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ABSTRACT
Time-of-flight (ToF) depth cameras have been increasingly adopted
in various real-world applications, e.g., used with RGB cameras
for advanced computer vision tasks like 3-D mapping or deployed
alone in privacy-sensitive applications such as sleep monitoring. In
this paper, we propose UltraDepth, the first system that can expose
high-resolution texture from depth maps captured by off-the-shelf
ToF cameras, simply by introducing a distorting IR source. The ex-
posed texture information can significantly augment depth-based
applications. Moreover, such a capability can be used to launch pri-
vacy attacks, which poses a major concern due to the prominence of
ToF cameras. To design UltraDepth, we present an in-depth analysis
on the impact of the distorting IR light on the distance measure-
ment. We further show that, the reflection properties (reflectivity
and incidence angle) of the objects will be encoded in the distorted
depth map and hence can be leveraged to reveal texture of objects
in UltraDepth. We then propose two practical implementations of
UltraDepth, i.e., reflection-based and external IR-based implementa-
tions. Our extensive real-world experiments show that, the depth
maps output by UltraDepth achieve 89.06%, 99.33%, 81.25% mean
accuracy in object detection, face recognition and character recog-
nition, respectively, which offers over 10× improvement over the
ordinary depth maps and even approaches the performance of RGB
and IR images in a number of scenarios. The findings of this work
provide key insights for new research on depth-related computer
vision and security of depth sensing devices.

CCS CONCEPTS
• Computer systems organization → Sensors and actuators;
• Security and privacy→Hardware attacks and countermea-
sures; • Computing methodologies→ Computer vision.
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1 INTRODUCTION
Recently, the Time-of-Flight (ToF) depth camera has attracted

significant attention in the research community as well as in the
industry. The overall Time-of-Flight sensor market is expected to
grow to USD 6.9 billion by 2025 [37]. The ToF cameras are often
used together with RGB cameras for advanced computer vision
tasks such as scene labeling [56], 3-D mapping [61] and object
detection [17]. Besides, as the depth maps only contain distance
information without revealing details of the scene such as personal
identities, ToF depth cameras are increasingly deployed for privacy-
sensitive applications such as fall detection [32], sleep monitoring
[21], and surveillance systems [57]. Moreover, a number of vendors
[1–3] provide depth-only modules, which not only support a range
of depth-only based studies [26, 33, 62] but also lead to privacy-
preserving customer products [4, 5, 44].

In this paper, we propose UltraDepth, the first system that can
expose high-resolution texture from the depth maps captured by off-
the-shelf ToF cameras, simply by using a distorting IR source. Figure
1 shows several illustrative examples of the ordinary depth maps
and the depth maps output by UltraDepth. It’s obvious that the latter
can expose rich texture of various scenes. As a result, UltraDepth
can augment the performance of ToF cameras in various perception
tasks like face recognition and object detection. Without requiring
extra RGB cameras, UltraDepth can save cost and reduce form factor
for real-world applications. Moreover, the high resolution texture
exposed by UltraDepth can be used to launch privacy attacks, which
poses a major concern due to the prominence of ToF cameras.

The design of UltraDepth is based on the key idea that the dis-
tance measurement of indirect Time-of-Flight (iToF) cameras will
be distorted in the presence of an additional IR source, and the
resulted distortion varies in different areas of the scene, which ex-
poses the texture of the objects in the scene. To design UltraDepth,
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Figure 1: Illustrative examples of the ordinary depth maps
and the depth maps output by UltraDepth. The latter is able
to expose rich texture of the scene.

we first present an in-depth analysis on the impact of the distort-
ing IR light on the distance measurement based on the working
principle of iToF camera. We further show that under the influence
of the distorting IR source, the reflection properties (reflectivity
and incidence angle) of the objects will be encoded in the distorted
depth map and hence can be leveraged to reveal texture of objects
in UltraDepth. We then propose two implementations of UltraDepth,
namely reflection-based and external IR-based implementations,
based on different ways of constructing the distorting IR source.
Specifically, the reflection-based UltraDepth generates a distorting
IR source through the light reflected from the ambient objects (e.g.,
cover board, wall or furniture) near the emitter of the iToF camera.
Therefore, the reflection-based UltraDepth needs merely a simple
cover board reflecting part of the emitted IR light. The external IR-
based implementation utilizes a designated external IR source (e.g.,
another device with the same model of the original ToF camera) to
interfere with the received light from the measured area.

We validate the effectiveness of texture exposure of UltraDepth
in extensive real-world experiments with different perception tasks,
daily scenarios and settings on several practical factors. The results
show that, the depth maps output by UltraDepth achieve 89.06%,
99.33%, 81.25% mean accuracy in object detection, face recogni-
tion and character recognition, respectively, which offers over 10×
improvement compared with the ordinary depth maps. Since Ultra-
Depth is insensitive to visible light, its object recognition accuracy
can surpass RGB camera in the scenes with poor illumination. More-
over, we show that the reflection-based UltraDepth can be easily
realized in real-world applications with the help of ambient objects
such as a wall or furniture. Finally, to address the potential privacy
attacks enabled by UltraDepth, we briefly discuss possible defense
mechanisms for two different implementations of UltraDepth.

Our key contributions are summarized as follows:
• To the best of our knowledge, UltraDepth is the first ToF depth-
based system that can expose detailed texture information from
the depth maps output by off-the-shelf iToF depth cameras.

• We are the first to provide an in-depth analysis on the principle
of exposing high-resolution texture from depth cameras.

• Based on our theoretical analysis, we propose two practical im-
plementations of UltraDepth, i.e., reflection-based and external
IR-based UltraDepth, which can be easily realized for real-world
applications.

• We conduct comprehensive experiments to validate the effective-
ness of texture exposure ofUltraDepth in various perception tasks,
e.g., object detection, face recognition and character recognition.

• We discuss possible defense solutions for privacy attacks that
can be launched by two UltraDepth implementations.

2 RELATEDWORK
Applications of DepthCameras. Recently, ToF depth cameras

have been increasingly adopted in various real-world applications.
They are often used together with RGB cameras for computer vi-
sion tasks such as scene labeling [49, 56], 3-D mapping [16, 61],
object detection [17, 52], semantic instance segmentation [25] etc.
Depth cameras are also fused with wearable inertial sensors for
motion analysis such as biomechanical gait analysis [8] and ges-
ture recognition [10]. Moreover, with more and more vendors pro-
viding depth-only modules, depth-only cameras (instead of both
depth/RGB cameras) are increasingly deployed for privacy-sensitive
applications [14, 28, 36]. For example, in [28], ToF cameras are used
in a smart room for privacy-preserving people tracking. In [36],
an algorithm is proposed to use only the depth information from
a ceiling-mounted ToF camera to detect people. In [14], the depth
cameras are used for human posture recognition at homes.

Augmenting ToF Cameras. In view of the prevalence of ToF
cameras, a family of techniques have been proposed to improve
the sensing performance of ToF depth cameras. Specifically, [18, 19,
42, 46] focus on improving theoretical or empirical noise models of
ToF cameras for better distance measurement. The energy-efficient
epipolar imaging approach proposed in [6] improves the robustness
of depth measurement in several extreme scenarios, e.g., in presence
of strong outdoor sunlight, interference from other ToF cameras,
and severe camera shaking. Moreover, [27, 30, 31, 41] model and
compensate for the internal scattering of ToF cameras where the
distance measurements of far objects are severely affected by the
near objects. Different from previous work that aims at improving
the robustness of distance measurement of ToF cameras, our work
focuses on exposing rich texture of the captured scene from the
depth map, which broadens the applications of depth cameras, e.g.,
for face recognition or object detection.

Privacy Attacks on LiDAR and Radar. Similar to ToF depth
camera, LiDAR and radar are widely accepted as privacy-preserving
imaging sensors since they only show point cloud of the scene.
However, recent studies have demonstrated risks of privacy leakage
in systems based on LiDAR and radar. Specifically, [63] finds that
the millimeter wave radar is capable of identifying individuals with
the aid of a deep recurrent network. [50] demonstrates the risk
of eavesdropping private conversations through LiDAR sensors.
However, to the best of our knowledge, our work is the first to show
that off-the-shelf iToF camera can be used to expose rich texture
information of depth maps and hence reveal sensitive information
in real-world scenarios.

3 BACKGROUND
In this section, we introduce the technical background, including

the difference between direct ToF cameras and indirect ToF cameras,
and the principle of depth measurement in iToF cameras via IR light.

A simplified system diagram of how a Time-of-Flight (ToF) cam-
era works is depicted in Figure 2(a). A ToF depth camera emits IR
light, illuminates the scene to be captured and receives the IR light
reflected by the objects in the scene. The distance measurement is
derived based on the fact that the round trip time-of-flight (t ) of
the IR signal between the scene and the camera is strictly propor-
tional to the distance. We have t = 2d/c , where d is the distance of
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(a) Capturing depthmapswith a ToF camera (b) dToF and iToF

Figure 2: (a) The IR light is first emitted by the ToF camera,
then reflected by the scene, and finally received by the cam-
era. The time-of-flight of IR light during this process is mea-
sured to calculate the distance of the scene. (b) Up: direct
Time-of-Flight (dToF) measures the time delay. Down: indi-
rect Time-of-flight (iToF) measures the phase shift.

the scene and c is the speed of light. Thus, the design goal of ToF
camera is to measure the time-of-flight as accurately as possible.
Off-the-shelf ToF cameras can be divided into two types based on
how the time-of-flight is measured: direcet Time-of-Flight (dToF)
and indirect Time-of-Flight (iToF). Figure 2(b) illustrates the basic
idea of these two techniques: dToF measures the time delay di-
rectly using high-precision Single-Photon Avalanche Diode (SPAD)
while iToF measures the phase shift between the emitted signal and
received signal to calculate the time delay indirectly. Compared
with dToF, iToF is more suitable for 3D imaging applications due
to its low cost and high resolution [22]. Currently, most of the ToF
modules on mobile devices (especially Android smartphones) on
the market adopt the iToF technology [9, 11].

(a) (b)

Figure 3: Measurement of phase shift in iToF. The camera
shutter is in the same phase as the emitted light pulse. The
energies of received IR light in two consecutive windows S1
and S2 are used to measure the phase shift of the received
light signal.

Specifically, the iToF camera has a shutter with the same phase
as the emitted light pulses and uses the phase shift of the returned
light to calculate the time-of-flight. Figure 3 illustrates the general
principle of calculating the phase shift in an iToF camera. The laser
source (typically a vertical-cavity surface-emitting laser, VCSEL)
emits pulses of light continuously and periodically. A square wave
rather than a sine wave is commonly used because it can be eas-
ily realized using digital circuits [23, 35]. The pulse width of the
square wave (T ) determines the range of measurement, which can
be configured by the user. Then there will be a phase shift between
the emitted and received light due to the time-of-flight, as indicated
by ϕ in Figure 3. To measure the phase shift, the camera shutter

Scene iToF Depth 
Camera

Distorting 
IR Source

Original 
Depth Map

UltraDepth 
Map

Scene iToF Depth 
Camera

Distorting 
IR Source

Original 
Depth Map

UltraDepth 
Map

Figure 4: UltraDepth is designed to enable exposing high-
resolution texture from the depth maps captured by the an
iToF depth camera.

opens and closes periodically with the same frequency and the same
phase as the emitted laser pulses. Then the camera will read out
the energy of received light in two successive windows (denoted
as S1 and S2), as shown in window 1 and window 2 of Figure 3.
Therefore, the phase shift ϕ can be calculated using the energy ratio
of received light in the window 1 and window 2:

ϕ =
S2

S1 + S2
× π .

Then the time-of-flight t can be calculated by t = ϕ
π T .

Besides the basic designs, mainstream off-the-shelf iToF cameras
also adopt some advanced techniques to mitigate the influence of
ambient light on the distance measurement. For example, pulse-
based iToF cameras detect the ambient light in non-pulse time [51]
while the continuous-wave iToF cameras take multiple samples
(using more than two windows) per measurement and calculates
the phase shift using the subtractions of energy samples to reduce
the energy offset caused by ambient light during the process of each
distance measurement [24]. However, these techniques can only
reduce the interference when the ambient light irradiated within
the measurement area is constant and continuous.

4 APPLICATIONS
In this paper, we propose a novel system UltraDepth, which can

expose high-resolution texture information from the depth maps
captured by iToF depth cameras. We now first briefly introduce the
typical setup of UltraDepth and then present typical applications.

Figure 4 depicts the basic setup of UltraDepth. Assume there
is an iToF depth camera that irradiates IR light on the scene and
records the depth map, where the depth map only captures the
distance information of the scene. UltraDepth aims to extract rich
and detailed texture information from the captured depth map. To
achieve this goal, UltraDepth first adopts the proposed methods in
this paper (described in Section 6) to add a distorting IR source and
impose continuous and indelible interference that can manipulate
the distance measurements in the depth maps of the iToF camera.
Then the detailed texture information of objects in the scene will
be encoded in the distorted depth maps, turning the blurry distance
maps into gray-scale like images. UltraDepth is thus able to expose
rich texture information and leverage them for various applications.

Augmenting Depth Performance. The exposed texture in-
formation in the depth maps through UltraDepth can be used to
augment various applications of ToF depth camera. There are sce-
narios such as surveillance [57] and fall detection [7] where only a
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Figure 5: The key idea of texture exposure is to distort dis-
tance measurement by adding a distorting IR source

depth camera (instead of both depth/RGB cameras) is present. In
such cases, we can combine the original depth map (with distance
information) and the distorted depth map (with texture informa-
tion) captured through UltraDepth to improve the performance of
tasks such as object detection and 3D constructions, eliminating
the need of an extra RGB camera. Our experiments show that Ul-
traDepth can accurately detect faces and daily objects. Besides, the
distance map and texture map in UltraDepth are from the same ToF
camera. Therefore, they do not need to be calibrated to achieve the
alignment between the two maps, which is a compute-intensive
procedure needed for common RGB-D cameras due to the different
radial distortion and the rotation and translation between the depth
camera and the RGB camera [59].

Privacy Attacks. UltraDepth can be used to attack user’s pri-
vacy by revealing rich texture information from ToF depth cameras.
Such attacks can be launched for a number of real-world appli-
cations if an adversary can get access to the UltraDepth output.
Specifically, an indoor attack scenario may occur when the iToF
depth cameras are used in smart home applications, such as sleep
monitoring [21, 38] or fall detection [7, 60], which are previously
considered capable of preserving privacy and anonymity. Due to
the high resolution of exposed texture information, the attacks can
cause severe privacy leakage of users, especially in privacy-sensitive
spots, like bedroom or bathroom. The indoor layout revealed by
the attacked depth camera will also render the users vulnerable
to physical attacks such as robbery. Moreover, such attacks are
also possible in public areas, e.g. building entrances and elevator
cars, when the iToF cameras are mounted for privacy-sensitive
applications such as people counting [40]. Similarly, the adversary
can obtain a video stream that exposes clear texture information
in the scene, which can reveal not only personal identities but also
text contents on the papers or smartphones people hold, especially
when the iToF cameras are ceiling-mounted.

5 DESIGN PRINCIPLE OF UltraDepth
5.1 Key Idea

As introduced in Section 3, in iToF depth cameras, the phase
shift of the received light signal is measured using the energy ratio
of received light in two successive windows. Therefore, as Figure
5 shows, the key idea of UltraDepth is to introduce a distorting IR
source to change the energy ratio of received signal, which will
distort the distance measurement of the iToF camera. Moreover, the
impact of this distorting IR source varies in different areas of the
scene (e.g., digits and background on the credit card in Figure 5), ef-
fectively increasing the difference between the perceived (distorted)
depth measurements. Therefore, the detailed texture information
of the scene will be exposed in the distorted depth map.

Figure 6: Impact of the distorting IR source on distancemea-
surement. The additional IR light (N1, N2) from the distort-
ing IR source will affect the measured phase shift through
changing the energy ratio of the received light.

Next, we will introduce how the distorting IR source can affect
the distance measurement of iToF depth cameras in Section 5.2,
and how to effectively expose rich texture information from the
distorted depth map of the scene in Section 5.3.

5.2 Impact of Distorting IR Source on Distance
Measurements

In our context, a distorting IR source for the distance measure-
ment of a specific object can come from the changeable ambient
light, the reflected light from ambient objects and even an external
IR light source. In this section, we will present how a distorting IR
source affects the distance measurement of an iToF depth camera.

Figure 6 shows the received light signal on the iToF camera
with a distorting IR source, where the yellow rectangles denote the
additional light from the distorting IR source. Compared with the
one depicted in Figure 3, the additional light from the distorting
IR source (N1 and N2) will change the energy ratio of the received
light and further affect the measured phase shift and distance. We
then use the model shown in Figure 6 to give a quantitative analysis
on the impact of distance measurement from the distorting IR.

Suppose S1 and S2 denote the energy of received light from the
targeting object in window 1 andwindow 2, respectively;N1 andN2
denote the energy of received light from the distorting IR source in
window 1 and window 2, respectively.T is the width of the emitted
light pulse and t is the time-of-flight. Then the real distance of the
object is d = S2

S1+S2 × cT
2 , where c is the speed of light. However,

the measured distance after adding the distorting IR source is:

d̃ =
S2 + N2

S1 + S2 + N1 + N2
×
cT

2
.

In Figure 6, the received intensity of light reflected by the objects
can be expressed as E/d2, which is inversely proportional to the
square of the distance d [39]. Here E is the received intensity from
the object at a unit distance, which is determined by the emission
power of the iToF camera and reflection properties (e.g. reflectivity,
incidence angle of light) of the object. Then as the energy of received
light is equal to the accumulation of light intensity over time, S1
and S2 can be expressed as: S2 = E/d2 · t and S1 = E/d2 · (T − t). By
substituting S1 and S2 with above two equations (where t = 2d/c),
and with rearrangement, the relationship between the measured
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distance d̃ and the real distance d can be presented as:

d̃ =

[
1 −

[(N1 + N2)d − N2D]d

ET + (N1 + N2)d2

]
× d, (1)

where D = cT
2 is the iToF’s range of measurement.

Eqn.(1) shows that for a specific object (E is fixed) and a fixed
range of measurement (D), the measured distance with distorting
IR is determined by the energy distribution of the distorting IR light
in the two windows (N1 and N2) as well as the real distance d . We
note that when d > N2

N1+N2
D, the measured distance will be smaller

than the real one, and vice versa. We now discuss the impact of
distance measurement with different N1 and N2 based on Eqn.(1):

N1 = N2. This usually occurs when the distorting IR is from the
ambient light, where the energies of the additional light in all the
windows are equal. In this case, when the real distance d is smaller
than D

2 (half of the range of measurement), the measured distance
d̃ will be larger than the ground truth, and vice versa. Fortunately,
as mentioned in Section 3, the interference from ambient light is
easy to be eliminated by detecting the ambient light in non-pulse
time [51] or subtracting the ambient light with more windows [24].

N1 ≫ N2 and N1 ≪ N2. When the distorting IR source is set
so that N1 ≫ N2, d > N2

N1+N2
D will always hold, and the measured

distance d̃ will always be smaller than the real value. While when
N1 ≪ N2, d < N2

N1+N2
D is true most of time, it leads to a larger

distance measurement.

5.3 Exposing Textures in Depth Maps
As shown in Section 5.2, the distance measurement of the iToF

depth camera will be affected by the interfering IR source, resulting
in a distorted depth map. In this section, we will describe how the
distorted depth map can expose rich texture information of the
scene. The key idea is that the impact of the distorting IR source
varies among different areas of the scene due to their different
reflectivities and incidence angles for the light, which is implied
by the variable E in Eqn.(1). Therefore, the distorted depth map
(composed of a 2-D array of measured distance d̃) is actually en-
coded with the properties (reflectivities and incidence angles) of
the irradiated scene, which exposes more textures than the original
depth map. In other words, by manipulating the distance measure-
ments of different areas of a scene, we can effectively increase the
“granularity” of depth maps, exposing texture details of the scene.
To this end, we will present how the textures make differences in
response to the distorting IR source.

In the original iToF camera system, the depth map is only related
to distance of the irradiated object as the phase shift only depends
on the time-of-flight of the received signal while having nothing
to do with the specific intensity of received light signal. However,
according to the Lambertian reflection model [39, 43], the intensity
of IR signal reflected by the scene at distance d can be calculated
by:

Ed = E0α cosθ/(8d2), (2)

where E0 is a constant determined by the settings of the depth
camera, α is the reflectivity of the object at the IR wavelength of
the ToF camera and θ is the angle of incidence.

(a) Objects with different reflectivities (b) Objects with different incidence angles

Figure 7: Two special cases of different albedos for objects
at the same distance. Both high reflectivity and small in-
cidence angle will make the albedo larger, resulting in a
stronger intensity for reflected light (indicated by the thick
arrow in (a) and (b).

Figure 8: A and B have the same distance (energy ratio in
two windows) but different albedos (intensities of received
light). They can be differentiated in the distance measure-
ment when adding a distorting IR source in our design.

Therefore, we can see that even for two points with the same
distance, the intensity of received light can still be different due to
various reflectivities (α ) and the incidence angles (θ ). In this paper,
we define a new variable “albedo” 1 β = α cosθ , to quantify the
two factors from the object itself that have impact on the intensity
of the received light. Figure 7 gives two special cases of different
albedos for objects with the same distance. In Figure 7(a), the two
objects have unequal albedos due to their different reflectivities,
while for the two objects in Figure 7(b), their albedos differ as they
have different incidence angles. In reality, the impact of the two
factors usually appears at the same time.

We now show how the intensity of the received light signal
affects the distance measurement when a distorting IR source is
present. As Figure 8 shows, two points A and B in the scene have
the same distance but different albedos. When there is no distorting
IR (i.e. in the original ToF camera systems), we have tA = S2A

S1A+S2A =
S2B

S1B+S2B = tB , i.e., the measured distances are the same for A and
B. In this case, we can not differentiate these two points even
they have different albedos. However, when there is a distorting
IR, we have t

′

A =
C2A

C1A+C2A
, C2B

C1B+C2B
= t

′

B , where Ci j = Si j +

Ni , i = 1 or 2, j = A or B. In this case, the two points will have
different distance measurements and can be differentiated in the
depth maps. In summary, the distorting IR can introduce the impact
of the albedo into the distance measurement. As a result, the depth
map is distorted according to various albedos in different areas
of objects, thereby exposing textures. Without the distorting IR
1We note that this is a slight abuse of term albedo, which is defined as a measure of
the diffuse reflection of solar radiation in optics.
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source, the original depth camera would only capture the distance
of objects while oblivious to the impact of other factors including
reflectivities and incidence angles of the objects, which actually are
already embedded in the intensity of received IR light.

We further quantify the impact of different albedos on the dis-
tance measurement of the distorted depth map. Recalling Eqn.(1),
for objects with the same distance d , if the distorting IR is fixed,
i.e. N1, N2 are unchanged, the measured distance will be solely
determined by E, where E = E0α cosθ = E0β and E0 is a constant
that is related to the camera’s emitter. In this case, the relationship
between the measured distance and the real distance will be deter-
mined by the albedo β , which is shown in Figure 9. We summarize
three key factors and their impacts on the performance of Ultra-
Depth from Figure 9: (1) The object’s albedo. For both cases, the
object with lower albedo is less resistant to interference, i.e., its
distance measurements are distorted more severely than the object
with higher albedo. (2) The distorting IR light. The setting N1 ≫ N2
for the distorting IR source will be a better choice to differentiate
objects and expose more texture information. When N1 ≪ N2, the
impact of different albedos on the distance measurement is less
significant. However, when N1 ≫ N2, the two objects with differ-
ent albedos will have significantly different distance measurements,
especially when they are both located at a larger distance (e.g., >
1m). (3) The distance of object. When N1 ≫ N2 (which is the setting
of two UltraDepth implementations in Section 6), the objects at a
larger distance from the camera more likely expose texture details
since the intensity of light reflected off the objects is weaker than
that at a smaller distance, which makes them more vulnerable to
the distorting IR light.

(a) N1 ≪ N2 (b) N1 ≫ N2

Figure 9: The impact of different albedos on the distance
measurement, with two fixed distorting IR sources. (a) when
N1 ≪ N2, (b) when N1 ≫ N2.

6 SYSTEM IMPLEMENTATION
In this section, we will discuss two types of practical implemen-

tations of UltraDepth that can expose texture information in the
depth map, i.e., reflection-based and external IR-based UltraDepth
implementations, which differ in how to construct a distorting IR
source introduced in Section 5. Specifically, the reflection-based
implementation attempts to generate a distorting IR source through
the light reflected from the ambient objects near the emitter, while
the second method directly utilizes a designated external IR source
to interfere with the received light from the measured area. In both
UltraDepth implementations, the intensity of received distorting
IR light (namely N1,N2) is comparable to that of the IR light re-
flected off the objects, making the depth measurement of objects

(a) (b)

(c)

Figure 10: Schematic and physical diagram of the reflection-
basedUltraDepth implementation. The cover board near the
ToF camera will reflect part of the emitted IR light to distort
the distance measurement.

easier to be distorted (according to analysis in Section 5). Therefore,
high-resolution texture information can be exposed in the two real-
world implementations. Furthermore, we propose a region-based
linear transformation method for UltraDepth to refine the texture
information in the depth map.

6.1 Reflection-based Implementation
To impose an effective distortion on the depthmap, the distorting

IR must have the same wavelength and modulation frequency as
the ToF depth camera. In this way, it can continuously manipulate
each frame of captured depth maps and thus expose more texture
information. Then the most straightforward and convenient way
to construct a distorting IR light that meets the requirement is to
utilize the IR light emitted by the depth camera itself.

Based on this idea, we propose a reflection-based implementation
of UltraDepth, where a cover board is placed near the emitter to
reflect part of the IR light emitted by the camera, which constitutes
a distorting IR source. Figure 10(a) shows a schematic diagram for
the reflection-based implementation, where the emitter emits the IR
light (depicted as the blue arrows) to illuminate the scene while part
of the emitted IR is blocked and reflected by the cover board (brown
arrows). A fraction of the reflected IR light will fall into the camera
lens, thereby introducing stable and indelible interference to the
distance measurement of the scene. Compared with the measured
objects in the scene, the cover board is much closer to the emitter
and camera lens so that the time-of-flight for the distorting IR
light will be extremely small. Therefore, as Figure 10(c) shows, the
received IR reflected from the cover board in window 1 (N1) will
be much greater than that in window 2 (N2), i.e., N1 ≫ N2. In
this case, as indicated in Section 5.2, the depth measurements will
always be smaller than the real value in reflection-based UltraDepth
implementation. Suppose the reflections on the scene and on the
cover board follow the Lambertian reflection as described by Eqn.(2),
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we can rewrite the Eqn.(1) as:

d̃ =

(
1 −

d(d − d0)

βd20/β0 + d
2

)
× d, (3)

where β and β0 are the albedos of an object in the scene and of
the cover board respectively, d is the real distance of the object and
d0 is the distance of the point on the cover board that reflects the
emitted IR light. Eqn.(3) describes how a single point on the cover
board affects the depth measurement of the ToF camera, which
provides the guidance for setting cover board in the reflection-based
UltraDepth. For example, in Eqn.(3), increasing β0 and reducing d0
will both enlarge the distortion between measured distance d̃ and
the real value d . Therefore, we can choose the cover board with
higher reflectivity or put the cover board closer to the emitter to
make it easier for texture exposure in reflection-based UltraDepth.

Figure 10(b) shows a prototype of the reflection-based Ultra-
Depth implementation, where a 3D printed cover board is placed
on top of the ToF camera module. In practice, the reflection-based
implementation can be easily realized since there are no special
requirements on the cover board’s material and placement, as long
as a light path is established between the ToF camera and the cover
board. Moreover, such reflection-based implementation is difficult
to detect without physical inspection of the camera device. In par-
ticular, one may accidentally cover part of the ToF camera, resulting
in an equivalent reflection as the cover board. For example, if the
ToF camera is placed close to a wall, the wall will serve as a cover
board and reflect part of the emitted IR light to distort the ToF
camera’s distance measurements. In this case, the user will have a
high possibility of accidentally exposing his/her privacy through
the ToF depth camera. In Section 7.1, we present a feasibility study
that includes a number of such scenarios.

6.2 External IR-based Implementation
Different from reflection-based UltraDepth that utilizes the IR

from the camera as the distorting IR source, UltraDepth can also
be implemented by using another device to construct a proper dis-
torting IR source. Similar to the reflection-based implementation,
the external IR source in this method also needs to have the same
wavelength and modulation frequency as the ToF camera’s IR light.
Instead of developing a customized VCSEL IR source that is very
labor-intensive, we choose to use a ToF camera with the samemodel
as the original ToF camera, which naturally meets the requirements.
In this section, we describe the UltraDepth implementation using
two VZense Dcam 710 ToF cameras [58], where one serves as the
original ToF camera and the other serves as the distorting IR source,
although the same design can be easily adapted for other iToF mod-
els. Next, we will first introduce the IR emission pattern of the
VZense ToF camera in Section 6.2.1, and then present the sniff-
ing and spoofing procedure of the external IR-based UltraDepth
implementation in Section 6.2.2 and Section 6.2.3.

6.2.1 The IR emission pattern of the iToF cameras. The effective
distortion occurs only when both the distorting ToF camera and
the original ToF camera emit IR light simultaneously. However, the
ToF camera does not emit IR light all the time for the purpose of
energy saving and eye safety. Therefore, the main task of external
IR-based implementation is to align the IR emission times of the

Figure 11: The emission patterns of two ToF cameras. The
emission period of camera 1 is shorter than camera 2 by 20
µs. Our goal is to dynamically set the launch time of the dis-
torting ToF camera to be aligned with the original camera.

Figure 12: The intensity of received light signal on the dis-
torting ToF camera. The signal intensitywill drastically fluc-
tuate when the IR emissions of the two cameras overlap (To )
and the interference will appear periodically (with a period
Tf ). To and Tf can be used to align the two ToF cameras.

two ToF cameras. To this end, we need to study the IR emission
pattern of the ToF camera. Firstly, the VZense ToF camera emits IR
light with a wavelength of 940 nm and a modulation frequency at
100 MHz. Moreover, as is shown in Figure 11, the emission of IR
light has a period of around 33 ms (30 periods per second), of which
the ToF camera will emit IR light during the first 8 ms, and switch
to the idle state for the remaining 25 ms. Furthermore, for any
two depth cameras, the lengths of emission periods will be slightly
different due to the hardware bias. Take the two depth cameras in
our implementation as examples, the emission period of camera 1
is shorter than that of camera 2 by around 20 µs , which will result
in an accumulative time shift between the emission times of the
two cameras even if they start to emit IR light at the same time.

6.2.2 Sniffing. To align the emission time of the distorting ToF
camera with that of the original one, we first need to know the
emission pattern of the original ToF camera, and then control the IR
emission of the distorting ToF camera to align with it. Therefore, the
external IR-based UltraDepth includes a sniffing module to detect
the emission pattern (period and launch time of each emission) of
the original camera.

The design of sniffing is based on the observation that the IR
light emitted by the original camera will be received by the dis-
torting camera and hence influence the received light intensity of
the distorting ToF camera. As Figure 12 shows, the average signal
intensity received by the distorting camera will drastically fluctuate
when the IR emissions of the two cameras overlap. Moreover, the
interference will appear periodically due to the accumulated launch
time shift and the periodical light emission of the two ToF cameras.

Based on the above observation, we propose to detect and pre-
dict the current time shift of starting a new emission between the
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(a) RGB (b) IR (c) Regular depth map

(d) Reflection-based UltraDepth output (e) External IR-based UltraDepth output (f) UltraDepth output with region-based linear trans-
formation

Figure 13: Comparison of images captured by a RGB camera, a IR camera and an ordinary depth camera and UltraDepth with
different settings. The images output by our system UltraDepth (d,e,f) will reveal rich texture information. The depth map
with region-based linear transformation (f) can even expose textures for distant objects.

two ToF cameras from the average signal intensity received by the
distorting camera. Basically, the distorting ToF camera will con-
tinuously record the average intensity of the received IR light and
analyze the fluctuation of the intensity. When the amplitude of the
fluctuation is larger than a threshold, the distorting ToF camera will
deem that the two camera’s IR emissions are overlapping. In par-
ticular, the central time point t0 of the strong fluctuation happens
to be the time when the two cameras’ emission times completely
overlap. Moreover, from the period of fluctuation (Tf ), we can cal-
culate the difference of emission period for the distorting camera
and the original camera as td = 33/(30 ·Tf ) ms.

6.2.3 Spoofing. Based on the overlapping time To and the period
of fluctuationTf , the distorting ToF camera will dynamically adjust
its start time of IR emission to be aligned with that of the original
one during the spoofing stage.

First, according to the overlapping time To , the distorting ToF
camera is able to know the moment when the emissions of the two
cameras are exactly overlapped (denoted as t0, actually happens at
the middle point of the overlapping time). Second, the difference of
emission period between the attacker and the victim can be calcu-
lated as td = 33/(30 ·Tf ) ms, where Tf is the period of fluctuation
detected during the sniffing stage. Assuming that the period of the
distorting ToF camera is shorter than the original camera, then at
t0 + 8/(30 · td ) s, the overlap will disappear since the distorting ToF
camera has drifted 8 ms earlier than the original camera. Then the
distorting ToF camera should wait 8 ms to start a new IR emission
to align with the emission of the original camera again. Therefore,
once the distorting ToF camera knows the aligned moment t0 with
the original camera, it only needs to wait 8 ms every 8/(30 · td ) s

in the future to induce a continuous interference to the emission of
the original camera. This scheme also works for the case that the
period of the distorting ToF camera is longer than the original one.

6.3 Converting to Gray-scale Images
To make full use of the texture encoded in the depth map output

by UltraDepth, we propose a region-based linear transformation to
convert a depth map to a gray-scale image.

Generally, a simple linear transformation from the distorted
depth maps output by UltraDepth to the gray-scale images can
reveal lots of detailed textures. However, in some extreme cases
where the range of measurement is large or the distance of objects
of interest is concentrated within a small range, the direct linear
transformation for the distance on the entire depth map will lose
significant amounts of information. Specifically, for a depth map
with a range of distance measurement in [150, 3,000] mm, a simple
linear transform to the gray-scale images (with the range 0-255)
can only differentiate two points of the depth map with a minimum
granularity of 11 mm. To address this issue, we propose a region-
based linear transformation method to ensure that detailed texture
information is recovered as much as possible. Specifically, we first
segment the scene into different regions based on the distance
information in the depth map. A key observation is that the distance
measurements are usually continuous but have drastic transitions
at the boundaries of different regions or objects in the depth map,
which enables fast and accurate region segmentation by simply
detecting the drastic transitions [34, 55]. After that, regions of
interest (ROI) are selected and linear transformation are performed
on each separate region independently, while the remaining areas
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are transformed to the gray-scale. Finally, we obtain a gray-scale
image with augmented details in regions of interest.

Figure 13 shows images of a David statue from RGB camera,
IR camera, normal depth camera and the distorted depth camera
in UltraDepth. We observe that the ordinary RGB images show
the richest details. While the normal depth maps can preserve
privacy well because they only measure the objects’ distance and
cannot capture the texture information. However, UltraDepth will
reveal high-resolution texture from distance measurement (shown
in Figure 13(d), 13(e), 13(f)). Moreover, the depth map output by
full-fledged UltraDepth (shown in Figure 13(f)) even reveals more
texture information than the IR image as our region-based linear
transformation technique can preserve the detailed information of
distant objects in the depth maps.

7 EXPERIMENTAL EVALUATION
We evaluate UltraDepth on two models of iToF depth cameras,

namely VZense Dcam 710 [58] which adopts the ToF technique
from Analog Devices (ADI) and DepthEye Wide [45] which is de-
veloped based on IMX556PLR CMOS from Sony. In the following
experiments, we use a reflection-based UltraDepth that has a 58
mm by 70 mm cover board, unless otherwise indicated.

We first show the feasibility of the two UltraDepth implemen-
tations in daily life scenarios in Section 7.1. We then evaluate the
effectiveness of exposing high-resolution texture of UltraDepth in
three perception tasks, including object detection, character recog-
nition and face recognition.2 Furthermore, we evaluate the impact
of several key factors on the performance of UltraDepth in Section
7.5. All the experiments are conducted in indoor environments since
most ToF cameras are designed for indoor scenarios, and do not
work well outdoors due to the excessive interference from sunlight.

7.1 A Feasibility Study
We first evaluate the feasibility of implementing the reflection-

based and external IR-based UltraDepth in daily life scenarios. Our
evaluation is focused on two aspects. First, we show how easy the
reflection-based UltraDepth can be realized. As discussed in 6.1, to
obtain a reflection path near the emitter, one may either place a
cover board on the ToF camera or block part of the emitted light
using an object. In particular, we focus on the later scenario because
it can easily cause accidental revelation of sensitive information and
hence has a major implication on privacy breach. Second, we illus-
trate how easy an additional IR source can be introduced in a typical
set-up. The external IR-based UltraDepth can expose textures at a
longer distance without modifying the interfered module, thereby
is an important supplement to the reflection-based implementation.

We first present two cases of reflection-based UltraDepth imple-
mentation in Figure 14, where a ToF depth camera is placed near
a wall or under a desk to establish a reflection path (equivalent to
the effect of a cover board introduced in Section 6.1). As shown
in Figure 14(a) and Figure 14(b), compared with the depth maps
captured without the interference (w/o the wall or desk), detailed
texture information of the scene is exposed from the depth maps in
the presence of the wall or the desk. The results in two common

2All the data collection involving human subjects was approved by IRB of the authors’
institution.

(a) Depth camera near a wall (b) Depth camera under a desk

Figure 14: Two cases of reflection-based UltraDepth imple-
mentation in daily scenarios, where rich texture of the ob-
jects is easy to be exposed with the help of ambient objects
such as a wall and a desk.

Figure 15: Experiments of external IR-based UltraDepth im-
plementation with different positions and orientations of
the external IR source.

daily scenarios show that the reflection-based UltraDepth is easy
to be realized in real-world applications with the help of ambient
objects such as a wall and furniture.

To study the feasibility of external IR-based UltraDepth imple-
mentation, as shown in Figure 15, experiments are conducted when
the external IR source (a ToF depth camera of the same model as
the original one) is mounted with different orientations and at dif-
ferent positions. The corresponding depth maps are also shown
in Figure 15. Firstly, compared with the original depth map that
shows little texture of the objects, the depth maps captured when
the external IR source is placed at the three positions all show cer-
tain levels of texture information. The result confirms that, as long
as the distorting IR light illuminates the target objects, it can be
reflected and distort the distance measurement of the ToF depth
camera. Moreover, another observation is that the effectiveness of
the external IR source decreases with the increase of the distance
and the decrease of overlap of field-of-view between the interfered
camera and the external IR source due to the lower illumination on
the objects. Specifically, external IR source at Position 1 has a better
performance than that at Position 2 due to its short distance, while
Position 2 has a better performance than Position 3 due to a larger
area overlap of field-of-view between the two cameras.

7.2 Object Detection
We first evaluate the performance of UltraDepth in object detec-

tion tasks. In this experiment, we set up a scene with 10 selected
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(a) RGB (b) IR

(c) UltraDepth map (d) Depth map

Figure 16: The four types of captured frames in the object
detection task.
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Figure 17: The performance of object detection using four
types of captured frames. The UltraDepth maps have a sig-
nificant performance improvement in object detection com-
pared with the ordinary depth maps.

daily objects (chair, book, person, laptop, cell phone, sofa, cup, key-
board, mouse, umbrella). A RGB camera, an IR camera, an ordinary
depth camera and a depth camera running UltraDepth are packed
together to record the same scene from the same position simul-
taneously. The resolutions of RGB images, IR images, depth maps,
and UltraDepth maps are all set to be 640 × 480. Figure 16 shows
samples of the captured images/maps in the object detection task,
where lots of noises and black spots are shown in the ordinary
depth map. We totally collect 1,632 frames for RGB images, IR im-
ages, regular depth maps, and UltraDepth maps respectively with
one set of objects under similar environmental conditions.

For a fair comparison, we first convert the four types of im-
ages/maps to 8-bit gray-scale images, and then we apply a widely
used object detector YOLOv3 [48] on these images. An object is
deemed to be detected successfully if the intersection over union
(IoU) of the predicted bounding box and the ground truth is over
0.5, and the confidence of the correct label for the detected object
is greater than 0.3. Figure 17 summarizes the precision and recall
of object detection for the four types of images. It shows that the
precision and recall for ordinary depth maps are both lower than
1%, which indicates the limitation of using ordinary depth maps
for object detection. The UltraDepth maps, however, have a signifi-
cant improvement in object detection compared with the ordinary
depth maps, which is very close to the performance of RGB and IR

(a) UltraDepth (b) RGB (c) RGB dark (d) IR
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Figure 18: (a)-(d): The UltraDepthmap, RGB image, RGB im-
age in the dark, and IR image of a paper with printed char-
acters, which are captured at a distance of 0.8 m. (e): Mean
accuracy of character recognition at different distances. (f):
Mean accuracy of character recognition for different fonts.

images. Therefore, the experimental results show that the exposed
texture in the UltraDepth maps can be leveraged to augment the
performance of depth camera in applications like object detection,
when only a depth camera (instead of both depth/RGB) is present.

7.3 Character Recognition
We now evaluate the effectiveness of UltraDepth in exposing text

information. In the experiment, we concurrently captureUltraDepth
output maps, RGB images, and IR images of a paper with printed
characters or numbers. The resolution of both UltraDepthmaps and
IR images is 640 × 480, while the RGB images have a resolution
of 640 × 360. The examples of the captured images are shown in
Figure 18(a) to 18(d), from which we observe that the UltraDepth
maps can well expose recognizable text information on the paper.

Specifically, a widely used optical character recognition (OCR)
engine named Tesseract [54] is adopted to recognize characters
in the collected images. We first evaluate the mean accuracy of
character recognition when the cameras are mounted at different
distances from the paper. As Figure 18(e) shows, the mean accuracy
of character recognition decreases with the increase of distance
for all images. Although the UltraDepth maps and IR images have
the same resolution, the UltraDepth maps perform better in long-
distance scenarios as the IR images captured at a long-distance are
too dark due to the poor light intensity. However, UltraDepth mea-
sures the distance using the time-of-flight of IR light, hence is less
vulnerable to the poor intensity of the received light. As expected,
the RGB images achieve the best performance. However, in dark
scenarios, the RGB images will fail to expose text information on
the paper (Figure 18(c)) while the UltraDepth can still work well. We
notice that the accuracy of UltraDepth drops significantly around
1.5 m, which is mainly due to the limited pixels for the characters.
Similarly, RGB and IR images also suffer noticeable accuracy drops
here. We further evaluate the performance of recognizing charac-
ters of different fonts (Arial, Chancery, Arial Bold, Bradley Hand)
using the three kinds of images/maps. The results in Figure 18(f)
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also show similar trends, where the mean recognition accuracy of
UltraDepth (e.g., 81.25% for font 3) is always higher than the IR
images (e.g., 47.92% for font 3) but not as good as RGB images (e.g.,
91.67% for font 3).

7.4 Face Recognition
To evaluate the effectiveness of UltraDepth for face recognition,

we recruit 10 volunteers and ask them to sit in front of two depth
cameras (one runs UltraDepth, the other as a reference) and a RGB
camera at a distance around 1 m. The three cameras are mounted to
record the face images simultaneously at the same frame rate. The
volunteers are instructed to randomly rotate their head and make
different facial expressions during 2 minutes. We totally collect
16,033 frames for RGB images, regular depth maps, and UltraDepth
maps of 10 volunteers, respectively.We convert all these images into
gray-scale images and run a pre-trained RetinaFace detector [13] on
them. It turns out no face can be detected for regular depth maps,
which is expected, while the face detection rate for RGB images
and for UltraDepth output maps are 100% and 99.93%, respectively,
which means only 11 frames out of 16,033 UltraDepth maps fail to
expose facial information, although this face detector is originally
designed for RGB images.
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Figure 19: Heatmaps showing the inter-class and intra-class
cosine similarity of the feature vectors of 10 volunteers’
faces for UltraDepthmaps and RGB images, where a lighter
color denotes a higher similarity. The exposed texture in the
UltraDepth maps is rich enough for face recognition.

We further evaluate the classification performance of the de-
tected faces, which directly violates the personal anonymity that
the depth cameras are commonly believed to preserve. We resize
the detected faces areas to a unified resolution (120× 120) and then
the resized images are feed to a pre-trained ArcFace [12] model
based on ResNet34 to generate 512-dimension feature vectors. Fig-
ure 19 shows the inter-class and intra-class cosine similarity of
the 10 volunteers’ face feature vectors from UltraDepth maps and
RGB images, where the (i, j) element indicates the inter-class cosine
similarities between the i-th and j-th volunteers. It’s shown that the
feature vectors from the same volunteer have strong cluster struc-
tures and those from different volunteers are less related, which
means that the volunteers’ faces can be classified easily using the
UltraDepth maps and RGB images. We then build a simple neural
network which contains only one hidden layer and takes the 512-
dimensional vectors as input to classify these faces. Only 10% of the
samples are used for training and the remaining samples are used
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Figure 20: The texture informationmetricHдlcm of captured
depth maps under different settings of several factors, in-
cluding the size of the cover board, the distance between the
objects and the ToF camera, and the modulation frequency
of the iToF camera.

for testing. Under this setting, UltraDepth achieves an accuracy
of classification at 99.334%, which is close to the accuracy of RGB
images (99.757%). Therefore, the exposed texture in the output of
UltraDepth is rich enough to achieve good performance in face
recognition even under dynamic settings.

7.5 The Impact of Key Factors
Now we study the impact of several key factors in UltraDepth

design, including the size of the cover board, the distance between
the objects and the ToF camera, and the modulation frequency of
the iToF camera. Among them, the size of the cover board is only
related to the reflection-based UltraDepth implementation, and the
other two factors will affect both two implementations.

To quantitatively evaluate the level of exposed texture informa-
tion, we propose a metric Hдlcm to measure the amount of texture
information revealed in an image as follows:

Hдlcm = −

h−1∑
i=0

w−1∑
j=0

p(i, j) logb p(i, j).

Here p(i, j) is the (i, j) element of the gray level co-occurrence ma-
trix (GLCM) [53], which is a commonly used metric to characterize
the texture of an image by calculating how often pairs of pixel that
have specific values with a specified spatial relationship occur in an
image;w and h are the width and height of the image respectively.
Therefore, the metric Hдlcm quantifies the shannon entropy of the
the co-occurrence matrix (GLCM), which is shown to represent the
amount of texture in a image [20, 47] and therefore can be used to
evaluate the effectiveness of texture exposure in UltraDepth.

In this section, all the experiments are conducted by taking
the images of a David statue. For a fair comparison, we make the
background of the David statue free of texture.
• Size of cover board. To study the impact of the size of cover
board in reflection-based UltraDepth implementation, we mount
four different cover boards on the ToF depth camera and col-
lect depth maps of the same object at a fixed distance. Figure
20(a) shows the mean value of texture information metric Hдlcm ,
where size 0 means no cover board is installed and size 4 is the
largest cover board. When the size of cover board is the smallest
(size 1), the reflection path is not established, hence has no im-
pact on the depth map. When the size of cover board increases,
the Hдlcm increases drastically, as more reflected IR lights from
the cover board are distorting the distance measurement and
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cause more detailed texture exposed in the depth map. Finally,
the largest cover board does not lead to the biggest Hдlcm , i.e.
the most significant texture exposure, since the cover board is so
large that part of the depth map is blocked.

• Distance from the camera. Figure 20(b) shows Hдlcm tends to
decrease with the increase of distance from the camera, which is
consistent with the intuition. Note that the drastic accuracy drop
is mainly due to the decreasing number of pixels for the David
statue as it moves away from the camera. However, when the
distance is large enough, the advantage of UltraDepth for distant
objects overwhelms the impact of reduced object pixel values,
which results in a short rise of Hдlcm ([100 cm, 150cm]).

• Modulation frequency. To study the impact of different modu-
lation frequencies of iToF cameras, we conduct a set of experi-
ments using the DepthEye ToF camera where all other settings
are fixed except for the modulation frequency. As shown in Fig-
ure 20(c), Hдlcm increases first and then decreases when the
modulation frequency increases from 4 MHz to 100 MHz. The
key reason for the first growth of Hдlcm is that the modulation
frequency is inversely proportional to the ToF camera’s range
of measurement. When the frequency is extremely small, the
range of measurement is so large that the distance measurements
distorted by UltraDepth fail to differentiate the detailed texture.
However, when the modulation frequency is above 70MHz, more
noises will be introduced in the captured depth map since the
distance will approach the measurement limit, which causes the
performance degradation of UltraDepth.

8 DEFENSE
As one important application of UltraDepth is to attack users’

privacy, we now discuss possible solutions to defend against the
attacks under two different implementations of UltraDepth.

Defense Against Reflection-based Attacks. The basic intu-
ition behind the defense against the reflection-based implementa-
tion is to reduce the IR light reflected by the cover board. Based
on this idea, we propose to narrow the field of view (FoV) of the
IR emitter as small as the FoV of the camera lens, and position the
emitter be as close as the camera lens. As a result, it will be hard to
reflect the IR using a cover board without blocking the camera’s
field of view. Since blockage of part of the camera’s FoV can be
easily spotted, this method improves users’ awareness of potential
attacks and can help reduce the risk of privacy leakage.

To illustrate the feasibility of this defense, we place a dedicated
convex lens in front of the ToF’s emitter to narrow the FoV of emit-
ted IR. As Figure 21(b) shows, compared with normal ToF camera
(Figure 21(a)), the ToF camera with a convex lens can effectively
prevent the same cover board from reflecting the emitted IR. The
corresponding depth maps captured under the two settings are
shown in Figure 21(c) and Figure 21(d), from which we can ob-
serve that the ToF camera with a convex lens can effectively defend
against attacks using reflection-based UltraDepth.

Defense Against External IR-based Attacks. As discussed
in Section 6.2, in order to distort the distance measurement of
iToF cameras, the external IR source needs to employ the same
modulation frequency. Therefore, our idea of defending against
external IR-based UltraDepth is to use time-varying modulation

(a) Original ToF camera (b) ToF camera with a convex lens

(c) Attacked depth image (d) Depth image with a convex lens

Figure 21: Defend against attacks in reflection-based Ultra-
Depth implementation.

frequencies in the target iToF camera, which is supported on most
off-the-shelf iToF cameras [15, 29]. For instance, an iToF camera
may randomly or periodically change the modulation frequency,
making it difficult for the adversary to sniff the emission pattern of
IR light and derive the adopted modulation frequency.

Nevertheless, we note that the defense methods for two imple-
mentations of UltraDepth have limitations. Specifically, the defense
method against reflection-based attacks will limit the sensing scope
of interfered depth camera, and the defense method against external
IR-based attacks will affect the accuracy of depth sensing. We will
leave addressing these limitations for our future work.

9 CONCLUSION
In this paper, we propose UltraDepth, the first system that can

expose high-resolution texture from the depth maps captured by
the off-the-shelf iToF depth cameras, simply by using a distorting IR
source. To design UltraDepth, we first present an in-depth analysis
on the impact of the distorting IR light on the distance measure-
ment and how the texture of objects is encoded and exposed in the
distorted depth maps. We then propose two practical implemen-
tations of UltraDepth, i.e., reflection-based and external IR-based
UltraDepth implementations, which differ in how to construct a
distorting IR source. We validate the effectiveness and feasibility
of texture exposure of UltraDepth in extensive real-world experi-
ments. The results show that, the depth maps output by UltraDepth
achieve 89.06%, 99.33%, 81.25% mean accuracy in object detection,
face recognition and character recognition, respectively. The find-
ings of this work provide insights for new research on depth-related
computer vision and security/privacy of depth sensing devices.
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