf template to be similar to
the direction of the leaf center to the plant center.
Figure 7 shows the geometric relationship of the
angle difference. That is, the angle difference can
be computed by cxn−cx

sn
− sin θn, where (cx, cy) and

(cxn, c
y
n) are the geometric centers of a plant and a

leaf, i.e., the average coordinates of all points in m
and Ũn respectively, sn =

√
(cxn − cx)2 + (cyn − cy)2

is the distance between the leaf center and the plant
center, and θn is the rotation angle. Furthermore, since
this property is more dominant for leaves far away
from the plant center, we weight the above angle
difference by sn and normalize it by the image size.
The weighted angle difference is,

ln =
1

a2
‖(cxn − cx)− sn sin θn‖2, (6)

where a is the diagonal length of V . Similarly, we
compute ln for N transformed templates from L and
concatenate them to be a N -dim vector l. Thus the
fourth term becomes the average weighted angle dif-
ference of selected leaf candidates: J4 = lTx

‖x‖1 .
Finally, our objective function is:

J(x) = J1 + λ1J2 + λ2J3 + λ3J4, (7)

where λ1, λ2 and λ3 are the weights. The four terms
jointly provide guidance on what constitutes an opti-
mal combination of leaf candidates.

3.1.3 Gradient descent based optimization

The optimization process is to minimize the objective
function in Eqn. 7. Apparently exhaustive search is
not feasible due to the high computational cost. And
integer programming cannot be applied due to the
nonlinear function arctan(). Instead, we propose a
suboptimal gradient descent-based optimization to
solve this problem, which is possible owing to the
smoothness of Eqn. 7. Specifically, the derivative of
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the objective function w.r.t. x is:

dJ

dx
= sign(x) + λ1(

d

‖x‖1
− dTx

‖x‖21
sign(x))

−2λ2C

πK
A

[
(f(x)−m)� (1 + (C(xTA− 1

2
))2)

]T
+λ3(

l

‖x‖1
− lTx

‖x‖21
sign(x)),

(8)
where sign(x) is a function returning the sign of
each element in vector x, and � is the element-wise
division of vectors.

All elements in x are initialized as 1, i.e., all trans-
formed templates are initially selected. In each itera-
tion of gradient descent, x is updated by x = x−α1

dJ
dx .

The element with the largest gradient dJ
dx will be

chosen, which means that this element has a relatively
larger influence in minimizing the objective function.
Then we verify whether this element should be fixed
to either 0 or 1 in order to obtain a smaller J(x).
Once this element has been fixed, its value remains
unchanged in future iterations. The total number of
iterations equals to the number of transformed leaf
templates N . Finally, all elements in x will be either
1 or 0 and those elements equal to 1 provide the
combination of leaf candidates.

This joint leaf segmentation and alignment is ap-
plied on the last frame of a plant video and re-
sults in Ne leaf candidates that will be used for
leaf tracking in remaining video frames. We denote
the set of leaf candidates selected from L as M =
{Un,M̃n,pn, dn, t̂n}N

e

n=1, which means the basic leaf
template Un after transformation under pn can result
in a leaf candidate Ũn that is well-aligned with the
edge map V .

3.2 Multi-leaf Tracking Algorithm
Leaf tracking aims to assign the same leaf ID for
the same leaf through the whole video. In order to
track all leaves over time, one way is to apply leaf
alignment framework on every frame of the video and
then build leaf correspondence between consecutive
frames. However the leaf tracking consistency can be
an issue due to the potentially different leaf segmenta-
tion results for different frames. Therefore, given the
slow plant growth between consecutive frames, we
form an optimization problem for leaf tracking based
on template transformation.

3.2.1 Objective function
Similar to the formulation of the objective function in
Eqn. 7, we formulate a three-term objective function
parameterized by a set of transformation parameters
P = {pn}N

e

n=1, where pn is the transformation param-
eters for leaf candidate Un.

The first term is to update P so that the transformed
leaf candidates are well aligned with the edge map V

of current frame. It is computed as the average CM
distance:

G1 =
1

Ne

Ne∑
n=1

d(W (Un;pn), V ). (9)

The second term is to encourage the synthesized
mask from all transformed candidates to be similar to
the test frame mask m. Since the synthesized mask of
one transformed leaf candidate is Mn(W−1(X;pn)),
we formulate the second objective as:

G2 =
1

K
‖
Ne∑
n=1

Mn(W−1(X;pn))−m‖2. (10)

The same as Eqn. 6, the third term is the average
weighted angle difference:

G3 =
1

Nea2

Ne∑
n=1

‖(cxn − cx)− sn sin θn‖2. (11)

Finally, the objective function is formulated as:

G(P ) = G1 + µ1G2 + µ2G3, (12)

where µ1 and µ2 are the weighting parameters.
Note the differences in two objective functions J

and G. Since the number of leaves is fixed for tracking,
J3 is not needed in the formation of G. We use arctan()
function in J4 because the magnitude in the synthe-
sized mask can be very large due to all N transformed
templates being selected initially. And arctan() is used
to convert all elements in the synthesized mask to the
range of 0 to 1. While during tracking, the number
of leaves is fixed and relatively small, and arctan() is
not needed because the synthesized mask is already
comparable to the test image mask.

3.2.2 Gradient descent based optimization
Given the objective function in Eqn. 12, our goal is to
minimize it by estimating P , i.e., P = argminPG(P).
Since G(P ) involves texture warping, it is an non-
linear optimization problem without close-form solu-
tions. We use gradient descent to solve this problem.
The derivation of G1 w.r.t. P can be written as:

dG1

dpn
=

1

Ne|Un|
(ODTx ∂W

x

∂pn
+ ODTy ∂W

y

∂pn
), (13)

where ODTx and ODTy are the gradient images of
DT at x and y axis. These two gradient images only
need to be computed once for each frame. ∂W x

∂pn
and

∂W y

∂pn
can be easily computed from Eqn. 2 w.r.t. θ, r,

tx and ty separately.
Similarly, the derivation of G2 w.r.t. P is:

dG2

dpn
=

1

K

[ Ne∑
n=1

Mn(W−1(X;pn))−m
]
·

(OMx
n

∂W−1
x

∂pn
+ OMy

n

∂W−1
y

∂pn
),

(14)
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where OMx
n and OMy

n are the gradient images of the
template mask Mn at x and y axis respectively. ∂W

−1
x

∂pn

and ∂W−1
y

∂pn
can be computed based on the inverse

function of Eqn. 2.
The derivation of G3 w.r.t. θ is more complex than to

the other three transformation parameters. For clarity,
we give an example of the derivative over θ:

dG3

dθn
=

2

Nea2
[(cxn − cx)− sn sin θn] ·

[ 1

|Un|
∂Wx

∂θn

−sn cos θn −
2 sin θn
sn|Un|

[(cxn − cx)
∂Wx

∂θn
+ (cyn − cy)

∂Wy

∂θn
]
]
.

(15)
During the optimization process, P 0 is initialized

as the transformation parameters of leaf candidates
from previous frame and updated by applying ptn =
pt−1n − α2

dG
dpn

for each leaf at iteration t. The iteration
stops when there is little change in P or it reaches
the maximum iteration. Note that this is a multi-leaf
joint optimization problem because the computation
of dG2

dpn
involves all Ne leaf candidates.

3.2.3 Leaf candidates update
Given a multi-day fluorescence video, we apply leaf
alignment algorithm on the last frame to generate M
and employ the leaf tracking toward the first frame.
Due to plant growth and leaf occlusion, the number of
groundtruth leaves may not be the same throughout
the entire video. If the size of any leaf candidate at
one frame is less than a threshold s (the smallest leaf
size), we will remove it from the leaf candidates.

On the other hand, a new leaf candidate should be
detected and added to M. To do this, we compute the
synthesized mask of all leaf candidates and subtract
it from the test image mask m to generate a residue
image for each frame. Connected component analysis
is applied to find components that are larger than
s. We then apply a subset of N leaf templates to
find a leaf candidate based on the edge map of the
residue image. The new candidate will be recorded
and tracked in the remaining frames. Figure 8 shows
one example.

3.3 Quality Prediction
While many computer vision algorithms strive for
perfect performance, it is inevitable that unsatisfactory
or failed results may be obtained on challenging test
samples. It is a critical goal for a computer vision

algorithm to be aware of this situation. One approach
to achieve this goal is to perform the quality predic-
tion for the computer vision tasks, similar to quality
estimation for fingerprint [28] and face [29]. The key
tasks in our work include leaf alignment, estimating
the two tips of a leaf, and leaf tracking, keeping leaf
consistency over time. Therefore, we learn two differ-
ent quality prediction models to predict the alignment
accuracy and detect the tracking failure respectively.

3.3.1 Alignment quality
Suppose Qa is the alignment accuracy of a leaf, which
is used to indicate how well the two tips are aligned.
We envision what factors may influence the estima-
tion of the two tips. First of all, the CM distance is
the overall estimation of how well the template and
the test image are aligned. Second, a well-aligned leaf
candidate may have large overlap with the test image
mask and small overlap with neighboring leaves.
Third, the leaf area, angle and distance to the plant
center may influence the alignment result. Therefore,
we extract a 6-dim feature vector denoted as xa from
the alignment result of each frame as: the CM distance
d(W (Un;pn),V ), the overlap ratio with the test image
mask 1

|m|1M̃n �m, the overlap ratio with the other leaves
M̃n�(m−M̃n)

|M̃n|1
, the area normalized by test image mask

1
|m|1 |M̃n|1, the angle difference |θn−sin−1 c

x
n−cx
sn
| and the

distance to the plant center sn. A linear regression model
can be learned by optimizing the following objective
on Na training leaves with groundtruth Qa.

ω = arg min
ω

Na∑
n=1

‖ Qna − ωxna ‖, (16)

where ω is a 6-dim weighting vector for features in
xa. The learned model can be applied to predict the
alignment accuracy of each leaf.

3.3.2 Tracking quality
Due to the limitation of our algorithm, it is possible
that one leaf might diverge to the location of adjacent
leaves and results in tracking inconsistency. We name
it tracking failure. One example can be found in Fig. 9,
where leaf 4 replaces leaf 3 in the third frame. The goal
of tracking quality prediction is to detect the moment
when tracking starts to fail. We denote tracking qual-
ity as Qt, where Qt = −1 means a tracking failure of
one leaf and Qt = 1 means tracking success.

Similar to 3.3.1, we first extract a 6-dim feature xa
for one particular leaf. Noted that xa alone can not
predict the tracking performance because it does not
take into account the tracking results over time. There-
fore, we compare the 6-dim feature xa of the current
frame with that of a reference frame x̂a, which is 20
frames before xa. Since tracking failure may result
in abnormal changes in leaf area, angle, distance to
the center, etc. We compute the leaf angle difference,
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Algorithm 1: =

Input: Estimated leaf tips matrix T̂ (Ne × 4) and
labeled leaf tips matrix T (N l × 4).

Output: f = |N l −Ne|, ER, and ID.
Initialize D=ER=ID=0Ne×Nl .
for i = 1, . . . , Ne do

for j = 1, . . . , N l do
D(i, j) = ela(ti, t̂j);

for k = 1, . . . ,min(Ne, N l) do
[emin, i, j] = min(D);
D(i, :) = Inf; D(:, j) = Inf;
ID(i, j) = 1; ER(i, j) = emin.

leafMatch (T̂ , T ).]Build leaf correspondence [f ,
ER, ID] = leafMatch (T̂ , T ).

leaf center distance, leaf overlap ratio between the
current frame and the reference frame. Finally, we
form a 15-dim feature denoted as xt: xa, xa − x̂a,
the leaf angle difference θn − θ̂n, the leaf center dis-
tance

√
(cxn − ĉxn)2 + (cyn − ĉyn)2, the leaf overlap ratio

Mn(W
−1(X;pn))�M̂n(W

−1(X;p̂n))
Mn(W−1(X;pn))

. Given the training set
Ω = {(xnt , Qnt )}, where Qnt ∈ {−1, 1}, a SVM classifier
is learned as the tracking quality model.

4 PERFORMANCE EVALUATION

Leaf segmentation is to detect the correct number of
leaves in a test image. Leaf alignment is to correctly
estimate two tips of all individual leaves. And leaf
tracking is to keep the leaf ID consistent over the
video. In order to quantitatively evaluate the per-
formance of joint leaf segmentation, alignment, and
tracking, we need to provide the groundtruth of the
number of leaves in each frame, the two tips of all
leaves, and the leaf IDs for all leaves in the video.

As shown in Fig. 9, we label the two tips of indi-
vidual leaves and manually assign their IDs in several
frames of one video. We record the label result in one
frame as a N l×4 matrix T , where N l is the number of
labeled leaves and T (n, :) = [tx1 , t

y
1, t

x
2 , t

y
2] records tip

coordinates of nth leaf in this frame. The collection
of all labeled frames in all videos is denoted as T,
where T = T{i, j}(i = 1, 2, ...,m, j = 1, 2, ...n), m is
the number of labeled videos and n is the number of
labeled frames in each video. And the total number
of labeled leaves in T is N b.

During the template transformation process, the
corresponding points of transformed template tips in
V become the estimated leaf tips [t̂x1 , t̂

y
1, t̂

x
2 , t̂

y
2]. Simi-

larly to the data structure of T, the tracking results of
all videos over the labeled frames can be written as
T̂. Given T̂ and T, Algorithm 2 provides our detailed
performance evalution, which is also illustrated by a
synthetic example in Fig. 9 for easier understanding.

We start with building frame-to-frame leaf corre-
spondence, as shown in Algorithm 1 and the red
dotted box in Fig. 9. To build the leaf correspondence
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Fig. 9. Step 1 in Algorithm 2 of one video with 3 frames.
f , e1, and e2 are accumulated for all video frames and
used in step 2 to compute F , E, and T . In frame 1, we
demonstrate the process of Algorithm 1.

of Ne estimated leaves with N l labeled leaves, a
Ne×N l matrix D is computed, which records all tip-
based errors of each estimated leaf tips t̂1,2 with every
labeled leaf tips t1,2 normalized by labeled leaf length:

ela(t̂1,2, t1,2) =
||t̂1 − t1||2 + ||t̂2 − t2||2

2||t1 − t2||2
. (17)

We build the leaf correspondence by finding
min(Ne, N l) minimum errors in D that do not share
columns or rows. It results in min(Ne, N l) leaf pairs
and f = |N l − Ne| leaves without correspondence.
Finally, it outputs the number of unmatched leaf f ,
ER recording tip-based errors and ID recording the
leaf correspondence. This frame-to-frame correspon-
dence is built on all 3 frames and the results are
added together in ER and ID. We build the video-
to-video leaf correspondence using the accumulated
ID. e1 and e2 are the tip-based errors of leaf pairs
with frame-to-frame correspondence and video-to-
video correspondence respectively. The difference of
e1 and e2 is from estimated leaf 4, while it is well
aligned with labeled leaf 1 in the third frame, but it
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Algorithm 2: Performance evaluation process.

Input: Tracking results T̂, label results T.
Output: F , E, and T .
Initialize f = 0, e1 = e2 = [].
1.for i = 1, . . . ,m do

ER = cell(Ne, N l), ID = 0Ne×Nl .
for j = 1, . . . , n do

T̂ = T̂{i, j}; T = T{i, j};
[f0,ER0, ID0] = leafMatch(T̂ ,T );
f = f + f0; e1 = [e1,ER0(ER0 6= 0)];
ER = ER+ER0; ID = ID + ID0;

for k = 1, . . . ,min(Ne, N l) do
[IDmax, i, j] = max(ID);
ID(i, :) = Inf; ID(:, j) = Inf;
e2 = [e2,ER{i, j}];

2.for τ = 0 : 0.01 : 1 do
F (τ) = f+sum(e1>τ)

Nb ; E(τ) = mean(e1 ≤ τ);
T (τ) = sum(e2≤τ)

Nb .

does not have leaf correspondence if we consider all
3 frames together.

We define a threshold τ to operate on e1 and e2.
Finally we compute three metrics by varying τ . Un-
matched leaf rate F is the percentage of unmatched
leaves w.r.t. the total number of labeled leaves N b.
Noted that F can attribute to two sources, leaf without
correspondence f and the correspondence leaf pairs
whose tip-based errors are larger than τ . Landmark
error E is the average of all tip-based errors in e1
that are smaller than τ . Tracking consistency T is
the percentage of leaf pairs whose tip-based errors
in e2 are smaller than τ w.r.t. N b. These three metrics
can jointly estimate our algorithm performance in leaf
segmentation (F ), alignment (E), and tracking (T ).

Noted that only e2 is considered in [9]. While it is
reasonable to use e2 to compute T , it is unfair to use
e2 to compute E because leaf 4 is still well aligned
in the third frame though it does not have video-to-
video correspondence.

5 EXPERIMENTS AND RESULTS

5.1 Dataset and Templates
To study the photosynthetic efficiency under different
light conditions during 5 days, our dataset includes 41
videos, each captured from one unique Arabidopsis
plant by a fluorescence camera. Each video has 389
frames, with the image resolution ranging from 40×40
to 100× 100. For each video, we label the two tips of
all visible leaves in 5 frames, each being the middle
frame of one day. In total we label N b = 1525 leaves.
The collection of all labeled tips is denoted as T.

To generate leaf templates, we select 10 leaves with
representative shapes and label the two tips for each
leaf. As in Fig. 4, the basic leaf templates are manually
rotate to be vertical. We select 12 scales for each leaf
shape to guarantee the scaled templates can cover

all possible leaf sizes in the dataset. For each scaled
leaf template, we rotate it every 15◦ in the 360◦

space. Thus, the total number of leaf templates is
N = SHR = 2880 with S = 10, H = 12, R = 24 1.

5.2 Experimental Setup

For one plant video, our proposed method applies
the alignment optimization to the last frame to gen-
erate a set of leaf candidates for tracking toward the
first frame. Another option is to apply the alignment
method on all the frames independently and build the
leaf correspondence based on the leaf center distances
between two frames. We compare our algorithm with:
Baseline Chamfer Matching, Prior Work [5], [9], and
Manual Results. Now we will introduce the setup for
our method and three comparison methods.
Proposed Method N templates are applied to the
edge map of the last video frame to generate the
same amount of transformed templates. We first nar-
row down the search space by deleting transformed
templates with less than 85% overlap ratio with the
test image mask. The remaining ones will be used to
calculate A, d, and l in Eqn. 7. We experimentally set
the parameters to be: λ1 = 5, λ2 = 10, λ3 = 125, C = 3,
and α1 = 0.001. After leaf alignment, Ne leaf candi-
dates are generated and saved to be M, which will
initialize leaf tracking toward the first video frame.

Leaf tracking iteratively updates P according to
Eqn. 12. The parameter setting for leaf tracking is:
µ1 = 1, µ2 = 10, and α2 = 0.001. The iteration
stops when there is little change in P or the iteration
exceeds 80. The area of smallest leaf is s = 64 pixels.
The tracking produce updates M and initializes the
next frame. We record the estimated tip coordinates
of all leaf candidates in labeled frames as T̂.
Baseline Chamfer Matching The basic idea of CM
is to align one object in an image. To align multiple
leaves in a plant image, we design the baseline chamfer
matching as an iterative version to align each leaf
separately. At each iteration, we apply all N templates
to the edge map of a test image to find a large pool of
transformed leaf templates, which is the same as the
first step of our multi-leaf alignment. The transformed
template with the minimum CM distance is selected
and denoted as a leaf candidate. We update the edge
map by deleting matched edge points of the selected
leaf candidate. The iteration continues until 90% of the
edge points has been deleted. We apply this method
to the labeled frames of each video and build the leaf
correspondence based on leaf center locations.
Multi-leaf Alignment [5] We compare the proposed
method with our earlier work in [5], where we do
not have J4 term in J . The optimization process is
the same as our proposed leaf alignment on the last

1. The dataset, label and templates used in this paper are publicly
available at http://www.cse.msu.edu/∼liuxm/plant.

http://www.cse.msu.edu/~liuxm/plant
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Fig. 10. (a) Alignment optimization where transformed leaf templates are deleted iteratively; (b) Tracking
optimization where leaf candidates are transformed iteratively to align with the edge map (80+ iterations are
used in this synthetic example). Numbers under images are the iteration number. Yellow/green dots are the
estimated outer/inner leaf tips. Red contour is W (U ;p). Blue box encloses the edge points matching W (U ;p).
The number on a leaf is the leaf ID. Best viewed in color.

Fig. 11. Qualitative results: (a) manual labels; (b) baseline CM; (c) [9]; (d) proposed method; and (e) manual
results. Each column is one labeled frame in the video (day/frame).

frame. We apply [5] on all labeled frames and build
the leaf correspondence based on leaf center distances.

Multi-leaf Tracking [9] We also compare the proposed
method with [9]. The differences are the new J4 in
Eqn. 7, modified G3 in Eqn. 12, and the scheme to
generate a new leaf candidate during tracking (Fig. 8).

Manual Results In order to find the upper bound
of our algorithm, we use the groundtruth labels T to
find the optimal set of T̂. To do this, for each labeled
leaf, we find the leaf candidate with smallest tip-

based error ela from N transformed templates, which
is generated in the first step of our leaf alignment.

5.3 Experimental Results
Qualitative Results We apply all methods to the
dataset of 41 videos. Figure 10 shows the iterative re-
sults of leaf alignment and tracking. Figure 11 shows
the results on the labeled frames within one video.
These results illustrate that our method performs
substantially better than the baseline CM, [5], and [9].
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Fig. 12. Performance comparison of F , E, and T vs. τ .

Since the baseline CM only considers the CM
distance to segment each leaf separately, leaf
candidates are more likely to fail around the edge
points and result in large landmark errors. While [9]
can keep the leaf ID consistent, it does not include
the scheme to generate new leaf candidate during
the tracking (e.g., leaf 8 in Fig. 11). Our proposed
method can work perfectly on this video. It has the
same segmentation as the labels and all leaves are
well tracked. Leaf 5 is deleted when it gets too small.
Note that the manual result may not be perfect all the
time. This is due to the limitation of the finite amount
of templates. However in our tracking method, we
allow template transformation under any parameters
in P without limiting to a finite number.

Quantitative Results We set the threshold τ to vary in
[0.05 : 0.01 : 1] and generate the performance curves
for all methods, as shown in Fig. 12. It is noteworthy
that our method can maintain lower landmark error
and higher tracking consistency while segmenting more
leaves. When τ is relatively small, i.e., we have very
strict requirements on the accuracy of tip estimation,
all methods work well for easy-to-align leaves. With
the increase of τ , more and more hard-to-align leaves
with relatively larger tip-based errors will be consid-
ered as well-aligned leaves and contribute to compute
the landmark error E and tracking consistency T .
Therefore, detecting more leaves will generally result
in larger E and F . However with τ = 0.4, the
proposed method can achieve 5% lower unmatched
leaf rate F than [5], [9], 5% higher than [9] and 10%
higher than [5] in tracking consistency T , without
increasing landmark error E. This mainly owns to the
enhanced objective functions and the new scheme to
add/delete leaf candidates during tracking.

Manual result is the upper bound of our algorithm.
It is obvious that F will be 0 and T will be 1 with the
increase of τ because we enforce the correspondence
of all labeled leaves. But E will not be 0 due to the
limitation of finite templates. Overall, the proposed
method in this paper performs much better than
baseline CM and our prior work. However there is
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Fig. 13. (a) Alignment quality model applied to both
training and test samples; (b) Tracking quality model
applied to one video: the SVM classifier output (top
row), the result after Gaussian filtering and threshold-
ing (bottom row), and the two lines are the labeled
starting and ending frames.

still a gap between the proposed method and the
manual results, which calls for future research.

Quality Prediction Two models are learned: a liner
regression model for alignment quality prediction and
an SVM classifier for tracking quality prediction.

(1) Alignment quality model: Data samples for evalu-
ating our alignment quality model are selected from
e1 in Algorithm 2, which contains the tip-based errors
of all leaf pairs with 90% of them are less than 0.5.
We select 100 samples from e1 for each interval of tip-
based error within [0 : 0.1 : 0.5]. Sample duplication is
employed when the number of sample in a particular
interval is less than 100. All samples with tip-based
error larger than 0.5 will also be selected but without
duplication. Finally we select 625 samples and extract
features xa for each sample. We assign Qa = 2ela
in order to make the model output in the range of
[0, 1]. And Qa = 1 for all samples with ela > 0.5. We
randomly select 100 samples as the test set and the
rest samples are used to learn the regression model in
Eqn. 16. Figure 13 (a) shows the result of the model
on both training and testing samples.

R2 is calculated, which is used to measure how well
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the model fits our data, and defined as:

R2 = 1−
∑

(Qa − Q̂a)2∑
(Qa − Q̄a)2

, (18)

where Q̂a is the predicted values of all test samples,
Q̄a is the mean of Qa. In our model, R2 = 0.769 and
the correlation coefficients for all test samples is 0.813.
Both values indicate a high correlation of Qa and Q̂a.
This quality model is used to predict the alignment
accuracy and generate one predicted curve for each
leaf in one video, as shown in Fig. 2.

(2) Tracking quality model: We manually go through
all tracking videos and find 15 videos that have
tracking failures of one leaf. As the goal for track-
ing quality model is to detect when tracking failure
starts, we label two frames when failure starts and
ends in each video. The starting frame is when a
leaf candidate starts to change its location toward
its neighbor leaves. The ending frame is when a leaf
candidate totally overlaps the other leaf. Among these
failure samples, the shortest tracking failure length is
5 frames and the average length is 12 frames.

We select 2-3 frames near the ending frame to be the
negative training samples whose class labels Qt = −1
and 5 frames evenly distributed before failure starts
to be the positive training samples whose class labels
Qt = 1. Features xt are extracted as discussed in
Sec. 3.3.2 and used to train the SVM classifier. The
learned model is applied to all frames to predict the
tracking quality. Figure 13 (b) shows an example of the
output. We apply a Gaussian filter to remove outliers
and delete those failure length with less than 5 frames
(the shortest length of failure samples).

We compare the first frame of a predicted failure
with that of a labeled failure. When their distance
is less than 12 frames (the average length of failure
samples), it is considered as a true detection.
Otherwise it is a false detection. Using the leave-
one-video-out testing scheme, the quality model
generates 11 true detections and 16 false detections
over 15 labeled failures. Similarly, this quality model
is applied during tracking and outputs a prediction
curve for each leaf (shown in Fig. 2).

Limitation Analysis Any vision algorithm has its lim-
itation. Hence, it is important to explore the limitation
of the proposed method in alignment and tracking.
First, one interesting question in multi-leaf alignment
is to what extend our alignment method can correctly
identify leaves in the overlapping region. We answer
this question using a simple synthetic example. As
shown in Fig. 14, our method performs well when the
percentage of overlap is less than 23%. Otherwise it
identifies two leaves as one leaf, which appears to be
reasonable when the percentage is higher (e.g., 59%).

Second, leaf tracking normally starts with very
good initialization of leaf candidates from the previ-
ous frame. Another interesting question is to what

Fig. 14. Leaf alignment results on synthetic leaves
with various amount of overlap. From left to right, the
overlap ratio w.r.t. the smaller leaf is 10%, 15%, 22%,
23%, 36%, and 59% respectively.

extend our tracking method can succeed with bad
initializations. In order to study this, one frame is
selected from 6 videos with good tracking perfor-
mance. We change the transformation parameters
in P to synthesize different amount of distortions
and apply the proposed tracking algorithm on these
6 frames. For the translation parameter, we define

txy =

√
t2x+t

2
y√

(tx1−tx2 )2+(ty1−t
y
2)

2
as the translation ratio and

the direction is randomly selected. The leaf candidate
is deleted only if it becomes one point and the tip-
based error is set to be 1. We compute the average
tip-based error of all leaf candidates in one frame.

By varying the rotation angle θ, scaling factor r, and
shift ratio txy , we generate the performance curves in
Fig. 15, which shows the average and range of tip-
based errors for all 6 frames. As shown in Fig. 15, our
proposed tracking method can reduce the initial tip-
based error to a small amount. It is most robust to r
and most sensitive to txy .

Figure 16 shows some examples. For rotation angle
less than 45◦, our method works well for different
amounts of leaf rotations. For the scaling factor, as
long as the leaf candidate is not too small, our method
can be very robust even if we enlarge the original leaf
candidates to be 2.5 times larger. For the translation
ratio, it is sensitive because the shifting direction is
randomly selected and leaf candidates are very likely
to shift to the locations of neighboring leaves. Chang-
ing the initialization of θ and r for 4 separate leaves
(leaf 1, 4, 5, 8 in Fig. 16) leads to better performance
than that of 4 neighboring leaves (leaf 1, 3, 6, 7 in
Fig. 16) because neighboring leaves will have overlap
with each other and therefore influence the tracking
performance. Overall, as the distortion increases, the
average tip-based error increases while some of the
leaf candidates can still be well aligned.
Results of Efficiency Table 2 illustrates the average
execution time of each method. Our method is supe-
rior to the baseline CM and [5] in terms of efficiency.
And it is a little slower than [9] because we update
G3 and detect new leaf candidates during the tracking
process. The time is calculated based on a Matlab
implementation on a conventional laptop.

6 CONCLUSIONS

In this paper, we identify a new computer vision
problem of leaf segmentation, alignment, and tracking
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Fig. 16. Example results: the first row shows the initialization, and the second row shows the tracking results.

TABLE 2
Computational efficiency comparison (sec./image).

Methods Baseline [5] [9] Proposed
Time 51.28 16.42 1.98 2.15

from fluorescence plant videos. Leaf alignment and
tracking are two optimization problems based on
Chamfer matching and leaf template transformation.
Two models are learned to predict the quality of leaf
alignment and tracking in real time. A quantitative
evaluation algorithm is designed to evaluate the per-
formance. The limitations of our algorithm are stud-
ied and experimental results show the effectiveness,
efficiency, and robustness of the proposed method.

With the leaf boundary and structure information
over time, the photosynthetic efficiency can be computed
for each leaf, which paves the way for leaf-level pho-
tosynthetic analysis. In the future, 3D leaf alignment
and tracking will be studied in order to ultimately
model the interaction between 3D leaves and light
rays. Note that very little domain knowledge of plants
is used in our alignment and tracking optimization
problems, neither in the evaluation process. Therefore,
the proposed method and the evaluation scheme are
potentially applicable to other multi-object alignment
and tracking problems.
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