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Abstract— Face recognition at a distance is a challenging
and important law-enforcement surveillance problem, with low
image resolution and blur contributing to the difficulties. We
present a method for combining a sequence of video frames of a
subject in order to create a super-resolved image of the face with
increased resolution and reduced blur. An Active Appearance
Model (AAM) of face shape and appearance is fit to the face in
each video frame. The AAM fit provides the registration used
by a robust image super-resolution algorithm that iteratively
solves for a higher resolution face image from a set of video
frames. This process is tested with real-world outdoor video
using a PTZ camera and a commercial face recognition engine.
Both improved visual perception and automatic face recognition
performance are observed in these experiments.

I. INTRODUCTION

Automatic face recognition at a distance is of growing

importance to many real-world law enforcement surveillance

applications. However, the performance of existing face

recognition systems is often inadequate due to the low-

resolution of the subject probe images [1]. Our goal is to

improve the accuracy and extend the range of face recogni-

tion through multi-frame facial image super-resolution from

video. We will improve facial image resolution and hence

face recognition by exploiting the fact that the face is seen

in multiple video frames, and combining those frames to

make a single restored facial image.

In surveillance systems, a subject is typically captured on

video. Current commercial face recognition algorithms work

on still images so face recognition applications generally

extract a single frame with a suitable view of the face. This

approach fails to utilize much of the available information.

The field of image super-resolution is concerned with using

multiple images or video frames of the same object or

scene to make one image of superior resolution [2][3][4].

Quality improvement can come from noise reduction through

averaging, deblurring, and de-aliasing.

In this paper we describe a new method for the super-

resolution of faces from video using a registration model

designed specifically for the shape of the face and its motion.

In general it is best to select a parameterized registration

function that can accurately model the actual frame-to-

frame motion, with no additional freedom. With this in

mind we use an Active Appearance Model (AAM) for face
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Fig. 1. Major components of a complete face recognition system using
multi-frame super-resolution.

registration. A specific strength of the AAM used here is its

generalization. Our AAM model and fitting process works

well even for subjects not in the training set [5], which is

the case for all examples and tests presented here. Since

we are concerned with forensic applications, facial feature

hallucination must be avoided; hence we use a data-driven

reconstruction approach with no trained prior model of facial

appearance.

Given video of an unknown subject we fit an Active

Appearance Model [6][7] to the face in each frame. A set

of about N = 10 consecutive frames are then combined to

produce the super-resolved image. The image formation pro-

cess, including face motion, camera Point Spread Function

(PSF) and sampling, is modeled for each frame. To solve for

the super-resolved image, we define a cost function with an

L1 data fidelity component and use Bilateral Total Variation

(BTV) regularization [8]. A steepest descent search, using

an analytic gradient of the cost function, yields the super-

resolved face image.

The novelty of this work lies in the face-specific methods

used for frame registration, and the data-driven methods

used for super-resolution, to avoid reconstructing features

not justified by the data. To evaluate the benefit of this

technique we use the commercial face recognition package

FaceIt R© SDK ver. 6.1 (Identix Inc.) to compare performance

on single video frames and on super-resolved images. Our

goal is to determine the degree to which face recognition

and verification is improved by the super-resolution process.

Initial results presented here are for a small dataset from a

surveillance testbed that provides real-world outdoor condi-

tions.

The system flow diagram in Fig. 1 shows the major

components of an enhanced face recognition system making

use of multi-frame super-resolution. The super-resolution

process may be used in both manual and on-line applications.

Super-resolution can be applied to video after a crime has

been committed thus aiding the recognition of perpetrators or

witnesses. It can also be applied in an on-line system, where
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Fig. 2. (a) Face from video with 33 AAM landmarks; (b) additional border landmarks; (c) blending mask.

video is continuously monitored, faces are detected [9][10],

fitted, restored and sent to a face recognition system.

II. RELATED WORK

The majority of image super-resolution algorithms use a

parameterized transformation for registration, such as a ho-

mography or rigid translation [11]. This is suitable when the

scene is planar or the camera motion and distance are such

that the perspective distortion due to depth is insignificant.

While faces have been super-resolved quite dramatically by

Baker and Kanade [12], the motion model used is translation-

only and does not account for the face shape, essentially

assuming that the subject is always facing the camera. To

deal with the non-rigid motion of moving faces, optical

flow has been used for registration [13]. While optical

flow certainly can track facial motion, it is computationally

complex and its generality brings the risk of overfitting.

Many approaches to facial super-resolution use a strong

prior model of facial appearance. However, such modeling

runs the risk of creating visible features not justified by

the actual data. The facial appearance prior of Baker and

Kanade [12] is quite effective, but runs the risk of halluci-

nating, i.e., reconstructing visible facial features not justified

by the data. Park and Savvides [14] have recently shown

that applying manifold analysis using Locality Preserving

Projections is an effective method for face super-resolution

from a single low-resolution image. Stephenson and Chen

describe a method of using adaptive Markov random fields

to learn the relationship between low-resolution and high-

resolution images of faces [15].

In this paper we will use a facial appearance model

to achieve frame-to-frame registration. However, the facial

super-resolution process will not use a facial appearance

prior. The main reason is that for our targeted applications

in forensics we wish to avoid reconstructing facial features

not justified by the actual data.

Yao et al. [16] approach a very similar problem, in that

they reconstruct super-resolved faces from multiple low-

resolution images without the use of an explicit facial appear-

ance prior. They use a simpler translation and rotation regis-

tration function and the iterative frequency-domain Papoulis-

Gerchberg algorithm for super-resolution. An important dis-

tinction of our approach is that we use a registration method

that specifically models the face shape, which works even

when the face is turning. Further, our spatial-domain super-

resolution approach allows us to incorporate robust (L1)

regularization.

In previous work we have used this type of face shape

modeling with a more straightforward face restoration ap-

proach [17]. In that work the Active Shape Model was used

to register the facial region so that a series of frames could

be warped and averaged. The averaging process reduces the

image noise, allowing a Wiener filter to amplify and restore

higher spatial frequencies than could be restored using only

a single frame as input. In this paper we instead use the

Active Shape Model to provide registration for multi-view

super-resolution.

III. ACTIVE APPEARANCE MODEL

This section provides a brief overview of the Active

Appearance Model (AAM) training and fitting process used

in this work, which we have detailed in [5], and sub-

sequently improved [18], [19]. This paper will focus on

super-resolution processing and experimental results, but

we will overview the AAM model formation and fitting

procedure in this section. In order to combine the video

frames using super-resolution, for any pair of frames we must

know the mapping, x2 = f (x1), that converts the first image

coordinates, x1 = (r1,c1), of a real object or scene point to

the second image coordinates, x2 = (r2,c2). The AAM will

provide this frame-to-frame registration of the face for the

video frames.

An AAM applied to faces is a two-stage model of both

facial shape and appearance designed to fit the faces of

different persons at different orientations. The shape model

describes the distribution of the locations of a set of landmark

points. Fig. 2(a) shows the 33 feature points used in this

work. The shape model is trained using a set of about 500

images from the Notre Dame Biometrics database Collection

D [20][21] on which the feature point locations were found

manually. Principal Component Analysis (PCA) and the

training data are used to reduce the dimensionality of the

shape space while capturing the major modes of variation

across the training set population.



Fig. 3. Faces from 8 consecutive video frames and the fitted AAM shape model. The fitted AAM will allow frame-to-frame registration even as the face
rotates right-to-left.

The AAM shape model includes a mean face shape that is

the average of all face shapes in the training set and a set of

eigenvectors. The mean face shape is the canonical shape and

is used as the frame of reference for the AAM appearance

model. Each training set image is warped to the canonical

shape frame of reference. Now, all faces are presented as

if they have the same shape. With shape variation now

removed, the variation in appearance of the faces is modeled

in this second stage, again using PCA to select a set of

appearance eigenvectors for dimensionality reduction.

The complete trained AAM can produce face images

that vary continuously over appearance and shape. For our

purposes, the AAM is fit to a new face as it appears in a

video frame. This is accomplished by solving for the face

shape and appearance parameters (eigen-coefficients) such

that the model-generated face matches the face in the video

frame using the Simultaneous Inverse Compositional (SIC)

algorithm [7]. While both shape parameters and appearance

parameters need to be estimated to fit the model to a

new face, only the resulting shape parameters are used for

registration.

While this section gives a brief overview of the general

application of an AAM to facial images, the AAM used in

this work [5] has two significant additional features. It is

multi-resolution so the AAM appearance model resolution

is kept close to the actual video frame resolution. Also,

the model is iteratively refined during training, significantly

reducing fitting time and making fitting more robust to

initialization. Fig. 3 shows an example of AAM fitting results

for video frames.

IV. FACE REGISTRATION

The AAM provides the registration needed to align the

face across the video frames. The shape model portion of

the AAM defines 33 landmark positions in each frame. These

landmark positions are the vertices of 49 triangles over the

face as seen in Fig. 2(a). The registration of the face between

any two frames is then a piecewise affine transformation,

with an affine transformation for each triangle defined by

the corresponding triangle vertices.

The AAM provides registration only for the portion of

the face within the triangles. To avoid a discontinuity close

to the edge of the faces, we extrapolate the registration

by augmenting the set of face landmarks, thus defining an

extended border region. The 30 new landmarks are simply

positioned a fixed distance out from the estimated face

edges, and form 45 new triangles at the border, seen in

Fig. 2(b). Registration will not be accurate in this border

region, however, we have found it is sufficient for eliminating

artifacts caused by the discontinuity. The blending mask of

Fig. 2(c) is used to combine the face region of multi-frame

face reconstructions with the non-face (background) region

of a single observed frame. The blended result appears more

natural to a viewer and is more appropriate for automatic

face recognition algorithms.

V. MULTI-FRAME SUPER-RESOLUTION

To super-resolve faces, we adapt the robust method of

Farsiu et al. [8], which models the image formation process

and does not rely on a facial image prior, thus avoiding hal-

lucination. As is typically done for super-resolution methods,

we will describe the algorithm using standard notation from

linear algebra, assuming each image has all of its pixel values

in a vector. In the actual implementation, the solution process

is carried out with more practical operations on 2D pixel

arrays.

It will be helpful to define some image frames of reference.

Each frame of reference we will define represents a face

shape (the landmark points from the AAM) and a sampling

grid. The frames of reference are the information we need to

define the registration between images of faces, such as our

original input images, the super-resolved images, or some

intermediate face images used in the processing.

Each of the original N input frames, Yi (i = 1, . . . ,N), exists

in a low-resolution frame of reference we denote Li. Such

a frame of reference encapsulates the image size and AAM

landmark points. The registration process allows us to warp

images between frames of reference. For each Li, we create

a corresponding high-resolution frame of reference Hi that

has twice the pixel resolution of Li in each dimension and

takes the AAM landmark positions of Li, scaled by 2. We

will solve for the super-resolution image in the frame Hk,

where k = ⌊N/2⌋ (the middle frame index).



To initialize the super-resolution algorithm, we create an

initial image by warping the face region of each of the N

input frames Yi to the frame Hk and averaging. The warping

scales up and aligns each face image.

The super-resolution process uses an image formation

model relating each of the input frames Yi, in frame Li, to an

unknown super-resolution image, X , in frame Hk. The image

formation process accounts for the face motion, camera blur

and detector sampling that relate X to each Yi. For each

input frame, Fi is the registration operator that warps X from

frame Hk to frame Hi, which has twice the resolution, but is

aligned with Yi. Nearest-neighbor interpolation is used for the

warping operation (bilinear interpolation surprisingly yielded

no significant improvement). The camera blur operator, H,

is in our case not dependent on i and applies the PSF within

a high-resolution frame Hi. For most installed surveillance

cameras it is difficult to determine the true PSF, so we assume

a Gaussian shaped PSF with hand selected width, σ . Finally,

the sampling operation of the detector is represented by

the sparse matrix D that extracts every other pixel in each

dimension, converting from frame Hi to Li, the frame of

reference for the input frame Yi. If we let Vi represent additive

pixel intensity noise, the complete linear image formation

process is then,

Yi = DHFiX +Vi. (1)

The super-resolved image X is determined by optimizing

a cost function of the L1 norm of the difference between the

model of the observations and the actual observations, plus

a regularization term, Ψ(X),

X̂ = argmin
X

[

N

∑
i=1

‖DHFiX −Yi‖1

]

+λΨ(X). (2)

The L1 norm is used in the data fidelity part of the cost func-

tion for robustness against incorrect modeling assumptions

and registration errors. For the regularization term, we use

Bilateral Total Variation (BTV) described in [8],

Ψ(X) =
P

∑
l=−P

P

∑
m=−P

α |m|+|l|
∥

∥

∥
X −Sl

xSm
y X

∥

∥

∥

1
. (3)

Here Sl
x and Sm

y are operators that shift the image in the x and

y direction by l and m pixels. With BTV, the neighborhood

over which absolute pixel difference constraints are applied

can be larger (with P > 1) than for Total Variation (TV).

The size of the neighborhood is controlled by parameter

P and the constraint strength decay is controlled by α
(0 < α < 1). For all results described here, we have used

P = 2 and α = 0.6. L1-based regularization such as BTV or

TV tends to preserve edges. By contrast, L2-based Tikhonov

regularization is essentially a smoothness constraint, which

is contrary to our goal of increased resolution and sharpness.

When the observed video is color, super-resolution pro-

cessing is applied to the luminance component only. The

initial image is converted to the NTSC color space (YIQ),

and the luminance (Y) component is computed for all input

frames. The super-resolved luminance result is combined
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Fig. 4. Processing component diagram showing how the warp and average
process provides an initial luminance component for super-resolution. The
super-resolved luminance component is then combined with the chromi-
nance components to make a color image.

with the chrominance components from the initial image.

This process is depicted in Fig. 4. In practice, we have

found this to yield visually pleasing results, without color

distortion. The Identix FaceIt system we use for testing, and

most face recognition algorithms, ignore color. For applica-

tions where the super-resolved image is to be examined by

people this approach is justified considering the eye’s limited

sensitivity to resolution in the chrominance components.

To solve for the super-resolution image, X is first initial-

ized to the initial image described above. As is done in [8] for

ordinary images, a steepest descent search using the analytic

gradient of the cost function with step size β = 0.01 and a

fixed number of iterations (typically 30) is used,

X̂n+1 = X̂n −β

{

N

∑
i=1

FT
i HT DT sign(DHFiX̂n −Yi) (4)

+λ
P

∑
l=−P

P

∑
m=−P

α |m|+|l|(I −S−m
y S−l

x )sign(X̂n −Sl
xSm

y X̂n)

}

With the original frames normalized to a pixel range of [0,1],

we have found that regularization strength parameter λ =
0.025 gives the best visual results and we use that value for

the experiments presented here.

Only the face region is registered by the AAM, so some

pixels of the reconstructed image X have no data constraints.

Since they are initialized to a reasonable starting point, this

causes no problems. As the iteration progresses, the non-face

region tends to be smoothed by the regularization constraint.

After super-resolution, this region is replaced by blending

the super-resolved face with the background from a single

input frame.

VI. BLENDING

Outside of the face region modeled by the AAM, frame-

to-frame registration is not determined. The multi-frame

restoration technique improves the quality of the face region,

but not the non-face region of the image, which can actually

become overly smooth. To make a more pleasing final result,

the restored face image, Î, is blended with a fill image, I f .

The fill image is the kth (middle) unrestored video frame

upsampled to be aligned with Hk, the frame of reference in

which the super-resolved image exists. The fill image thus

lines up perfectly with the restored face image and we can

use it to fill in the background non-face region.



(a) Original Video Frame (c) Super-Resolution(b) Wiener Filter

Fig. 5. Example original video frames, Wiener filter results, and super-resolution results with enlarged views of the left eye. The increased resolution and
clarity in the super-resolution results is clearly visible, especially in the electronic version of this document.

A mask M is defined in the Hk frame of reference that

has value 1 inside the face region and fades to zero outside

of that region linearly with distance to the face region. This

mask is used to blend the restored image with the fill image,

I f using,

I(r,c) = M(r,c)Î(r,c)+(1−M(r,c))I f (r,c). (5)

Fig. 2(c) shows an example of a mask image. The results in

Fig. 5(c) have been blended using this procedure.

The result after blending is an image with improved facial

resolution and a background that is at the original frame

resolution, but is not distracting to a viewer and is more

appropriate for automatic face recognition algorithms.

VII. EXPERIMENTAL RESULTS AND CONCLUSIONS

Fig. 5 shows sample super-resolution results, including: (a)

the face from the original video frame; (b) that single frame

restored with a Wiener filter; and (c) the result of multi-

frame super-resolution using N = 10 consecutive frames. The

increase in sharpness and clarity is visually apparent.

For an initial evaluation of the super-resolution algorithm

we have collected outdoor video of 3 test subjects using a GE

CyberDome R© PTZ camera. The PTZ camera was zoomed

at intervals to capture video at different face resolutions,

measured as eye-to-eye distance in pixels. A 700 person

gallery was created with 3 good quality indoor images

of the test subjects and the “fa” image of the first 697

subjects in the FERET database [22]. From the test video

sequences of 3 probe subjects we extracted 138 original

frames at intervals and created super-resolved facial images

from the surrounding set of N = 10 frames, which were used

as probe images. The table in Fig. 6 shows the rank 1–

5 recognition counts and rates for the original frames and

the enhanced images, using Identix FaceIt SDK ver. 6.1.

A rank-N recognition for a particular probe image means

that the correct identity in the gallery has one of the top

N match scores of all the gallery images. The results are

grouped by face resolution and are also combined on the

right of the table in Fig. 6 to show recognition results over all

resolutions. The number of probe images in each group varies

based on the length of video collected at each camera zoom

setting. Improved recognition rates are observed, especially

for the lowest original face resolutions. Though this initial

test dataset is modest in size, we are encouraged by these

results and believe that this work brings us one step closer

to the goal of unconstrained face recognition at a distance.



Eye-to-eye Dist. 48 37 29 24 19 17 all

# Probe Images 24 36 24 18 21 15 138

Enhanced no yes no yes no yes no yes no yes no yes no yes

Rank-1 16 17 26 25 16 16 8 10 4 7 1 2 71 77

Rank-2 19 19 27 27 16 17 10 12 5 8 1 3 78 86

Rank-3 20 20 27 28 17 17 11 12 6 8 1 5 82 90

Rank-4 20 22 27 29 18 18 11 12 7 8 2 5 85 94

Rank-5 21 22 28 29 18 20 12 12 7 8 3 5 89 96

Rank-1 67% 71% 72% 69% 67% 67% 44% 56% 19% 33% 7% 13% 51% 56%

Rank-2 79% 79% 75% 75% 67% 71% 56% 67% 24% 38% 7% 20% 57% 62%

Rank-3 83% 83% 75% 78% 71% 71% 61% 67% 29% 38% 7% 33% 59% 65%

Rank-4 83% 92% 75% 81% 75% 75% 61% 67% 33% 38% 13% 33% 62% 68%

Rank-5 88% 92% 78% 81% 75% 83% 67% 67% 33% 38% 20% 33% 64% 70%

Fig. 6. Rank recognition counts and rates (%), with and without super-resolution, grouped by eye-to-eye distance (in native resolution pixels). Comparing
the columns for unenhanced images with the columns for enhanced images we see an increase in recognition rates for the enhanced images. A notable
result, shown in bold in the table, is that, for all probes at all eye-to-eye distances combined, super-resolution enhancement brings the rank-1 recognition
rate from 51% to 56%.
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