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Abstract

Congealing for an image ensemble is a joint alignment
process to rectify images in the spatial domain such that
the aligned images are as similar to each other as possible.
Fruitful congealing algorithms were applied to various ob-
ject classes and medical applications. However, relatively
little effort has been taken in the direction of compact and
effective feature representations for each image. To remedy
this problem, the least-square-based congealing framework
is extended by incorporating an unsupervised feature selec-
tion algorithm, which substantially removes feature redun-
dancy and leads to a more efficient congealing with even
higher accuracy. Furthermore, our novel feature selection
algorithm itself is an independent contribution. It is not
explicitly linked to the congealing algorithm and can be
directly applied to other learning tasks. Extensive experi-
ments are conducted for both the feature selection and con-
gealing algorithms.

1. Introduction
Group-wise image alignment, often coined as congeal-

ing [28, 23], is defined as a process of jointly estimating
warping parameters for all images in an ensemble. There
are many applications of image congealing. In the learn-
ing of an object detector [40, 12], the position of the ob-
ject (face/pedestrian/car) for all training images can be auto-
matically provided by congealing, rather than being labeled
manually. Congealing is also able to improve appearance-
based face recognition performance [19]. Yan et al. show
that automatic labeling of facial landmarks can be enabled
by semi-supervised congealing [37, 26], which can also po-
tentially be used to discover the non-rigid shape deforma-
tion of a real-world object.

Congealing aims to estimate the warping parameters by
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Figure 1. Given an unaligned image ensemble (blurred average
image), a novel unsupervised feature selection and congealing are
iteratively applied and result in the improved alignment for all im-
ages, as indicated by the sharpness in the average image. The
white dots on the middle image indicate the selected features.

iteratively minimizing a distance metric computed using the
feature presentation of each image. Hence, there are three
key elements to image congealing: cost function, optimiza-
tion method, and feature representation. Miller et al. [28]
utilizes the mutual information as the cost function for op-
timization, while Cox et al. [9] employ a least-squared dis-
tance between image pairs in the ensemble. Regarding the
optimization method, gradient descent [28] and the inverse
compositional approach [2, 9, 37] are all valid choices.

In contrast, almost all prior work use the original image
intensities as the feature representation, which has a number
of drawbacks. Since such representation usually resides in
a high-dimensional space, it imposes substantial computa-
tional burden for optimization, especially with a large image
ensemble. Also, because many pixel intensities are redun-
dant due to local proximity to their neighboring pixels, they
may hinder the optimization process. To remedy this prob-
lem, as shown in Fig. 1, this paper proposes an unsupervised
feature selection approach to automatically choose a subset
of feature representation and use that for image congealing.
We experimentally show that by only using less than 3%
of the original feature representation, both the accuracy and
efficiency of the congealing can be substantially improved
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in comparing to the one without feature selection.
Not only do we marry feature selection to congealing,

but we also propose a novel unsupervised feature selection
approach. We first construct a graph with features as the
vertices and the connectivity between vertices is determined
by the maximum information compression index [29]. A
simple and fast graph clustering method called power itera-
tion clustering (PIC) [24] is employed to partition the graph
into subsets and select a representative feature from each
subset. The proposed method is an extension of the well-
known feature clustering algorithm in [29]; nevertheless,
our method has significant advantages in efficiency, espe-
cially when the feature dimension is high, while achieving
comparable effectiveness in terms of removing feature re-
dundancy. Moreover, the proposed method can be easily
applied to other learning tasks beyond congealing, due to
its independence from the objective function and optimiza-
tion algorithm for the target concept.

In summary, this paper has two main contributions sup-
ported by extensive experiments and comparison with the
baseline approaches:
� A novel extension to least-square-based congealing

based on the finding that incorporating unsupervised fea-
ture selection can improve both the accuracy and efficiency
of congealing.
� A novel unsupervised feature selection algorithm that

is simple, fast and generally applicable.

2. Prior Work
There is a long history of group-wise image alignment

in computer vision [39, 3, 21, 11, 38, 35, 25, 31], particu-
larly in the area of medical image analysis [8, 4]. Learned-
Miller [28, 23] names this process “congealing”, where the
basic idea is to minimize a cost function by estimating
the warping parameters of an ensemble. Over the years,
there have been various directions that have been explored
to improve the accuracy and efficiency of congealing. In
terms of a cost function, the recent work of Storer et al.
utilizes a mutual information measurement as an objec-
tive function [36]. Cox et al. [9, 10] and Yan et al. [37]
develop a series of least-squares-based congealing algo-
rithms. In terms of a learning paradigm, there are unsu-
pervised congealing [3, 9, 23], as well as semi-supervised
congealing [37, 26]. The warping function used to compute
pair-wise image distances can be defined as a global affine
warp [9], or sophistical non-rigid warp [35, 7]. However,
one area that has received relatively little attention concerns
what is an effective feature representation in the context of
congealing. With only a few exceptions, such as the HOG
feature in [26], most prior work compute the cost function
by directly utilizing the original pixel intensities of the im-
age. Our proposed congealing algorithm makes a sharp con-
trast in that we develop a novel feature selection mechanism

to effectively choose a subset of the feature representation,
which is shown to improve both the accuracy and efficiency
of least-squares-based congealing.

The task of feature selection is to remove irrelevant
and/or redundant features. Irrelevant features refer to the
features that are not informative with respect to the target
concept (e.g., class in supervised learning); redundant fea-
tures refer to those that are highly correlated to some other
features [41]. By removing the irrelevant and redundant
features, feature selection helps reduce over fitting and im-
prove efficiency of model learning. It also helps better un-
derstand the underlying data-generating mechanism and re-
lated physical process patterns.

Feature selection has been well studied in supervised
learning [17]. Nevertheless, far less attention has been paid
to feature selection in unsupervised learning, mainly be-
cause the definition of relevance becomes unclear without
guidance of class labels. A few approaches have been pre-
sented in the literature. Following [20], we categorize them
into two groups, wrapper and filter. A wrapper method ties
feature selection with the main learning task (e.g., classifi-
cation) and evaluates features by how well they fit the ulti-
mate learning goal. In contrast, a filter method does not rely
on the learning algorithm but exploits intrinsic properties of
the data structure.

In the first category, most unsupervised wrapper tech-
niques use clustering quality or related constructs as fea-
ture selection guidance and are customized to a particular
clustering algorithm. Dy and Brodley [14], for example,
wrap feature selection around an EM clustering algorithm
and measure both the scatter separability and the maximum
likelihood. Other examples can be found in [13, 30, 22, 32].
Less techniques have been found in the second category -
the filter type of unsupervised feature selection techniques.
The Laplacian score is proposed in [18] to measure features
by their power of locality preserving; Zhao and Liu [42]
present a general feature selection framework evolved from
the spectral graph theory and shows the Laplacian score al-
gorithm is a special case of the proposed framework. An-
other work that has received much attention is the feature
clustering method presented in [29], which partitions the
features into a number of homogenous subsets, according
to an information-theory-based similarity measure, and then
selects the representative feature for each subset.

For our learning task (congealing), the filter techniques
are more preferable because clustering is not our ultimate
learning objective. Existing filter methods have difficulties
with high-dimensional, big datasets, which are quite com-
mon in real-world applications. Therefore, we propose a
new filter method that is a natural extension of [29] but
powered by a fast graph clustering approach. Our method
provides a comparable or even better performance of fea-
ture selection when independently evaluated on benchmark
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datasets. When embedded in the congealing algorithm, its
advantage becomes clearer: the optimization search space
is shrunk by removing redundant features and therefore the
computation cost is reduced by a significant margin.

3. The Congealing Algorithm
First we describe the basic concept and objective func-

tion of the conventional unsupervised least-squares-based
congealing [9, 37].

Unsupervised congealing approaches operate on an en-
semble of K unaligned images I = {Ii}Ki=1, each with an
unknown warping parameter pi that is to be estimated. The
pi can be a simple 6-dimensional affine warping parameter,
or the coefficient parameter of a shape subspace. The goal
of congealing is to estimate the collection of all unknown
parameters, P = [p1, · · · ,pK ], by minimizing a cost func-
tion defined on the entire ensemble:

ε(P) =
K∑

i=1

εi(pi). (1)

The total cost is the summation of the cost of each image
εi(pi):

εi(pi) =
K∑

j=1,j 6=i

‖f(Ij ,pj)− f(Ii,pi)‖2, (2)

where f(I,p) is a d-dimensional feature representation of
image I evaluated at p. Hence, εi(pi) equals the summa-
tion of the pairwise feature difference between Ii and all
the other images in the ensemble.

In [37], the feature representation is defined as,

f(I,p) .= I(W(x; p)), (3)

where W(x; p) is a warping function that takes as input x,
which is a collection of all d pixel coordinates within the
common rectangle region, and outputs the corresponding
pixel coordinates in the coordinate space of image I. Given
this warping function, I(W(x; p)) denotes the correspond-
ing warped image feature obtained by bilinear interpolation
of the image I using the warped coordinates W(x; p).

Since the total cost ε(P) is difficult to optimize directly,
[37] chooses to iteratively minimize the individual cost
εi(pi) for each Ii, given an initial estimation of the warp-
ing parameter P(0)

i . The well-known inverse warping tech-
nique [2] is utilized and after taking the first order Taylor
expansion, Eqn. (2) can be simplified to:

K∑
j=1,j 6=i

‖bj + Cj∆pi‖2, (4)

where

bj =f(Ij ,pj)−f(Ii,pi), Cj =
∂f(Ij ,pj)

∂pj

. (5)

The least-square solution of Eqn. (4) can be obtained by
setting the partial derivative of Eqn. (4) with respect to ∆pi

to be equal to zero. We have:

∆pi =−

 K∑
j=1,j 6=i

CT
j Cj

−1 K∑
j=1,j 6=i

CT
j bj

 . (6)

The calculated ∆pi is used to update the current warping
parameter, p(t)

i :

p(t+1)
i ← p(t)

i + ∆pi. (7)

Similar updating is conducted for the warping parameters of
other images in the ensemble, and then the algorithm pro-
ceeds to the next iteration. This process terminates when the
difference of ε(P) (computed via Eqn. (1)) between consec-
utive iterations is less than a pre-defined threshold.

4. Unsupervised Feature Selection
Our feature selection approach is designed to remove

feature redundancy. Investigation of feature relevance is be-
yond the scope of this paper. We aim to develop an unsuper-
vised feature selection algorithm that is suitable for various
learning tasks with different target concepts; hence, there
doesn’t exist a unified definition of feature relevance.

Let Y = [y1,y2, · · · ,yd] denote a n-by-d data matrix,
where rows are instances and columns are features. The
vector yj includes the jth feature for all the instances. Mi-
tra et al. [29] propose a feature similarity measure based on
information theory termed the maximum information com-
pression index, which possesses several desirable properties
for feature redundancy reduction, such as sensitivity to scal-
ing and invariance to rotation. It is defined as follows

λ(yj ,yl) = 1
2

[
V (yj) + V (yl)−√

(V (yj) + V (yl))2 − 4V (yj)V (yl)(1− τ(yj ,yl)2)
]
.

(8)
where τ is the correlation coefficient, τ(yj ,yl) =

C(yj ,yl)√
V (yj)V (yl)

, V (·) the variance of a random variable and

C(·, ·) the covariance between two variables. The value of
λ ranges between 0 and 0.5(V (yj) + V (yl)). It is mini-
mized when two features yj and yl are linearly dependent
and increases as the dependency diminishes. Based on the
measure λ for each pair of features, a heuristic algorithm is
employed in [29] to search the feature space: it finds the k
nearest neighbors of each feature; the feature with the most
compact neighborhood is selected and its neighbors are dis-
carded; the process is repeated until all features are either
selected or discarded. The heuristic search algorithm has
computational complexity similar to that of a kNN algo-
rithm, which could be quite slow when the feature dimen-
sion is high.
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Recently, spectral graph theory has become an active re-
search area in machine learning. Spectral clustering algo-
rithms (e.g. [34]) could be used to take place of the heuris-
tic search algorithm. If we build a graph A with features as
vertices, the connectivity between vertices can be defined as
a function of the measure λ in Eqn. (8)

ajl = exp(−λ(yj ,yl)
2/(2σ2)), j, l = 1, . . . , d, (9)

where σ is a scaling parameter that controls the kernel
width 1. The degree matrix associated with A, denoted by
D, is a diagonal matrix with the diagonal entries equal to
the row sums of A. A normalized random-walk Laplacian
matrix L is defined as L = ∆ −D−1A [27], where ∆ is
the identity matrix. The intrinsic clustering structure is of-
ten revealed by representing the data in the basis composed
of the smallest eigenvectors of L (but not the very smallest
one). The very smallest eigenvector is a constant vector that
doesn’t have discriminative power.

If we define another matrix W = D−1A, its largest
eigenvector is the smallest eigenvector of L. A well-known
method for computing the largest eigenvector of a matrix
is power iteration (PI), which randomly initializes a d-
dimensional vector v(0) and iteratively updates the vector
by multiplying it with W

v(t) = γWv(t−1), t = 1, 2, . . . , (10)

where γ is a normalizing constant to keep v(t) numerically
stable.

Lin and Cohen [24] discover an interesting property of
the largest eigenvector of W: before the elements of v(t)

converge to the constant value, they first converge to local
centers that correspond to the clusters in the data. There-
fore, the largest eigenvector v(t), which is discarded in
spectral clustering algorithms, becomes a useful tool for
clustering. The algorithm, power iteration clustering (PIC),
is very efficient since it only involves iterative matrix-vector
multiplications and clustering the one-dimensional embed-
ding of the original data is a relatively easy task.

In [24] PIC is used to partition the graph with data in-
stances as vertices. Instead, we are interested in feature
clustering and PIC is applied to the graph built on features.
Once we have the embedding vector v(t), various clustering
algorithms can be applied to group the features. To reduce
computational cost introduced by the clustering algorithm,
we use the fast k-means algorithm presented in [15]. Dirich-
let process mixture models [1, 5] could be a solution if the
number of clusters, i.e. the number of selected features, re-
mains unknown and is considered a model parameter to be
estimated as well.

1To avoid the issue of parameter selection, the value of σ is automati-
cally set as σ = median({ajl}dj,l=1).

Input: data matrix Y = [y1,y2, · · · ,yd] and number
of features to be selected, k (optional)
1. Calculate similarity between every pair of features
using Eqn. (8) and Eqn. (9) and build the graph A.
2. Obtain W by row normalizing A.
3. Initialize v(0) with Eqn. (12).
4. Find the embedding vector with iterative matrix-
vector multiplications as in Eqn. (10).
5. Group the elements of the vector, each correspond-
ing to one feature, with an efficient clustering algo-
rithm, e.g. the fast k-means [15].
6. Let Ω = ∅; in each cluster, find the feature that is
closest to the cluster center and assuming its index is
j, let Ω = Ω ∪ {j}.
Output: indices of selected features, Ω.

Table 1. The proposed unsupervised feature selection algorithm.

There are additional enhancements we have made to the
PIC algorithm in order to increase algorithm stability. PIC
doesn’t work for the following matrix, for example,

A =


0 1 0.1 0
1 0 0 0.1

0.1 0 0 1
0 0.1 1 0

 . (11)

It is suggested in [24] that initializing v(0) with the degree
vector u = [u1, u2, · · · , ud]T can accelerate local conver-
gence, where uj =

∑
l ajl∑

j,l ajl
. However, for a matrix like

Eqn. (11), the degree vector is a constant vector and will re-
main constant during the matrix-vector multiplication pro-
cess. To address this issue and assure fast convergence, we
add a small perturbation to the initial vector, i.e.

v
(0)
j = uj + εj , j = 1, . . . , d, (12)

where εj is a small random number, e.g. uniformly dis-
tributed in the interval (0, 1e−2/d). Then we normalize v(0)

to sum one. In addition, we find that setting the diagonal
elements of A to be one (instead of zeros as suggested in
[24]) leads to better numerical stability.

Table 1 summarizes the overall procedure of the pro-
posed unsupervised feature selection algorithm.

5. Congealing with Feature Selection
Having introduced the unsupervised feature selection

method, we now present how to incorporate it into the un-
supervised congealing framework discussed in Section 3.

Given the initial warping parameter P(0), the basic unsu-
pervised least-square-based congealing algorithm proceeds
with the following iterative steps: 1) computing the warping
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parameter update ∆pi for each image, and 2) updating the
current warping parameter for each image. Our proposed
algorithm follows these same steps, except that our feature
representation is only a subset of the original presentation,
and is defined as,

f(I,p) .= I(W(x(Ω); p)), (13)

where Ω is the output of the unsupervised feature selection
method described in Table 1, and is a k-dimensional vector
containing the indices of selected features.

There are several aspects regarding this enhanced con-
gealing algorithm. First, although being similar to the case
of original representations, the calculation of bj and Cj is
more efficient because only the feature elements with in-
dices included in Ω need to be computed. Second, we
choose to conduct the unsupervised feature selection at ev-
ery iteration. The motivation is that as the alignment for all
images changes at each iteration, the corresponding visual
features also change, which implies that a distinctive subset
of features might be useful at different stages of the entire
iterations. Third, we utilize the same iteration termination
condition as the basic congealing algorithm, where the im-
age difference (see Eqn. (1)) is evaluated using the origi-
nal feature representation. This is an intuitive choice since
different feature selections are conducted at consecutive it-
erations. Finally, our proposed congealing algorithm is not
limited to the feature representation in Eqn. (13), which is
an algorithmic choice given the original intensity feature in
Eqn. (3). Our feature selection method is applicable to other
feature types such as regional histograms.

As indicated by [37], the unsupervised least-
square-based congealing has computational complexity
O(mK2d), where m is the dimension of the warping
parameter and d is the dimension of the feature represen-
tation. Given that the efficiency of congealing depends
linearly on the feature dimension, our proposed algorithm
has a great potential to improve efficiency by working on
a much lower feature dimension k, where k � d. This is
demonstrated by our experiments in Section 6.

6. Experiments
We first compare our proposed feature selection algo-

rithm with state-of-the-art methods. Then we evaluate the
unsupervised congealing algorithm with the feature selec-
tion. All algorithms are run single threaded on a conven-
tional workstation.
6.1. Evaluation of feature selection performance

We first conduct an empirical study of the proposed fea-
ture selection algorithm on several UCI machine learning
benchmark datasets, as summarized in Table 2. Follow-
ing [14, 18, 30, 42], we take a supervised approach to evalu-
ate the quality of selected feature subsets. The ground truth
of class labels are inaccessible during the feature selection
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Figure 2. Comparison of CPU time for selecting features with the
three unsupervised feature selection methods.

dataset #(instances) #(features) #(classes)
semeion 1593 256 10

arrhythmia 452 279 16
madelon 4400 500 2

isolet 7797 617 26
mfeat 2000 649 10
gisette 13500 5000 2

Table 2. UCI datasets used in our experiments, ordered by feature
dimension, from low to high.

process and only used to evaluate classification accuracy.
The classifier we use is a simple but efficient linear clas-
sifier [16], which doesn’t have the parameter-tuning issue
and has been used for results evaluation in the NIPS 2003
(supervised) feature selection challenge 2.

The performance is evaluated at a different number of
selected features, 20%, 40%, 60% and 80% of the origi-
nal feature dimension. The dataset, with only the selected
features, is randomly split into halves, one for training and
the other for testing. Classification accuracy is measured by
Area Under Curve (AUC), averaged over 100 random splits.
If the data includes M > 2 classes, the multi-class classi-
fication problem is converted into M one-against-all binary
classification problems and their average AUC is reported.

We compare three unsupervised feature selection algo-
rithms of the filter type, feature clustering in [29] (denoted
by “Mitra”), SPEC in [42] and our proposed algorithm.
All three algorithms are implemented in non-optimized
MatlabTM code 3. The experiments are run with the default

2Information can be found at http://www.nipsfsc.ecs.soton.ac.uk/.
3The Mitra algorithm is available at

http://www.facweb.iitkgp.ernet.in/∼pabitra/paper.html and the SPEC
algorithm at http://featureselection.asu.edu/documentation/spectrum.htm.
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Figure 3. Comparison of feature quality for the three unsupervised
feature selection methods, measured by average AUC over 100
random splits.

parameter settings in the original code. To make a fair com-
parison in efficiency, we use the same code to compute the
measure λ in Eqn. (8) for both the Mitra and our algorithm.

The experiments results are reported Figs. 2 and 3, in
terms of CPU time and AUC respectively. Our proposed
method shows superior efficiency in the comparison of CPU
time for feature selection (note that the Y axis in Fig. 2 is
in the log scale). It runs less than 1 minute even for a high-
dimensional dataset like gisette (5, 000 features). Taking
20% as example, the CPU times averaged over 6 datasets
are 2192, 200, 2 seconds for SPEC, Mitra, and our algo-
rithm respectively.

Classification accuracy for the feature subset selected by
our algorithm is comparable to, if not better than, that for
the other two algorithms, as shown in Fig. 3. Table 3 shows
relative AUC increase averaged over 6 UCI datasets, com-
paring the proposed algorithm with the Mitra algorithm.
The two algorithms only differ in the feature clustering part.
Clearly with PIC we improve not only efficiency but also
feature selection quality.

It is worth noting that madelon is a special dataset in

k/#(features)×100% 20% 40% 60% 80%
AUCP−AUCM

AUCM
× 100% 4.69% 4.99% 2.22% 1.62%

Table 3. Classification improvement over the Mitra algorithm
(AUCM) given by the proposed algorithm (AUCP), averaged over
6 UCI datasets.

that among its 500 feature, only 20 are real features and all
the rest are distracter features having no predicative power.
Since it is unknown to us the indices of the real features, we
suspect that the SPEC algorithm has the real features ranked
among the top 20% and therefore its AUC keeps almost no
change as more features are added in. The other two algo-
rithms aim to remove feature redundancy and it is likely that
they are not able to capture those relevant features when the
feature grouping is coarse.
6.2. Evaluation of the congealing algorithm

Having demonstrated the effectiveness of our proposed
feature selection algorithm, we now focus on its contribu-
tion to image congealing.

We collect 300 images from the Notre Dame (ND1)
database [6]. We manually label 33 landmarks (û) for each
image to establish a ground truth and to enable a quanti-
tative evaluation for the congealing performance. During
initialization, we add a uniformly distributed random noise
η ∈ [−ηmax, ηmax] to the ground-truth value ûi,j :

ui,j = ûi,j +
ηρi

ρ̄
, (14)

where ρi is the eye-to-eye pixel distance of Ii, and ρ̄ is the
average of ρi for all images (ρ̄ ≈ 130 pixels in our exper-
iments). By doing so, we may synthesize different levels
of deviation in the initialization, which is also relative to
the face size. The correspondence between the perturbed
landmarks and the average landmarks in the common mean
shape are used to generate the initial estimation of warping
parameters P(0) for all images. In practical applications, the
initial landmark positions can be obtained from a face detec-
tor. A 6-parameter affine warp is employed as W(x; p). A
72×72 square region is used as the common mean shape in
the experiments, which results in a 5184-dimensional repre-
sentation for the original feature I(W(x; p)). Our algorithm
is implemented in MatlabTM.

The accuracy of the algorithms is evaluated by two crite-
ria: (1) Normalized Root Mean Squared Error (NRMSE) of
landmarks defined as the RMSE w.r.t. the ground truth land-
marks divided by the eye-to-eye distance ρi, and expressed
as a percentage; (2) Sample “Outliers” Fraction (SOF) de-
fined as the number of images, of which the NRMSE ex-
ceeds a threshold (8%), versus the total number of images.
A smaller NRMSE indicates a higher congealing accuracy,
and a smaller SOF represents greater robustness. In ad-
dition, the efficiency of the algorithms is evaluated by the
number of iterations to converge and the CPU time, which
includes the times for both feature selection and congealing.
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Figure 4. Congealing accuracy (a,b) and efficiency (c,d) with various feature dimension k. k = 5184 refers to the conventional congealing.

By setting ηmax = 10, we first generate 5 random ini-
tializations for the 300-image ensemble. For each initial-
ization, we specify various numbers of features (k) for the
congealing algorithm to run. The same experiments are
conducted for ηmax = 30, which is more of an extreme
case study because the commercial face detector by Pitts-
burgh Pattern Recognition [33] can achieve ηmax = 15.
Figure 4 shows the results where each dot and its variance
are computed from 5 runs.

A number of observations can be made. For both cases
of initialization, there is a large range of selected feature
dimension (e.g., k ∈ [150, 500]), from which the proposed
algorithm achieves improved accuracy compared to the one
without feature selection (k = 5184). This is a favorable
property in that our algorithm is not sensitive to k. For both
initializations, the new congealing always converges in less
iterations and utilizes less CPU time, especially when k de-
creases. In the optimal case, when ηmax = 10, our algo-
rithm reduces the NRMSE from 4.5% to 3.8%, the SOF
from 8.7% to 1.8%, and CPU time from 2, 349 to 912 sec-
onds by merely using 50

5184 = 0.96% of the original fea-
ture. Comparing two cases of initialization, the improve-
ment margin of accuracy by our algorithm in ηmax = 30 is
less than that of ηmax = 10. This is partially due to the fact
that the larger deviation at the initialization makes it chal-
lenging to converge by using a lower-dimensional feature
representation. Hence, it might be wise to have the feature
selection algorithm automatically nominate the optimal k at
each congealing iteration, of interest for future work.

In addition to the quantitative evaluation, we also dis-
play the average warped image after congealing converges,

Figure 5. From left to right, average warped images at ηmax = 10
when congealed with k = 50, 5184, and at the initialization.

Figure 6. Selected feature locations at iteration #1,18,35,52,69.

which is expected to be sharp. From Fig. 5, we can see the
improved sharpness when comparing k = 50 to k = 5184,
especially in the eye and mouth regions.

Figure 6 plots the locations of the selected features at 5
iterations when ηmax = 10 and k = 50. Notice that at dif-
ferent iterations, distinctive features are selected, many of
which are co-located with facial features. For areas with rel-
atively uniform appearance, such as cheek, fewer features
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are chosen due to higher redundancy.

7. Conclusions
With the massive image data available for various object

classes, image congealing is a key technology to automati-
cally estimate the rigid or non-rigid deformation of the ob-
ject instances. Armed with efficient unsupervised feature
selection, the proposed congealing algorithm opens the po-
tential of effectively performing congealing for a large im-
age ensemble, despite the high dimensionality in the origi-
nal feature representation. We show that with merely 3% of
the original features, the proposed congealing can complete
in less than 40% of the time, yet still improve the accuracy
and robustness of congealing, when compared with conven-
tional congealing without feature selection.
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