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Abstract

In this paper, we propose a multi-leaf alignment frame-
work based on Chamfer matching to study the problem of
leaf alignment from fluorescence images of plants, which
will provide a leaf-level analysis of photosynthetic activi-
ties. Different from the naive procedure of aligning leaves
iteratively using the Chamfer distance, the new algorithm
aims to find the best alignment of multiple leaves simultane-
ously in an input image. We formulate an optimization prob-
lem of an objective function with three terms: the average of
chamfer distances of aligned leaves, the number of leaves,
and the difference between the synthesized mask by the leaf
candidates and the original image mask. Gradient descent
is used to minimize our objective function. A quantitative
evaluation framework is also formulated to test the perfor-
mance of our algorithm. Experimental results show that the
proposed multi-leaf alignment optimization performs sub-
stantially better than the baseline of the Chamfer matching
algorithm in terms of both accuracy and efficiency.

1. Introduction
Photosynthesis is a fundamental biological process in-

terested to a number of scientific fields, such as plant bi-
ology, physiology and bio-energy [16]. Owing to the fast
growing sensing technology and computing power, non-
invasively phenotyping plant photosynthesis is receiving in-
creasing attention because it paves the way for quantitative
high-throughput plant phenotyping and deeper understand-
ing of a wide range of plant physiological problems [25].
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Figure 1. Computational plant growth modeling and leaf align-
ment. Given the fluorescence images of the plants captured dur-
ing their growth period, we develop a novel optimization approach
to multi-leaf alignment, i.e., estimating the number of leaves and
their individual leaf structure such as the tips of a leaf. Leaf align-
ment is critical to fine-grained computational plant growth model-
ing, e.g., a leaf-level analysis of the photosynthetic effects.

Figure 1 shows a typical plant photosynthesis phenotyp-
ing framework in a growth chamber. The environmental
conditions (light intensity, temperature, humidity, CO2 con-
centration, etc.) are periodically changed by light sources
on the top and by the growth chamber. A fluorescence
camera is placed in between the light sources to capture
a series of fluorescence images of the plants during their
growth period [18], where the pixel intensity of such images
represents the photosynthetic efficiency at a particular leaf
spot. Because leaves at different developmental ages may
response to the change of the environmental conditions in
very different ways [7], it is important to provide a leaf-level
analysis of the photosynthetic effects, i.e., to answer ques-
tions such as which leaf or which part of a leaf has higher
photosynthetic efficiency under a specific condition. Ob-
viously a prerequisite for such analysis is to segment each
leaf from the image and accurately estimate the structure of
a leaf, meaning the leaf tips and skeleton. This computer
vision problem, named leaf alignment, is the main focus of



this paper. Note that leaf alignment is a more advanced task
than leaf segmentation [20], which only concerns segment-
ing leaves without estimating their structures.

Leaf alignment is a challenging problem due to a number
of factors. First of all, unlike the images captured by popu-
lar RGB cameras, the fluorescence image is of low resolu-
tion and therefore the leaf size can be very small. Secondly,
there are various degrees of overlap among plant leaves,
which pose significant challenges in estimating their leaf
boundaries. Thirdly, different leaves on the same plant may
have large variations in their shapes, sizes and orientations.
Such variations are even larger across different genetic vari-
ations of the same type of plant, which practically should be
handled by one robust leaf alignment algorithm.

To the best of our knowledge, there is no previous study
focusing on leaf alignment from fluorescence images of
plants. To address this new problem, we develop a frame-
work based on the well-known Chamfer matching (CM) al-
gorithm [1], which computes the distance between two sets
of edge points. To apply CM to our problem in a straight-
forward manner, we may first generate the edge maps of an
array of leaf templates, each with different shapes, sizes,
and orientations of the target leaves. Then the CM dis-
tances between the leaf templates and the edge map of a to-
be-aligned plant image are computed, where the minimum
distance leads to one aligned leaf. This process may be re-
peated to find the next minimum distance until all leaves are
aligned. However, this naive procedure has limitations due
to the limited representation power of leaf templates and
leaf overlaps, as well as the fact that CM is fundamentally
designed to align one object instance in an image.

Therefore, this paper proposes a novel framework to
jointly estimate the alignment of multiple leaves in an im-
age. Our approach is motivated by the crowd segmentation
work [10], where both the number and locations of pedes-
trians are unknown and estimated simultaneously. Specifi-
cally, we formulate an optimization problem of an objective
function with three terms: 1) the average of CM distances
of all aligned leaves, 2) the number of estimated leaves,
and 3) the distance between the synthesized mask of the
selected leaf candidates and the original mask of the test im-
age. Minimizing such objective function leads to the joint
estimation of the number, locations, shapes, sizes and ori-
entations of multiple leaves. We perform the qualitative and
quantitative analysis of the algorithm performance on a set
of test images with manually labeled ground truth of leaf
structures. The experimental results demonstrate the effec-
tiveness and efficiency of our proposed approach.

In summary, this paper has three main contributions:
� We identify a novel computer vision problem of leaf

alignment from fluorescence plant images, which performs
leaf segmentation and structure estimation simultaneously.
We collect a dataset for this novel problem and make it pub-

licly available to facilitate future research and comparison.
� We propose a novel extension of the Chamfer match-

ing algorithm. By optimizing a joint objective function, our
method can handle the alignment of multiple overlapping
object instances within one image.
� We set up a quantitative evaluation framework for the

leaf alignment problem. We show the improved alignment
performance of our novel approach in comparison with the
baseline Chamfer matching method.

2. Prior Work
Shape and appearance modeling of leaves or plants are

well-studied problems in the computer graphics [3, 19],
where the goal is to render photo-realistic images of plants.
For instance, the recent image-based foliage modeling ap-
proach can create a detailed leaf model from a number of
high-quality images. However, this approach may not be
directly applicable to low-resolution fluorescence images.

In the computer vision community, the prior work on
leaves range from leaf segmentation [8, 20] and align-
ment [4, 23], to retrieval and identification [5, 9, 17]. Image
segmentation is a long-lasting research topic and some ap-
proaches may be used to solve the leaf segmentation prob-
lem. For example, an automatic marker-controlled water-
shed segmentation method [24] is introduced to segment
leaf images with complicated background, in which the
markers are implemented to avoid over-segmentation in tra-
ditional watershed segmentation. Teng et al. [20] develop
a leaf segmentation and classification system from natural
images with the manual assistance from humans. A similar
system is also developed by using 3D points from a depth
camera [8]. The existing work on leaf alignment are all
targeting at images either with a single leaf on a clean back-
ground [4, 6] using a parametric model, or with the single
dominant leaf in the natural setting [11, 23].

Chamfer matching [1] has been widely used to align a
template to an image based on their edge maps. Researchers
have developed a wide variety of extensions, such as hier-
archical CM [2], the fusion of CM and shape context [22],
efficient directional CM that considers the orientations of
matching edge points [12], and the boosting CM to suppress
false detections [15]. However, both the traditional CM and
its extensions are typically applied to detect or align a sin-
gle object instance. In contrast, our proposed algorithm ex-
plicitly extends it toward the alignment of multiple object
instances within one image.

From the application perspective, plant phenotyping is
an interesting topic to plant biologists. A method called
Plant Area Estimation (PAE) [21] is proposed recently to
estimate each leaf area by identifying the distance from the
plant center to the leaf tip. The plant center is identified
using some easy-to-segment leaves. Clearly, this method
will face challenges without such easy-to-segment leaves.
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Figure 2. The overview of our multi-leaf alignment algorithm.
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Figure 3. Calculating a distance transform image: (a) input test
image, (b) edge map V , and (c) distance transform image DT.

3. Multi-leaf Alignment Algorithm
The proposed multi-leaf alignment algorithm is com-

posed of two steps shown in Fig. 2. Firstly, the Chamfer
matching distances between a test image and an array of
leaf templates are computed by an exhaustive search of all
possible locations of a template. Each template generates a
leaf candidate using the location with the smallest CM dis-
tance. Given an over-completed set of leaf candidates, we
formulate an optimization problem to estimate an optimal
subset of candidates according to a joint objective function.
In this section we will introduce each step in detail.

3.1. Candidate Nomination via Chamfer Matching

We start by introducing the basis of Chamfer matching,
a method computing the best alignment between two edge
maps. Let U = {ui} and V = {vi} be the sets of edge
points in a template and a test image respectively. The CM
distance is computed as the average distance of each point
in the template with its nearest edge point in the test image:

d(U, V ) =
1

|U |
∑
ui∈U

min
vj∈V

‖ui − vj‖2, (1)

where |U | is the number of edge points in U . The match-
ing score can be computed efficiently via a pre-computed
distance transform image DT(p) = minvj∈V ‖p − vj‖2,
which calculates the distance of each coordinate p to its
nearest edge point in the test edge map V (Fig. 3). Dur-
ing the Chamfer matching process, an edge template U is
superimposed on the distance transform image and the aver-
age DT value sampled by the template edge points ui equals
to the CM distance, i.e., d(U, V ) = 1

|U |
∑

ui∈U DT(ui).
To take advantage of the efficient computation of CM

distances, we use it to produce a potential list of leaf candi-
dates for a fluorescence test image. That is, we first apply
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Figure 4. Leaf templates of various shapes, sizes and orientations.

the conventional edge detection operator such as “Sobel” on
the test image and generate an edge map V . Since there are
a large amount of variations in leaf shape, size and orienta-
tion, it is infeasible to match leaves with only one template
U . Therefore, as shown in Fig. 4, we employ an array of N
leaf templates, {Uhsr}, where h = 1, . . . ,H , s = 1, . . . , S,
r = 1, . . . , R, N = HSR, and H , S, R are the numbers of
chosen leaf shapes, sizes, orientations respectively. These
templates can be obtained by first computing the edge maps
from H leaves with representative shapes, and then vary-
ing their sizes and orientations according to S and R. Note
that the yellow and green points in Fig. 4 are the two la-
beled leaf tips. They will be used to estimate the tips of the
aligned leaf based on the point correspondence from Cham-
fer matching, which is the leaf structure information desired
in leaf alignment.

For each template Uhsr, we shift it with all possible
locations u0 on V and compute the corresponding CM
distances, where the location associated with the min-
imum CM distance is recorded as u0

hsr, i.e, u0
hsr =

arg minu0 d(Uhsr + u0, V ). After applying all templates,
we can generate the same number of leaf candidates, each
corresponding to one template. For clarity we denote the
set of leaf candidates and their corresponding minimum CM
distances as {ln, dn}

.
= {Uhsr +u0

hsr, d(Uhsr +u0
hsr, V )},

where n = 1, . . . , N .
Note that for each template we only keep its minimum

CM distance, because we assume that no two leaves can be
best aligned with a single template. Even if this assump-
tion cannot be met, owing to a large number of templates,
a slightly different template will likely be included in the
candidate pool so that we would not miss a leaf. We now
have an over-completed pool of N leaf candidates, which
includes all potential leaf configurations on the test image.
The next critical question is how to select the best subset or
combination of candidates according to certain objectives,
which will be described in the remainder of this section.

3.2. Objective Function

To select the best combination of leaf candidates, one
approach is to rank the CM distances dn of N candidates



and sequentially select one candidate with the minimum dn.
However, Chamfer matching only concerns the alignment
of a single leaf in a local region, which is not sufficient for
our problem where multiple leaves are present and overlap
with each other in a larger spatial domain, since the selec-
tion of one leaf candidate may affect the selection of neigh-
boring overlapping leaves. Therefore, for our problem, we
need to define an objective function that goes beyond CM
distances and consider the selection of all candidates jointly.

We first describe the rationality behind our multi-term
objective function and then present its mathematical formu-
lation. The first objective of our optimization is to select
leaf candidates with the minimum average CM distances,
which prompts candidates matching well with the edges of
the test image. The second objective is to select the min-
imal number of leaf candidates. This is understood since
our optimization aims to reduce the number of candidates
N to be minimal, yet still be able to explain the multi-leaf
plant image. Finally, we may envision that all selected can-
didates are placed together to compose a synthesized mask
that should well approximate the test image mask, if the
candidates are well selected. Thus, the third objective is to
minimize the difference between these two masks. It en-
courages the selected leaf candidates to jointly cover the
entire leaf region in the test image, and hence reduce the
miss detection of leaves. In summary, our objective func-
tion seeks the minimal number of leaf candidates with small
CM distances to best cover the test image mask.

To formulate the objective function, we define a N -dim
indicator vector x to be the unknown parameter being es-
timated by our optimization, where xn = 1 means that the
leaf candidate ln is selected and xn = 0 otherwise. Hence x
uniquely specifies a combination of candidates from a pool
of N candidates. By denoting the CM distances of all can-
didates as a N -dim vector d = [d1, . . . , dN ]T , the first term
in our objective function, the average CM distances, can
be formulated as dᵀx

‖x‖1
, where ‖x‖1 indicates the number

of selected leaf candidates. Similarly, the second term, the
number of selected candidates, is ‖x‖1.

The formulation of the third term depends on the im-
age masks. As shown in Fig. 5, given a test image, we ap-
ply foreground segmentation to generate a test image mask,
whose pixel is 1 at the multi-leaf region and 0 elsewhere,
and convert it to be a K-dim row vector m by raster scan,
where K is the number of pixels in the test image mask.
Similarly, for each candidate ln we generate a mask Mn,
whose size is the same as the test image mask and whose
pixel is 1 within the leaf region and 0 elsewhere. We con-
vert the mask Mn to a K-dim row vector an, the collection
of which from all leaf candidates is denoted as a N × K
matrix A. Note that xT A is indicative of the synthesized
mask, except that the values of overlapping pixels are larger
than 1. In order to make it in the range of 0 to 1 so as to be
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Figure 5. The process of generating A and m.

comparable with m, we employ the arctan() function,

f(x) =
1

π
arctan(C(xᵀA− 1

2
)) +

1

2
, (2)

where C is a constant controlling how closer the arctan()
function approximates the step function. Similar arctan()
function has been used in prior image alignment work [13,
14]. Note that the actual step function cannot be used here
since it is not differentiable and thus is difficult to optimize.
The constant 1

2 within the parentheses is a flip point where
the value of xT A will be pushed toward either 0 or 1.

Finally, our objective function has three terms:

J(x) = J1+J2+J3 =
dT x

‖x‖1
+λ1‖x‖1+λ2

‖f(x)−m‖2
|m|

,

(3)
where λ1 and λ2 are the weights for the two terms and |m|
is the number of pixels in the test image mask. From differ-
ent perspectives, the three terms jointly provide guidance on
what constitutes an optimal combination of leaf candidates.

3.3. Gradient Descent based Optimization

We now discuss how to minimize the objective function
in Eqn. 3. This is basically a combinatorial optimization
problem searching for the best combination of leaf candi-
dates, where the exhaustive search is not feasible due to
the high computational cost. Also, because of the nonlin-
ear function arctan(), integer programming can not be ap-
plied either. Therefore, we propose a suboptimal gradient
descent-based optimization to solve this problem, which is
possible owing to the smooth objective function. Specifi-
cally, the derivative of the objective function w.r.t. x is:

dJ

dx
= − dT x

‖x‖21
sign(xᵀ) +

dT

‖x‖1
+ λ1sign(xᵀ)

−2λ2C

π|m|

[
(f(x)−m)� (1 + (C(xᵀA− 1

2
))2)

]
Aᵀ,

(4)

where sign() is a function returning the sign of each element
in vector x, and � is the element-wise division of vectors.



Table 1. HR and LR datasets.
Dataset Image size #Images #Labeled

HR [210×180-240×220] 556 56
LR [40×40-100×100] 88,650 56

During the initialization, all elements in x are set to be 1,
i.e., all candidates are valid leaves in the test image. In each
iteration of gradient descent, x is updated by x = x−α dJ

dx ,
where α is a step size. Note that all elements of x should
be either 0 or 1, while the gradient descent updating will
apparently violate this assumption. Therefore, after x is
updated at each iteration, the element in x with the largest
change will be chosen, which means that this element has a
relatively larger influence in minimizing the objective func-
tion. Then we verify whether this element should be fixed
to either 0 or 1 in order to obtain a smaller J(x). Once this
element has been fixed, its value remains unchanged in fu-
ture iterations. The iteration continues until all elements in
x are fixed to either 0 or 1. Finally, the elements in x equal
to 1 provide the combination of candidates for a test image.

4. Experiments
4.1. Dataset and Templates

We test the proposed multi-leaf alignment algorithm on
Arabidopsis fluorescence images taken every 15 minutes
periodically during the plant growth. Since all images have
the same resolution. The more plants being captured, the
lower the resolution of each plant is. We apply our method
to two dataset: high-resolution (HR) fluorescence images,
each including only 4 plants, and low-resolution (LR) flu-
orescence images, each including around 40 to 50 plants.
We perform image segmentation so that each plant within
a fluorescence image is saved as an individual image. The
basic information of both datasets are shown in Tab. 1. To
facilitate future research and performance comparison, the
two labeled databases are publicly available1.

Leaf templates can have a large influence on the leaf
alignment performance. In our experiments, we observe the
fluorescence images and select several representative leaves
from images outside the testing set, as shown in the top row
of Fig. 4. We label the leaf tips only for these representative
leaves. These labels are mapped and recorded while syn-
thesizing templates at multiple sizes and rotations. Table 2
shows the template information for both datasets.

4.2. Performance Evaluation

In order to quantitatively evaluate the leaf alignment per-
formance, we need to provide manual labels on the ground-
truth locations and structures of all leaves in test plant im-
ages. Given the small leaf changes between consecutive im-

1http://www.cse.msu.edu/˜liuxm/plant

Table 2. Templates for HR and LR datasets.
Dataset H S R N

HR 5 10 24 1200
LR 4 7 24 672

ages, we decide to label 56 plant images for each dataset
that are taken at a larger interval. For each plant image, we
manually label the two tips of each of its L leaves, which
are denoted as pl

1 and pl
2 (l = 1, . . . , L).

Given a test image I , our optimization approach con-
verges to A estimated leaves or selected leaf candidates via
x, i.e., A = ‖x‖1. The tips of each estimated leaf, denoted
as p̂a

1 and p̂a
2 (a = 1, . . . , A), are computed according to the

correspondence of template tips during the Chamfer match-
ing process. Since the numbers of estimated leaves A and
labeled leaves L may not be the same, we establish the leaf
correspondence as follows. For every labeled leaf, we com-
pute the average distance ela of its labeled tips to those of
every estimated leaf, normalized by the leaf length:

ela =
||pl

1 − p̂a
1 ||2 + ||pl

2 − p̂a
2 ||2

2||pl
1 − pl

2||2
. (5)

This results in a L × A matrix E with ela as its element.
Within E we then find the minimum min(L,A) elements
that meet the requirements of not sharing the same column
or row. We implement this by first finding the minimum el-
ement in E and then delete the corresponding column and
row of that element. And then we find the next minimum el-
ement in the new subset of E. This process is repeated until
we find min(L,A) elements. We denote these elements as
a vector ei of length min(L,A), where the index of ei in E
determines corresponding leaves between the two leaf sets
and the value indicates the landmark estimation error. Note
that the remaining |L − A| leaves will contribute to either
false alarm counts or miss detection counts, depending on
whether they are from the labeled set or the estimated set.

Although we have determined the correspondence and
associated landmark error ei, we should still make a deci-
sion on whether the distance is small enough to be consid-
ered as a valid alignment or not. To do that, we define a
threshold τ to compare with each element of ei. If one ele-
ment is larger than τ , we claim the leaf in the labeled set as
one miss detection count while the one in the estimated set
as one false alarm count. If one element is smaller than τ , it
will be added into a pool of “well aligned leaves”.

After performing the above operation for all test images,
we can quantitatively evaluate the alignment performance
using three metrics, based on a chosen τ . The first one is the
Landmark error ē, which is the average of all elements in
the “well aligned leaves” pool. The second one is the Miss
detection D, which is the total number of miss detection
counts divided by the number of test images. The third one
is the False alarm F , which is the total number of false

http://www.cse.msu.edu/~liuxm/plant
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Figure 6. An examplar optimization process. The up-left part
shows the changes of three terms during the iterations. The
bottom-left part is the final alignment result. The right part is the
synthesized mask f(x) for different iterations, with the iteration
index below the image.

alarm counts divided by the number of test images. Note
that both miss detection and false alarm can attribute to two
sources: the |L − A| leaves without correspondence, and
the corresponded pair whose landmark error is larger than
τ . By varying τ , we can have a series of measurements for
ē, D and F . To visualize these in one figure, we plot a 2D
curve with ē and 1

2 (F +D) as two axes.

4.3. Experimental Results

Multi-leaf Alignment Optimization We apply all tem-
plates to a test image to find the best location of each tem-
plate with the minimum CM distance. This results in a large
number of candidates, which have heavy overlap as shown
in Fig. 2. In order to narrow down the search space for op-
timization, we compute the overlap of each candidate mask
with the test image mask. A candidate is deleted if the over-
lap is less than 90% of the candidate mask. Otherwise we
preserve it in the candidate pool to generate the matrix A.
As shown in Eqn. 3, the objective function has three param-
eters: λ1, λ2 and C. We experimentally determine the best
parameter setting to be: λ1 = 0.2, λ2 = 20, C = 3. And
the step size of gradient descent is set to be α = 0.001.

Figure 6 is an example of the optimization process. All
elements in x are initialized as 1, i.e., all candidates are
selected. We iteratively compute the gradient, update x,
and fix one element. The number of iteration is the same as
that of available candidates. We see that J2 decreases very
quickly, which means most candidates are deleted at first
due to the heavy overlap. J1 and J3 together make sure that
the candidates overlapping with others and/or with larger
CM distances will be deleted first. As the iteration goes on,
the synthesized mask of the remaining candidates will be
less dense and finally approximate the test image mask.
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Figure 7. Performance comparison on two datasets: LR (left) and
HR (right).

Baseline Chamfer Matching The basic idea of Cham-
fer matching is to align one object in an image. We com-
pare our algorithm with the iterative version of the Chamfer
matching method. Specifically we apply all templates to
the edge map of a test image to find a large pool of candi-
dates, which is exactly the same as the first step in our algo-
rithm. Different from our joint leaf selection, the baseline
CM aligns one leaf at a time. The template with the mini-
mum CM distance is selected and declares an aligned leaf.
We update the edge map of the test image by deleting the
matched edge points of the aligned leaf. All templates are
then applied to the modified edge map in order to find the
next aligned leaf. The iteration continues until 90% of the
edge pixels have been deleted. We use the same templates
in Tab. 2 for this baseline Chamfer matching.

Manual Results Since the leaf templates might not per-
fectly represent the leaves in an unseen test image, it is good
to know the upper bound of a leaf alignment algorithm.
That is, if we know the labeled locations of all leaf tips,
what is the optimal set of leaf candidates and what is the as-
sociated performance for this set? To answer this question,
for each labeled leaf, we find the leaf candidate from {ln}
that has the minimum landmark error e computed from the
labeled tips and the estimated tips. This is performed for all
leaves in the 56 labeled images, and a performance curve
can be obtained by applying a threshold τ to {e}. We call
this curve as the “manual results”. As shown in Fig. 7, this
result is not perfect due to the limited representation power
of a finite set of leaf templates. Nevertheless, this curve still
serves as an upper bound for evaluating our leaf alignment
algorithm.

Results of Accuracy We evaluate our proposed algorithm
and the baseline CM method on both HR and LR datasets.
We set the threshold τ to vary within [0.1 : 0.01 : 1] in the
evaluation process and generate the performance curves for
both algorithms and the manual results. The performance
curves are shown in Fig. 7, and some results of leaf align-
ment are shown in Fig. 8.

As we can see from Fig. 7 and Fig. 8, the proposed algo-
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Figure 8. Examples of leaf alignment results. Vertically from top to bottom each row shows: (a) the input test images; (b) results of our
proposed method; (c) results of the baseline CM method; (d) manual results. Horizontally the left and right 4 columns are from the LR and
HR dataset respectively. The number on a leaf indicates the order of the leaf being aligned during our optimization iteration. The estimated
leaf tips are shown in yellow and green and they contribute to the quantitative evaluation as Eqn. 5. The blue rectangle is the bounding box
of the selected leaf candidate. Note the superior performance of our method compared to the baseline method. Best viewed in color.

rithm performs substantially better than the baseline CM on
both HR and LR datasets. In the LR dataset, for an easy-to-
align plant (1st column of Fig. 8), both methods can work
well to align all leaves in the test image. However, for more
complicated plants, the baseline CM is more likely to gener-
ate false alarms due to the more crowded edge points in the
test images. In the HR dataset, the leaf areas are larger and
with more overlaps among neighboring leaves. The base-
line CM is more likely to generate false alarms as well as
miss detections mostly due to the incomplete leaf edge in
the overlapping region. Therefore when the correct can-
didate is matching with the overlapped leaf, the CM dis-
tance is relatively large and this candidate will less likely to
be chosen in the iterative alignment process, which causes
the miss detection. Furthermore, the small-sized leaf candi-
dates might still match with the incomplete leaf edge with
smaller CM distances, which result in false alarms.

In contrast, in addition to the CM distance constraint (J1
in Eqn. 3), the J2 and J3 terms in our objective function
are defined to tackle the false alarm and miss detection re-
spectively. Also, the joint optimization has the potential to
better detect overlapped leaves even with slightly larger CM
distances. Figure 7 shows the performance gap between our
proposed method and the baseline CM algorithm. This gap
is relatively larger on the HR dataset, which includes more
overlapped leaves. This shows that our method can bet-

Figure 9. Leaf alignment results on synthetic leaves with various
amount of overlap. From left to right, the percentage of overlap
w.r.t. the smaller leaf is 10%, 15%, 22%, 23%, 36% and 59%.

ter handle the overlap problems in the fluorescence images
compared to the baseline CM algorithm. One interesting
question is that to what extend our method can correctly
identify leaves in the overlapping region. We answer this
question using a simple synthetic example. As shown in
Fig. 9, our method performs well when the percentage of
overlap is less than 23%. Otherwise it only identifies one
leaf, which appears to be reasonable when the percentage is
higher (e.g., 59%).

Results of Efficiency Table 3 illustrates the average ex-
ecution time of both algorithms in two steps, as shown
in Fig. 2. Our method is superior to the baseline Cham-
fer matching in terms of efficiency, especially on the LR
dataset, where the number of templates N is relatively
smaller. The time is calculated based on a MatlabTM im-
plementation on a conventional laptop.



Table 3. Computational efficiency of two algorithms (sec./image).
Datasets HR LR

Both algorithms (step 1) 17.02 1.14
Multi-leaf Alignment (step 2) 97.90 2.58

Basline CM (step 2) 196.92 25.12

5. Conclusions
This paper identifies a new computer vision problem of

leaf alignment from fluorescence plant images. This work is
motivated by the need to provide leaf-level photosynthetic
analysis in plant bio-energy related research. We propose
a novel framework for multi-leaf alignment, which is an
extension of the well-known Chamfer matching algorithm.
This algorithm can estimate the best alignment of all leaves
in a fluorescence image by minimizing an objective func-
tion with three terms. Experimental results demonstrate the
effectiveness and efficiency of our proposed approach. Our
multi-leaf alignment algorithm performs substantially bet-
ter than the baseline Chamfer matching on both datasets
with different resolutions. In addition, it can successfully
handle the overlap problem that is very common in plant im-
ages. It should be noted that the proposed multi-object joint
alignment algorithm does not utilize any domain knowledge
of leaves or plants, and hence it is potentially applicable to
other similar problems in computer vision.
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