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ABSTRACT

Monitoring aquatic environment is of great interest to
the ecosystem, marine life, and human health. This pa-
per presents the design and implementation of Samba – an
aquatic surveillance robot that integrates an off-the-shelf
Android smartphone and a robotic fish to monitor harmful
aquatic processes such as oil spill and harmful algal blooms.
Using the built-in camera of on-board smartphone, Samba
can detect spatially dispersed aquatic processes in dynamic
and complex environments. To reduce the excessive false
alarms caused by the non-water area (e.g., trees on the
shore), Samba segments the captured images and performs
target detection in the identified water area only. However,
a major challenge in the design of Samba is the high en-
ergy consumption resulted from the continuous image seg-
mentation. We propose a novel approach that leverages the
power-efficient inertial sensors on smartphone to assist the
image processing. In particular, based on the learned map-
ping models between inertial and visual features, Samba
uses real-time inertial sensor readings to estimate the visu-
al features that guide the image segmentation, significant-
ly reducing energy consumption and computation overhead.
Samba also features a set of lightweight and robust comput-
er vision algorithms, which detect harmful aquatic processes
based on their distinctive color features. Lastly, Samba em-
ploys a feedback-based rotation control algorithm to adapt
to spatiotemporal evolution of the target aquatic process.
We have implemented a Samba prototype and evaluated it
through extensive field experiments, lab experiments, and
trace-driven simulations. The results show that Samba can
achieve 94% detection rate, 5% false alarm rate, and a life-
time up to nearly two months.

Categories and Subject Descriptors

C.3 [Special-purpose and Application-based Sys-
tems]: Signal processing systems; C.4 [Performance of
Systems]: Modeling techniques; I.4 [Image processing
and computer vision]: Scene analysis—Object recognition

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
IPSN’15, April 14–16, 2015, Seattle, WA, USA.
Copyright 2015 ACM 978-1-4503-3475-4/15/04 . . . $15.00.
http://dx.doi.org/10.1145/2737095.2737100.

Keywords

Robotic sensor, smartphone, computer vision, object de-
tection

1. INTRODUCTION
Aquatic environment is facing increasing threats from cli-

mate change, industrial pollution, and improper waste dis-
posal. The last four decades have witnessed more than a
dozen major oil spills with each releasing over 30 million
gallons of oil [1]. Harmful algal blooms (HABs) have been
observed in more locations than ever before [2]. Fig. 1(a)
shows a recent proliferation of HABs in the Gulf of Mexi-
co [3]. Such harmful aquatic processes greatly endanger the
marine biology, ecosystem sustainability, and public health.
For example, HABs contaminated Ohio’s inland lakes that
supply drinking water, resulting in 41 confirmed cases of
health impact to humans in 2010 [4]. It is thus imperative
to detect these harmful aquatic processes, monitor their evo-
lution, and alarm the authorities to take preventive actions.

Although manual opportunistic spotting may be applied
to monitor small-scale harmful aquatic processes, it is of-
ten labor-intensive and unreliable. An alternative method
is in situ visual survey with patrol boats [7]. However, this
method is costly and can only cover a limited period of
time. More advanced methods employ remote sensing tech-
nologies, e.g., balloon-board [21], aircraft [19], and satel-
lite imaging [10]. The balloon-board monitoring is effective
only for one-off and short-term surveillance of highly concen-
trated aquatic processes that have already been detected.
The monitoring approaches based on aircraft and satellite
imaging often incur high operational overhead and cannot
achieve fine monitoring resolution. Recently, autonomous
underwater vehicles (AUVs) [28] have been used for vari-
ous underwater sensing tasks. However, the manufacturing
costs of AUV platforms are often high (over $ 50,000 per
unit [28]). In summary, these limitations make remote sens-
ing and AUV-based approaches ill-suited for monitoring spa-
tially scattered and temporally evolving aquatic processes.

This paper presents Samba (Smartphone-based aquatic
monitoring robotic platform), an energy-efficient and low-
cost robot system that integrates an off-the-shelf Android
smartphone and a robotic fish to monitor phenomena on the
water surface. Fig. 1(b) shows a prototype of Samba that is
built with a Samsung Galaxy Nexus phone. The integrated
smartphone and robotic fish assemble a promising platform
for aquatic monitoring due to the following salient advan-
tages. The robotic fish developed in our previous work [15] is
a low-cost (about $ 3,000 per unit) aquatic mobile platform
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Figure 1: (a) Algal patches in the Gulf of Mexico where the water area on the left side is covered by HABs
and exhibits murky green color, 2011 (Photo Credit: Louisiana Universities Marine Consortium [3]); (b)
A Samba prototype integrating a Samsung Galaxy Nexus phone with a robotic fish; (c) A sample image
captured by the Samba prototype in an inland lake, where the water and non-water areas are separated by
a shoreline; the trees exhibit similar color with the algal patches in the water area.

with high maneuverability in rotation and orientation main-
tenance, enabling Samba to adapt to the dynamic aquatic
environment. Moreover, it has stronger resistance to cap-
sizing than robotic boats (e.g., [12]) due to the enhanced
stability from its bionic design. The on-board cameras of
smartphone provide an inexpensive yet high-resolution sens-
ing modality for detecting the harmful aquatic processes.
For example, HABs, as shown in Fig. 1(a), can be detected
using the phone’s built-in cameras based on their distinctive
colors. Moreover, in addition to camera, a few other sensors
such as accelerometer and gyroscope, which are commonly
available on smartphone, can assist the navigation and con-
trol of robotic fish. Second, compared with traditional chem-
ical sensors that measure only one location at a time, camera
has a wider sensing range and provides richer information
about the aquatic process such as color and spatial distribu-
tion. Such information is often important for the authorities
to conduct hazard analysis and take contingency measures.
Third, current smartphones are capable of running advanced
computer vision (CV) algorithms for real-time image pro-
cessing. Lastly, the price of smartphone has been dropping
drastically in the past few years. Owing to these features,
Samba represents an energy-efficient, low-cost, yet intelli-

gent mobile sensing platform for aquatic monitoring.
Despite the aforementioned advantages, we need to ad-

dress several major challenges in the design of Samba. First,
aquatic processes are often scattered as patches over large
geographic regions and spatiotemporally evolving [10, 27],
which create challenges for fine-grained monitoring. Contin-
uous visual sensing can track their evolution, which, howev-
er, imposes significant energy and computation overhead to
smartphone. Second, phone’s built-in cameras have limited
field of view. Although the controllable mobility of robot can
help improve the sensing coverage, aquatic locomotion may
incur high energy consumption. Lastly, existing vision-based
detection algorithms using background subtraction [29] per-
form poorly on the images captured in the aquatic environ-
ment. For example, the patches of the target aquatic pro-
cess present in the camera view often block the background,
making it difficult to differentiate between the foreground
and the real background. Moreover, the target detection
may be greatly affected by various dynamics such as blurred
images caused by waves, highly variable illuminance, and
complex non-water area in the image. These uncertainties
can lead to excessive false alarms. Fig. 1(c) shows a sam-
ple image captured by a Samba prototype in an inland lake,
where the trees on the shore exhibit similar green color with

the algal patches on the water, potentially resulting in false
detections.

In this paper, we make the following contributions:

1) We propose an inertial-sensing-assisted image segmenta-
tion approach to identifying the water area in the image.
By focusing on the water area, Samba can reduce the
false alarms caused by the non-water area. A key nov-
elty of this approach is to leverage the energy-efficient
inertial sensing to replace the compute-intensive algo-
rithms for visual feature extraction used in image seg-
mentation. Specifically, Samba first learns the mapping
models that project inertial sensor readings to visual fea-
tures. It then uses these models and real-time inertial
sensor readings to estimate the visual features (e.g., the
shoreline in Fig. 1(a)) for image segmentation without
actually extracting them from the images.

2) We propose several lightweight and robust CV algorithms
to detect harmful aquatic processes in dynamic environ-
ments. Our vision-based detection algorithms, consisting
of back projection and patch identification, detect the ex-
istence of a target process based on its distinctive color
features. The algorithms are specifically designed to ad-
dress the dynamics in aquatic monitoring such as the
highly variable illuminance and camera noise.

3) We design a feedback-based robot rotation control al-
gorithm that increases coverage and maintains a desired
level of monitoring resolution on the evolving aquatic pro-
cess, e.g., the area expansion of an algal patch between
two consecutive observations during the rotation. Based
on the dynamics of the target process, the control algo-
rithm adapts the rotation speed of Samba to meet user’s
requirement on monitoring resolution.

4) We implement a prototype of Samba and evaluate it
through real field experiments in a small inland lake and
extensive lab experiments. The results show that Samba
can accurately detect harmful aquatic processes, main-
tain the desired monitoring resolution, and achieve a sys-
tem lifetime up to nearly two months.

The rest of this paper is organized as follows. Section 2
reviews the related work. Section 3 provides an overview of
Samba. Sections 4 – 6 present the hybrid image segmenta-
tion, aquatic process detection, and adaptive rotation con-
trol algorithms, respectively. Section 7 describes the proto-
type implementation. Section 8 evaluates Samba. Section 9
concludes this paper.



2. RELATED WORK
Current approaches to monitoring harmful aquatic pro-

cesses fall into four categories, i.e., manual spotting, patrol-
boat-assisted survey [7], remote sensing (e.g., balloon-board
[21], aircraft [19], and satellite imaging [10]), and AUV-
based autonomous sensing [28]. Manual spotting, although
viable for small-scale monitoring, is labor-intensive and un-
reliable. Approaches using patrol boats and remote sensing
are prohibitively expensive for long-term monitoring, espe-
cially when the target process is scattered over vast geo-
graphic regions. Likewise, the adoption of AUV-based mon-
itoring is limited by the high manufacturing and operational
costs of the platform.

Several research efforts have explored the integration of
cameras with low-power sensing motes. SensEye [22] incor-
porates a Cyclops camera into a Stargate platform [32] to
detect objects at a 128× 128 resolution. In [33], a cam-
era module is installed on an XYZ node [24] for gesture
recognition at a resolution of 256×64. These camera-based
platforms can only conduct simple image processing tasks at
low resolutions due to their limited computation capabilities.
Recently, mobile sensing using smartphone receives increas-
ing interest due to its rich computation, sensing, and stor-
age resources. For example, a face recognition method using
sparse representation is designed for smartphone [30]. Dif-
ferent from existing vision-based systems, Samba has to ad-
dress several unique challenges in aquatic monitoring, such
as the highly variable illuminance and dynamic aquatic pro-
cess evolution. Moreover, we need to make the image pro-
cessing pipeline of Samba highly energy-efficient to enable
long-term autonomous monitoring.

In our previous work [35], we developed a smartphone-
based robotic platform named SOAR to detect arriving de-
bris objects. Samba fundamentally differs from SOAR in
four aspects. First, Samba achieves much higher energy ef-
ficiency by integrating inertial sensing with visual sensing
through a learning-based scheme. According to our experi-
ments, Samba consumes 97% less energy than SOAR in pro-
cessing an image frame. Second, the generic design of Samba
enables the monitoring of either moving or static aquatic
processes such as oil spill and HABs; however, SOAR de-
tects moving debris objects only while treating all the static
targets as background. Moreover, SOAR identifies debris
objects using a pixel-based approach, while Samba detects
target aquatic processes based on their color features with-
out modeling each pixel. As a result, compared with SOAR,
Samba drastically decreases the overhead of robot mobility
control, as it does not rely on robot mobility to maintain the
pixel-level correspondence across frames in dynamic aquat-
ic environment. Lastly, Samba adopts a feedback-control-
based algorithm that adapts the robot’s movement based
on the detected dynamics of the target, while the movement
of SOAR is primarily driven by prior knowledge such as the
arrival model of the debris objects.

Inertial sensing has recently been explored in various mo-
bile sensing applications. In [18], a set of inertial features are
extracted from a phone’s built-in accelerometer and used to
identify user’s transportation mode. In [36], accelerometer
and gyroscope readings are employed to model vehicle dy-
namics and estimate the device’s position inside the vehicle.
In [14], smartphones collaboratively detect an earthquake
using onboard accelerometer. The FOCUS system [20] de-
tects shaken and blurred views during video recording based

on measured acceleration. Different from the above iner-
tial sensing applications, Samba employs inertial sensing as
an energy-efficient alternative to visual sensing in compute-
intensive image processing tasks.

Detecting targets of interest from captured images is a
fundamental CV task. Traditional approach usually adopts
background subtraction, which constructs a background mod-
el for each pixel according to historical observations [29].
However, background subtraction cannot be readily applied
to monitoring aquatic processes such as oil spill and HABs.
This is because the camera may have a view dominated
by the target process when deployed in the affected region,
making it impossible to build the background model [29].
The state-of-the-art approach [13, 16] detects targets of in-
terest without explicitly segmenting the background. How-
ever, it usually requires significant amount of training data
and incurs heavy computation overhead. To address these
issues, Samba features a set of detection algorithms that are
specifically designed based on the distinctive color features
of aquatic processes, which leads to affordable computation
overhead for smartphone.

3. OVERVIEW OF SAMBA
Samba integrates an off-the-shelf Android smartphone with

a robotic fish. The phone loads an app that implements the
image processing and mobility control algorithms, including
hybrid image segmentation, aquatic process detection, and
adaptive rotation control. The robotic fish propels Samba
by beating its tail, and communicates with the phone via a
USB cable. Samba is designed to operate on water surface
and monitor harmful aquatic processes such as oil spill and
HABs. These processes typically disperse as patches in the
aquatic environment and exhibit distinctive colors [10, 27].
To monitor a large affected region, multiple Samba robots
can be deployed to form a surveillance network. Their local
observations can be sent back to a central server via the long-
range communication interface on smartphones and stitched
into a global map. In this paper, we focus on the design of a
single Samba robot. Due to the limited angular view of the
phone’s cameras, it is challenging to monitor the scattered
patches of the target process. Although extra optical com-
ponents like fisheye lens can be used to broaden the camera
view, their integration to Samba will complicate the system
design by introducing additional computation overhead due
to the distorted images [29]. We leverage mobility to in-
crease the sensing coverage. Specifically, Samba can rotate
by performing discrete tail beats. We focus on the rota-
tion mobility, because it is much more energy-efficient than
moving forward that requires continuous tail beats.

Before deployment, Samba is trained by sample images of
the target aquatic process (TAP). The sample images are
close-up photos of the TAP and can be provided by domain
scientists. Samba can monitor multiple TAPs simultaneous-
ly when provided with their sample images. Samba con-
ducts aquatic monitoring at a set of orientations, which are
selected to ensure a full coverage of surrounding region giv-
en the angular coverage of Samba’s on-board camera. After
the initial deployment, it begins a TAP surveillance pro-
cess consisting of multiple rounds. In each round, Samba
keeps monitoring toward an orientation for a certain time
interval. At the beginning of a round, Samba rotates to a
new orientation and starts to capture images at a certain
rate. For each image, it identifies the water area and exe-



Figure 2: The aquatic environment monitoring pipeline when Samba keeps an orientation. Samba periodically
adjusts its orientation to adapt to the dynamics of surrounding target aquatic process (TAP) patches.

cutes several CV algorithms to detect the existence of TAP
in real time. At the end of this round, Samba estimates
the dynamics of TAP (e.g., evolution rate) and computes
the monitoring interval for the next round. For example,
if the TAP evolves rapidly, Samba will shorten the moni-
toring interval such that it can rotate back to the current
orientation sooner, keeping smooth track of the TAP evolu-
tion; and vice versa. When drastic evolution of the TAP is
detected, Samba can alert the user by using the communi-
cation interface (cellular/WiFi) on smartphone. A primary
design objective of Samba is to realize long-term (up to a
few months) autonomous monitoring. Between two image
captures, Samba sleeps to reduce energy consumption. One
novel feature of Samba is the inertial-sensing-assisted im-
age processing scheme that can lead to significant energy
savings. In particular, Samba uses the learned models that
partition an image based on inertial sensor readings, without
actually extracting the visual features from the images using
compute-intensive algorithms. Specifically, Samba compris-
es the following three major components.
Hybrid image segmentation: By partitioning an image
into water and non-water areas, Samba performs aquatic
process detection in the water area only, thus reducing de-
tection false alarms and computation energy consumption.
Samba adopts a novel hybrid image segmentation frame-
work as illustrated in Fig. 2(a). Specifically, it uses both
vision-based and inertia-based segmentation modes. This
hybrid approach learns regression-based mapping models
that project the inertial sensor readings to the visual fea-
tures for image segmentation. Therefore, Samba can par-
tition an image based on the visual features mapped from
the inertial sensor readings, avoiding executing the compute-
intensive CV algorithms continuously. Samba switches to
vision-based segmentation if the mapping models need to
be updated, e.g., when the accuracy of inertia-based seg-
mentation drops or Samba rotates to a new orientation.
Real-time TAP detection: This component detects TAP
in the segmented images. As illustrated in Fig. 2(b), it con-
sists of two lightweight image processing modules, i.e., back
projection and patch identification. First, Samba extracts
the robust color features of TAP in HSV color space, and
performs back projection to identify the candidate pixels of
TAP in each segmented image. The projected image is then
passed to patch identification for probability thresholding,
noise removal, and patch recognition, which effectively deal

with various environment and system dynamics such as the
highly variable illuminance and camera’s internal noise.
Adaptive rotation control: Samba monitors the sur-
rounding TAP patches at fine spatiotemporal granularity
while meeting energy consumption constraints. To adapt to
the dynamics of TAP that is primarily affected by environ-
mental conditions, we develop a feedback control algorithm
to maintain the desired monitoring granularity. On the com-
pletion of a round, Samba estimates the dynamics of TAP
(e.g., diffusion of oil slick and growth of HABs) based on
detection results, and then calculates a new rotation speed
such that the expected monitoring granularity in the next
round can be maintained at the desired level.

4. HYBRID IMAGE SEGMENTATION
Image segmentation is the process of partitioning an im-

age into multiple parts [29]. In aquatic monitoring, we adopt
image segmentation to remove the non-water area from the
captured images, and thus perform the detection of TAP
in the water area only. This can avoid the false alarms
that occur in the non-water area (e.g., those caused by trees
in Fig. 1(c)) and reduce computation in subsequent image
processing tasks. Image segmentation is usually conducted
based on visual features. For example, the shoreline can be
used to identify the water area in inland lakes. However,
most visual feature extraction CV algorithms are compute-
intensive. According to our experiments (see Section 8.2.1),
the Hough transform [29] for line extraction consumes more
than 95% of the energy for processing an image. Moreover,
the vision-based segmentation may fail due to the lack of
differentiating color features and blurred images caused by
waves. In this section, we propose a robust approach to over-
coming the above limitations of vision-based segmentation.

4.1 Overview
In this paper, we develop a novel hybrid image segmenta-

tion approach that utilizes both camera and inertial sensors
on the phone, as illustrated in Fig. 3. Inertial sensors provide
camera’s transient pose, which can be used to guide the seg-
mentation of captured images. To characterize a camera’s
projection, the visual sensing approach is susceptible to the
quality of captured image and blocked line of sight, while
inertial sensing will not be affected by these factors. More-
over, the energy consumption of inertial sensing is much low-
er than that of visual sensing. Our experiments show that



Figure 3: The overall structure of hybrid image segmentation where Samba switches between the vision-based
and inertia-based segmentation modes. In the online learning phase, Samba jointly uses inertial and visual
sensing to learn regression-based mapping models, which project the camera Euler angles (obtained from the
inertial sensors) to the extracted visual features (obtained from the camera). In the estimation phase, Samba
utilizes the learned mapping models to estimate the visual features and conducts the image segmentation
accordingly.

the computation delay of inertia-based segmentation is only
2% of that of vision-based segmentation (see Section 8.2.1).
The proposed hybrid approach aims to leverage these two
heterogeneous sensing modalities. Specifically, it consists
of an online learning phase and an estimation phase. The
vision-based image segmentation is executed in the learning
phase, and the inertia-based image segmentation is execut-
ed in the estimation phase. In our design, Samba switches
between the two modes to save system energy while main-
taining segmentation accuracy.

In the learning phase, images are segmented based on the
extracted visual features, as shown in Fig. 3(a). Meanwhile,
the inertial sensor readings are converted to Euler angles,
which describe the camera’s orientation with respect to the
world coordinate system. These angles, along with the corre-
sponding visual features, are then used to learn the mapping
models via regression. In the estimation phase, the learned
mapping models estimate the visual features based on the
inertial sensor readings and guide the image segmentation,
as shown in Fig. 3(b). Therefore, the compute-intensive
visual feature extraction CV algorithms are avoided. The
hybrid approach periodically calibrates the inertial sensors
and updates the mapping models in the learning phase, thus
adapting to the possible environmental condition changes.

4.2 Measuring Camera Orientation
A key step in the hybrid image segmentation is to re-

late the inertial sensing results with the corresponding visual
sensing results, which relies on the camera projection mod-
el. The camera’s orientation characterizes its projection.
Therefore, it is critical to accurately measure the camera’s
orientation. There are typically no built-in physical orien-
tation sensors on Android smartphone1. Hence, we need
to implement our own virtual orientation sensor based on
other available inertial sensors such as accelerometer and
geomagnetic field sensor. However, inertial sensor readings
are often inaccurate and volatile. Studies have shown that
the mean error of orientation measurements computed based
on inertial sensor readings by a simple algorithm can be up

1The orientation sensor API has been deprecated in Android
since version 2.2 [5].
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Figure 4: Workflow of virtual orientation sensor.

to 30◦ [8]. According to our experiments, the inaccuracy in
orientation measurements mainly results from bias. To deal
with the bias and random noise, we smooth and calibrate
the sensor readings. Fig. 4 shows the workflow of our vir-
tual orientation sensor. It first uses inertial sensor readings
to compute the rotation matrix that bridges the device co-
ordinate system to the world coordinate system, and then
obtains the phone’s orientation.

4.3 Feature Extraction
In order to establish the mapping models, Samba needs

to extract features from both camera observations and in-
ertial sensor readings for the same frame. In this paper,
we focus on the lake environment where the shoreline can
help identify the water area. We assume that the shore-
line is the longest visible line to Samba. This is reasonable
as the shoreline usually crosses the captured images hori-
zontally, as shown in Fig. 1(c). Note that the shoreline is
not static to Samba because of waves and Samba’s rotational
movements. Our approach can be easily extended to address
other scenarios with different visual references for image seg-
mentation. For frame i, let ki and hi denote the shoreline
slope and average vertical coordinate in the image plane, as
illustrated in Fig. 3(a). The phone can extract the shore-
line using Hough transform [29] and thus obtain ki and hi.
With these two parameters, frame i can be partitioned ac-
cordingly. Therefore, we define (ki, hi) as the visual features
of frame i.

The camera’s orientation, including yaw αi, pitch βi, and
roll γi, is measured by the virtual orientation sensor. At
runtime, we synchronize the orientation measurements with
visual features obtained from the camera using the time-
stamps. By corresponding the world coordinate system with
the 2D image plane, we can relate the camera’s orientation



(αi, βi, γi) to the visual features (hi, ki). Due to space lim-
itation, the details of this coordinate mapping process is
omitted here and can be found in [34]. We then derive ki
that represents the slope of the shoreline. Suppose (x′′

1 , y
′′

1 )
and (x′′

2 , y
′′

2 ) are two points on the extracted shoreline in
frame i, and (x1, y1, z1) and (x2, y2, z2) are the correspond-
ing points in the world plane. The shoreline slope in the
image plane, i.e., ki, can be computed as

ki =
y′′

1 −y′′

2

x′′

1−x′′

2

= ω1 ·
(x1fi,3−y1fi,4)− (x2fi,3−y2fi,4)

(x1fi,1−y1fi,2)− (x2fi,1−y2fi,2)

= ω1 ·
fi,3 − ω2fi,4
fi,1 − ω2fi,2

, (1)

where ω1 and ω2 = (y1 − y2)/(x1 −x2) are two unknown
but constant coefficients that are determined by the camer-
a hardware and the shoreline slope in the world coordinate
system. The 4-tuple (fi,1, fi,2, fi,3, fi,4) can be computed
based on the camera’s orientation by

fi,1 = cos(αi) · cos(βi), fi,2 = sin(βi) · cos(αi),

fi,3 = sin(αi) · cos(βi) · sin(γi)− sin(βi) · cos(γi),

fi,4 = sin(αi) · sin(βi) · sin(γi) + cos(βi) · cos(γi).

They interpret the camera projection model using orienta-
tion measurements. The above 4-tuple are defined as inertial
features, which are related to the visual feature through the
mapping model given by Eq. (1). Similarly, we can derive
the mapping model between another set of inertial features
(with 3 unknown coefficients) and the vertical position of
the shoreline in the image plane (i.e., hi). Due to space lim-
itation, we omit the details here. With the mapping models,
we can estimate the shoreline purely based on the inertial
sensor readings and conduct image segmentation.

4.4 Learning Mapping Models
With the extracted visual and inertial features, Samba

can learn the mapping models that project the latter to the
former. Based on Eq. (1), we adopt a regression-based ap-
proach to estimating the unknown coefficients ω1 and ω2.
Specifically, the training data instance from frame i can be
expressed as (ki, fi,1, fi,2, fi,3, fi,4), in which ki is obtained
from the camera and (fi,1, fi,2, fi,3, fi,4) are computed based
on inertial sensor readings. Suppose the training dataset
consists of N frames. We define the feature set, denoted
by F, as an N×4 matrix that contains the inertial features
extracted from the N frames

F=




f1,1 f1,2 f1,3 f1,4
...

...
...

...
fN,1 fN,2 fN,3 fN,4




N×4

.

Moreover, we define the observation vector, denoted by K,
as an N×1 vector that contains the visual features (i.e., the
shoreline slope), i.e., K = [k1, . . . , kN ]⊺. We then employ
multivariate nonlinear regression to learn ω1 and ω2 with F
and K. Using the estimated ω1 and ω2, we can infer the
shoreline slope from the inertial sensor readings based on
the mapping model given by Eq. (1).

5. AQUATIC PROCESS DETECTION
The real-time TAP detection pipeline of Samba is illus-

trated in Fig. 2(b). Although our approach is based on ele-
mentary CV algorithms, it is non-trivial to customize them

for detecting TAP and efficiently implement on smartphone.
Samba consists of two major image processing modules, i.e.,
back projection and patch identification. The back projection
models the TAP by extracting its color histogram, which is
built using selected channels in HSV. The HSV representa-
tion is more robust to the highly variable illuminance than
the RGB color space [25]. It then detects candidate pixels of
TAP in the image segment of water area. The patch identifi-
cation removes the salt-and-pepper noises from the project-
ed segmented image and then identifies the TAP patches.

5.1 Back Projection
Back projection is a CV technique that characterizes how

well the pixels of a given image fit a histogram model [29]. In
this paper, we adopt back projection to identify the existence
of TAP in the captured frames given its unique features. The
patches of TAP are often scattered over large water area. For
example, the HABs occurred at Lake Mendota in Wisconsin
produce algal patches spread over 15 square kilometers wa-
ter area [6]. Therefore, the robot may have a camera view
dominated by the TAP patches when deployed in an affected
region. The widely used target detection approach based on
background subtraction is thus not applicable, as it needs
to build a background model without the TAP. Moreover,
this approach requires all the captured images to be aligned
and thus has limited feasibility in uncalm waters. Our pro-
posed approach is motivated by the fact that a TAP usually
maintains featured and nearly constant colors. For example,
oil slicks often appear to be brighter than the surrounding
water surface [10], and the typical color of HABs is green or
red [27]. Therefore, to perform detection, we can match the
pixels in a new frame with the histogram model constructed
with offline sample images of the TAP.

Back projection constructs the histogram model based on
sample images as follows. Let I0 denote a sample image of
the TAP. We first convert the representation of I0 to HSV
(Hue, Saturation, and Value) model. In HSV, the hue chan-
nel represents the color, the saturation channel is the dom-
inance of hue, and the value channel indicates the lightness
of the color. The hue and saturation channels are robust to
illumination changes [25] and hence effective in interpreting
color features in the presence of reflection on water surface.
Thus, we adopt the hue-saturation histogram and calculate
it from I0. We equally divide the range of hue [0, 360) and
the range of saturation [0, 1] into [0, h2, h3, . . . , hp−1, 360)
and [0, s2, s3, . . . , sq−1, 1], respectively, to compute the color
histogram Mq×p. Specifically, the (i, j)th entry of M is the
frequency of pixels in I0 with saturation within [si, si+1) and
hue within [hj , hj+1). Note that the color histogram can be
obtained based on multiple images by repeating the above

process. Let M̃ denote the normalized histogram where each
element quantifies the probability that the corresponding

color represents the TAP. Therefore, M̃ depicts the tonality
of the TAP, which is used as its histogram model. Fig. 2(b)
shows a sample image of HABs occurred in the Gulf of Mex-
ico [3] and the extracted hue-saturation histogram model.

When a new segmented frame (denoted by It) is available,

we leverage the histogram model M̃ to detect the existence
of TAP. For each pixel pm,n in It, we first extract its hue
hm,n and saturation sm,n, and locate the corresponding el-

ement in M̃, i.e., M̃ (sm,n, hm,n). We then construct a pro-
jected frame I ′1 that is in the same size of It but replaces each



pixel pm,n with M̃ (sm,n, hm,n). Note that M̃ (sm,n, hm,n)
characterizes the probability that pm,n in It represents a
pixel of TAP. Visually, the brighter a pixel in I ′1 is, the larg-
er probability that the corresponding pixel in It is the TAP.
An example of the projected frame I ′1 is shown in Fig. 5(a).

In back projection, each pixel in the new frame is classified
based on how well it matches the color histogram obtained
from TAP sample images. Therefore, the similarity in col-
or between the TAP and water area affects the detection
performance. In this paper, we adopt a color similarity [31]
metric to measure the color resemblance. It quantifies the
similarity between any two colors based on their proximity
in the cylindrical HSV model. For two colors indexed by
(hi, si, vi) and (hj , sj , vj), the color similarity, denoted by η,
is given by

η=1−

√

(vi−vj)2+(si coshi−sj coshj)2+(si sinhi−sj sinhj)2

5
.

The η ranges from 0 to 1, where the lower bound 0 indicates
the highest level of color contrast and the upper bound 1
represents the same color. Therefore, a larger value of η
suggests a stronger color resemblance between the TAP can-
didate and water area, and hence the TAP candidate is less
likely to be identified by the patch identification module in
Section 5.2.

5.2 Patch Identification
As illustrated in Fig. 5, patch identification works on the

projected image and identifies the TAP patches. In the pro-
jected frame shown in Fig. 5(a), each pixel maintains a value
within [0, 1], which represents the probability that it belongs
to the TAP. We adopt a threshold-based approach to remov-
ing the pixels with extremely low probabilities. Specifically,
for any pixel with a value higher than a threshold, we con-
sider this pixel as a candidate TAP pixel and round its value
to 1; otherwise, it is classified as a pixel that represents the
water area and set to 0. To determine this threshold, we try
various settings and find that, with a setting of 0.1, the de-
tected TAP boundary is most similar to visual observation.
The binarized frame, as shown in Fig. 5(b), often contains
randomly distributed noise pixels. This is because the back
projection is conducted in a pixel-wise manner where the
labeling of candidate TAP pixel can be affected by camera’s
internal noise. To remove these false alarms, we apply the
opening morphology operation [29]. It consists of an erosion
and a dilation, in which the former eliminates the noise pix-
els and the latter preserves the shape of true TAP area.
Fig. 5(c) depicts the resulted frame after noise removal.
We then perform region growing [29] to identify the TAP
patches. In particular, it uses the detected pixels as initial
seed points and merges connected regions to obtain the can-
didate TAP patches. Finally, we apply another threshold
to exclude the small patches. The patch with a small area
in the frame usually indicates a false alarm. Fig. 5(d) de-
picts the final detection result. We note that the detected
TAP patches can be larger than the ground truth due to
the reflection of trees on the water surface. One possible ap-
proach to addressing this is to improve the histogram model
accuracy by using more selective sample images of TAP.

6. ADAPTIVE ROTATION CONTROL
To monitor the surrounding TAP patches at fine spa-

tiotemporal granularity, Samba needs to periodically adjust

(a) Projected frame (b) Binarized frame

(c) Opening morphology (d) Detected result

Figure 5: Sample patch identification process.

its orientation. However, this is challenging because the evo-
lution of an aquatic process is heavily affected by change-
able and even unpredictable environmental conditions. For
example, the diffusion of oil slick can be affected by water
salinity and temperature [23], and the growth of HABs is
sensitive to local nutrient availability [17]. To adapt to such
dynamics, we propose a rotation control algorithm, which
maintains the monitoring granularity (e.g., the area expan-
sion of an algal patch between two consecutive observations
during robot rotation) at the desired level by adjusting the
monitoring interval in each round.

6.1 Dynamics of Aquatic Process
The sensing coverage of a camera is described by its field

of view (FOV) where any target with dimensions greater
than some thresholds can be reliably identified [29]. FOV is
typically modeled as a sector at the camera with an angular
view θ and a radius R, in which θ depends on lens and R
can be measured for a particular application. Since a TAP is
likely to be scattered over a large region [10,27], we define the
surveillance region of Samba as the circular area originated
at the robot with a radius R. Limited by θ, Samba needs to
change its orientation to cover all the TAP patches within
its surveillance region. As the TAP evolves (e.g., diffusion of
oil slick), it has to continuously rotate to achieve the desired
temporal coverage of each orientation.

The robot rotation initiates a monitoring round. Each
round has a camera orientation and an associated monitor-
ing interval. In our design, we equally divide the circular
surveillance region into several sectors based on camera’s
angular view θ such that the surveillance region can be ful-
ly covered by these discrete orientations. During a round,
Samba remains stationary toward an orientation and con-
ducts hybrid image segmentation and TAP detection follow-
ing the user-specified sleep/wake duty cycle. For each frame,
the severeness of TAP can be measured by the total area of
detected patches in the frame. The TAP and robot will drift
at a similar speed and therefore remain in the same inertial
system. Thus, the expansion of TAP patches characterizes
the its dynamics. Using frames captured at different time
instants, Samba can estimate the dynamics of TAP under
current environmental conditions by computing the change
in severeness.

To achieve fine spatiotemporal monitoring granularity with



limited energy budget, the rotation of Samba needs to be
carefully scheduled. Samba controls the monitoring interval
of each round to adapt to the dynamics of TAP. We define
rotation speed, denoted by ρ, as the rotated angle over a
monitoring interval. Note that the rotated angle for each
round is fixed. For simplicity of exposition, the following
discussion focuses on rotation speed. If the TAP spreads
fast, ρ is expected to be large to capture the evolving dy-
namics. When the evolution of TAP slows down, Samba
may decrease ρ accordingly to save energy. Let ε denote
the dynamics of TAP measured by the camera. We define
the monitoring resolution ∆ s as the change in severeness
between two consecutive observations toward a certain ori-
entation. Therefore, ∆ s depends on the dynamics of TAP
and ρ. For example, the spread of diffusion process is ap-
proximately linear with time [11], i.e., ∆ s = ε · 2π/ρ. In
Section 6.2, a robot rotation control algorithm is designed
based on this model, and it can be easily extended to address
other models of TAP dynamics.

6.2 Robot Rotation Control
Our objective is to maintain a desired resolution on severe-

ness change, denoted by δ, under various environment and
system uncertainties. To save energy, Samba remains sta-
tionary as long as it can provide the required resolution.
The setting of δ describes how smooth the user aims to keep
track of the TAP. Fig. 6 shows the block diagram of feed-
back control loop, where Gc(z), Gp(z), and H(z) represent
the transfer functions of the rotation scheduling algorithm,
the dynamics model of TAP, and the feedback, respectively.
In particular, the desired resolution δ is the reference, and
the actually detected severeness change ∆ s is the controlled

variable. Because ∆ s is a nonlinear function of ρ, we define
τ = 2π/ρ as the control input to simplify the controller de-
sign. Thus, ∆ s= ε · τ , and its z-transform is Gp(z)= ε. In
each round, Samba updates τ for the next round and sets
ρ accordingly. As the feedback control will take effect in
the next round, H(z) = z−1, representing the delay of one
orientation adjustment. Given that the system is of zero or-
der, it is sufficient to adopt a first-order controller to main-
tain the stability and convergence of the control loop [26].
Therefore, we set Gc(z) =

a

1−b·z−1
where a > 0 and b > 0.

Following the standard method for analyzing stability and
convergence [26], the stability and convergence condition can
be obtained as b=1 and 0 < a < 2/ε.

The uncertainties are modeled as disturbances in the con-
trol loop shown in Fig. 6. First, Samba has rotation errors.
It may not head exactly toward the desired orientation due
to complex fluid dynamics. Second, the detected severeness
of TAP exhibits variance. We define the relative error for
∆ s as the absolute error to the ground truth of TAP area
in the image. As the detection of severeness is based on
CV algorithms that work in a pixel-wise manner, it can be
affected by dynamics like camera noise. In light of these dis-
turbances, we design the controller Gc(z) to mitigate their
impact. From control theory [26], the effects of injected dis-
turbances on the controlled variable ∆ s can be minimized
if the gain of Gc(z)Gp(z)H(z) is set as large as possible.
By jointly considering the stability and convergence, we set
a=2c/ε where c is a relatively large value within [0, 1]. In
the experiments, we set c to be 0.85.

Implementing Gc(z) in the time domain gives the robot
rotation scheduling algorithm. According to Fig. 6, we have
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Figure 6: The closed loop for robot rotation control.

Gc(z) = τ (z)/(δ − H(z)∆ s). From H(z) and Gc(z), the
control input can be expressed as τ (z)=z−1τ (z)+2bε−1(δ−
z−1∆ s), and its time-domain implementation is given by
τk=τk−1+2bε

−1(δ−∆ sk−1) where k is the count of orientation
adjustments. The average rotation speed to be set for the
kth round is thus given by ρk=2π/τk.

7. IMPLEMENTATION
We have built a proof-of-concept prototype of Samba for

evaluation. The hybrid image segmentation, TAP detection,
and adaptive rotation control algorithms presented in Sec-
tions 4 - 6 are implemented on Android. System evaluation
is mainly conducted on two phones, including a Samsung
Galaxy Nexus (referred to as Galaxy) and a Google Nexus
4 (referred to as Nexus4) running Android 4.3 Jelly Bean
and 4.4 KitKat, respectively. Galaxy is equipped with a
1.2GHz dual-core processor and 1GB memory, and Nexus4
is equipped with a 1.5GHz quad-core processor and 2GB
memory. They are representative mid- and high-end An-
droid smartphones. The app takes about 6.24MB storage
on the phone after installation, and requires about 10.8MB
RAM allocation while running on a frame resolution of 720×
480. To exploit the multi-core computation capability, the
visual feature extraction, mapping models learning, and TAP
detection are implemented in separate threads. In our cur-
rent prototype, we use a host computer to relay the com-
munication between the phone (via WiFi) and the fish (via
ZigBee). In the future, we will establish direct connection
between them. Fig. 1(b) shows the Samba prototype that
integrates a Galaxy in a water-proof enclosure with a robotic
fish swimming in a water tank in our lab.

On initialization, Samba extracts the hue-saturation his-
togram of TAP based on sample images. When a new frame
is available, it first conducts image segmentation to identi-
fy the water area. After the mapping models are learned,
Samba switches between the vision-based and inertia-based
segmentation modes according to the frequency specified by
N (see Section 4.4). Then the robot executes the TAP de-
tection algorithms on the segmented frame. During the im-
plementation, we find that the Hough transform, which is
used to extract the shoreline, incurs excessive delay. To ad-
dress this issue, we use OpenCV’s implementation through
Java Native Interface. We also examined the frame process-
ing performance when the app uses the new runtime option
ART, which is introduced in Android 4.4 and pre-complies
the Java code into system-dependent binaries. According
to our measurements, ART can reduce the system delay by
about 20% over Dalvik.

8. PERFORMANCE EVALUATION
We evaluate Samba through field experiments, lab exper-

iments, and trace-driven simulations. The field experiments
thoroughly test Samba’s performance in detecting real HABs
in an inland lake. The lab experiments evaluate system over-
head, monitoring effectiveness under a wide range of envi-
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Figure 7: Sample HABs detection in the field experiments.

ronmental conditions, as well as the overall performance of a
fully integrated robot. The trace-driven simulations exam-
ine the performance of adaptive rotation control with varied
settings. Our results show that Samba can achieve reliable
detection performance in the presence of various dynamics,
while maintaining a lifetime up to nearly two months.

8.1 Field Experiments
To test the detection performance of Samba in real world,

we deploy our prototype in an inland lake with an area of
200,000 square feet on September 22, 2014. Part of the lake
is covered by patches of filamentous algae [9] that exhibit
pale green color, as shown in Fig. 1(c). During the exper-
iments, the average illuminance is around 1,082 lux. The
impact of significant illuminance change is evaluated in Sec-
tion 8.2.4. We set the frame resolution to be 720×480 and
the frame rate to be 0.5 fps. The hybrid image segmentation
updates the mapping models every 20 frames, i.e., N =20.
Because the HABs at the test site were in a stable stage,
we focused on evaluating the detection performance while
disabling the robot rotation. Samba runs the hybrid image
segmentation and TAP detection algorithms consecutively
on each frame. A total of 5,211 frames were captured and
processed. For each frame, we manually pinpoint the bound-
ary of algal patches to provide the ground truth. For com-
parison, we adopt a baseline approach that uses the same
sample images but constructs the color histogram model in
the RGB color space. The RGB-based baseline is execut-
ed offline using the captured frames. The purpose of our
field experiments is three-fold. First, we test the detection
performance of Samba in a real aquatic environment with
complex background and colors. Second, we evaluate the
real-time execution of hybrid image segmentation and TAP
detection algorithms. Lastly, we validate that Samba can
effectively reduce the false alarms caused by the non-water
area through image segmentation.

8.1.1 Sample HABs Detection

Fig. 7 depicts a sample HABs detection in the field experi-
ments. An image of the algal patch, as shown in Fig. 7(a), is
used as the sample image for the detection pipeline. Fig. 7(b)
shows the normalized hue-saturation histogram, in which
each element characterizes the probability that the corre-
sponding color represents the HABs. Therefore, a majority
of colors in the histogram are of near-zero probability. For
each frame, Samba first extracts the water area by locating
the shoreline through hybrid image segmentation. Fig. 7(c)
shows a typical frame captured by Samba, where the red and
black dashed lines represent the shorelines obtained by the
vision-based and inertia-based image segmentation, respec-
tively. As we can see, the inertia-based approach yields a
fairly accurate estimation of shoreline, which is partially due

to the calm water during field experiments. In Section 8.2.3,
we will evaluate the performance of hybrid image segmenta-
tion under more dynamic environments. On the segmented
water area, Samba executes the TAP detection algorithms.
Fig. 7(d) presents the detection result after back projection
and patch identification. We can observe that our TAP de-
tection algorithms effectively identify the algal patches in
the segmented frame.

8.1.2 Detection Performance

We now evaluate the detection performance of Samba
quantitatively. For each frame, we define the positive over-

lap ratio as the ratio of the overlap area between detection
and ground truth to the actual TAP area. Hence, the posi-
tive overlap ratio characterizes the effectiveness of detection
algorithms in a frame. Given a threshold on positive over-
lap ratio, we calculate the detection rate as the ratio of the
frames with positive overlap ratio larger than this threshold
to the total frames with TAP patches. Fig. 8 plots the de-
tection rate versus positive overlap ratio for our approach
(i.e., using hue-saturation histogram) and the RGB-based
baseline, respectively. When the positive overlap ratio is
lower-bounded at 0.8, Samba can achieve detection rate up
to 94%. Moreover, our approach yields consistently higher
detection rate than the baseline. In the field experiments,
the HABs and water area have a color similarity η of 0.88,
which represents a rather strong color resemblance (see Sec-
tion 5.1). In Section 8.2.4, we will evaluate the impact of η
on detection performance.

8.1.3 Effectiveness of Image Segmentation

In TAP detection, we define the negative overlap ratio as
the area with false detections to the actual TAP area in each
frame. A false alarm occurs when the negative overlap ratio
exceeds a given threshold. We calculate the false alarm rate

as the ratio of the frames with false alarms to the frames
without TAP. In the field experiments, the false detections
mainly result from the captured shore area. In particular,
the trees on the shore, sharing a color similarity η with the
target filamentous algae of up to 0.97, are the major con-
tributor. Fig. 9 plots the false alarm rate versus negative
overlap ratio for our approach and the RGB-based baseline,
respectively. We find that our approach achieves consistent-
ly lower false alarm rate than the baseline, as it can charac-
terize the TAP color features more effectively. We then val-
idate the effectiveness of image segmentation by evaluating
the reduction in false alarms. Image segmentation allows
Samba to perform HABs detection in the water area only.
Fig. 10 compares the false alarm rates for our approach and
the RGB-based baseline, respectively, with and without im-
age segmentation. The reported values are calculated by
upper-bounding the negative overlap ratio at 0.5. We can
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see that by applying image segmentation, the false alarm
rate of our approach is reduced by over 90%. Moreover,
the baseline also benefits from image segmentation, but still
yields a higher false alarm rate than our approach.

8.2 Lab Experiments
The objective of lab experiments is to evaluate Samba

under more dynamic environments. The experiments were
conducted in a 15 feet× 10 feet water tank in our lab. We
vertically place a white foam board along one side of the tank
to produce an artificial shoreline. The settings of Samba
are consistent with those in the field experiments, unless
otherwise stated. We test the performance of hybrid image
segmentation and TAP detection algorithms under a wide
range of environmental conditions and system settings such
as wavy water and illuminance change.

8.2.1 Computation Overhead

We first evaluate the overhead of image segmentation and
TAP detection algorithms on phone. Specifically, we mea-
sure the computation delay of each module, i.e., vision-based
segmentation, inertia-based segmentation, and TAP detec-
tion, on Galaxy and Nexus4, respectively. The computation
delay is measured as the elapsed time using Android API
System.nanoTime(). The results are plotted in Fig. 11. We
can see that the vision-based segmentation incurs the longest
delay, which is mainly due to the compute-intensive Hough
transform. In contrast, the inertia-based segmentation is
drastically efficient, achieving over 98% reduction in compu-
tation delay. Note that in the hybrid segmentation, Samba
learns the mapping models every N =20 frames. Thus, the
measured overhead of inertia-based segmentation provides
an overhead upper bound of the proposed hybrid approach.
The TAP detection algorithms take about 80 and 50 mil-
liseconds on Galaxy and Nexus4, respectively. Therefore,
our aquatic monitoring solution is efficient on mainstream
smartphones and can well meet the real-time requirement.
Compare with SOAR [35] which typically takes more than 3
seconds to process a frame, Samba reduces the computation
delay by about 97%.

8.2.2 Projected Lifetime

We now evaluate the lifetime of Samba based on its pow-
er consumption profile as shown in Table 1. Smartphone
computation, standby, and fish rotation consume the high-
est powers. The energy drain on phone can be calculated
using offline measurements and duty cycle. Specifically, we
measure the power consumption of Galaxy using an Agilent
34411A multimeter when the phone is executing the TAP
detection algorithms with vision-based and hybrid segmen-
tations. According to the integrated evaluation, a monitor-

Table 1: Samba Power Consumption Profile.
Voltage (V) Current (A) Power (W)

Galaxy wake 3.7 0.439 1.624
Galaxy sleep 3.7 0.014 0.518
Servo motor 6 0.5 3

ing round lasts 5 minutes on average, and Samba can rotate
to the scheduled orientation within 15 seconds. We can thus
upper-bound the daily consumed energy for fish rotation
by (12×60/5)×(15/3600)×pr W ·h, where pr is the motor
power consumption for beating the tail. Fig. 12 shows the
projected lifetime of Samba when running the vision-based
and hybrid segmentations, respectively. We can see that the
system lifetime is almost doubled by switching vision-based
segmentation to hybrid approach. Fig. 12 also evaluates the
impact of duty cycle, which is defined as the ratio of wake
time to the total time. As expected, the system lifetime de-
creases with duty cycle. In our current prototype, Samba
has a total of 170W·h battery capacity, including a backup
13.5W ·h and two main 75W ·h batteries on the fish, and
a 6.48W ·h battery on the phone. Even with half of the
battery capacity, Samba can achieve a lifetime of nearly a
month with hybrid segmentation and 30% duty cycle. More-
over, the breakdown of daily energy consumption is plotted
in Fig. 12. We find that a majority of energy is actually
consumed by the sleep periods and fish rotation. Owing to
the high efficiency of hybrid image segmentation and TAP
detection algorithms, the wake periods consume the least
amount of energy. Therefore, the lifetime of Samba can be
further extended if the phone is powered off during the sleep
periods.

8.2.3 Image Segmentation Accuracy

We then evaluate the accuracy of hybrid image segmenta-
tion. To create dynamics, we generate waves by connecting a
feed pump to the tank. As a result, the shoreline slope (i.e.,
ki) varies up to 20◦, and the average vertical coordinate (i.e.,
hi) varies up to 170 pixels. We define the estimation errors

of visual features as |ki−k̃i| and |hi−h̃i|, where k̃i and h̃i are
the estimated visual features by the inertia-based approach,
and ki and hi are the ground truth measured by the camera.
Fig. 13 plots the CDF and average of the estimation errors
for ki. We can see that the inertia-based segmentation can
accurately estimate ki, with an average estimation error of
about 2.3◦. Moreover, Fig. 14 plots the CDF of the esti-
mation errors for hi. As shown in this figure, the average
estimation error is around 18 pixels. This set of experiments
validate that the proposed hybrid image segmentation can
achieve satisfactory performance under wavy water environ-
ment.
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8.2.4 Impact of Illuminance

As discussed in Section 5.1, we adopt two designs to en-
hance Samba’s robustness to illuminance change. First, the
color histogram is built in the HSV representation and ex-
cludes the value channel that is sensitive to lighting condi-
tion. Second, we normalize the color histogram before ap-
plying it to back projection. In the experiments, we create
various lighting conditions by using different combinations
of three compact fluorescent lamps and a Power Tech LED
light. We use the patch with η=0.64 and conduct 10 runs
of experiments for each lighting condition. Fig. 15 plots
the detection rate under various lighting conditions, where
the reported illuminance is measured by the phone’s built-in
light sensor. We can see that our TAP detection algorithms
maintain consistently satisfactory performance under differ-
ent illuminance levels, while the RGB-based baseline is sen-
sitive to illuminance change.

8.2.5 Integrated Evaluation

In this set of experiments, all modules of Samba, i.e., hy-
brid image segmentation, TAP detection, and adaptive rota-
tion scheduling, are integrated and evaluated. Moreover, on
the control board of robotic fish, we implement a closed-loop
proportional-integral-derivative (PID) controller that adap-
tively controls the tail beats based on the discrepancy be-
tween the scheduled and actual orientations. We imitate the
evolution of TAP by gradually uncovering the board’s sur-
face (with η=0.64). Based on the angular view of Galaxy,
we select the camera orientations as {0, π/4, π/2, 3π/4, π}
with respect to the tank’s side to ensure that the semi-circle
can be fully covered when Samba slides over these orienta-
tions. At t=0, Samba is deployed in parallel to the tank’s
side and starts the aquatic monitoring. We set the initial
average rotation speed as 6 deg/min. Therefore, the first
monitoring round has an interval of 7.5 minutes. After the
first round, Samba adaptively schedules its rotation speed to
maintain the detected severeness change at the desired level,
which is set to be 595 pixels, until it is parallel to the tank’s
side again. Throughout the experiments, Samba achieves
the detection rate of around 97% and false alarm rate of
about 5%. Fig. 16 plots the detected severeness changes in
the first 5 rounds, which are well maintained at the desired
level. Moreover, Fig. 16 shows the total monitoring time ver-
sus index of robot rotation. We can see that the monitoring
time varies across rounds, and it has a 5-minute length on
average. During the experiment, we also find that our PID
controller can generally direct Samba to the desired camera
orientation with an error lower than 7◦.

8.3 Trace-driven Simulations
We evaluate the adaptive rotation control of Samba through

trace-driven simulations, given the difficulty in accessing an
actively evolving TAP. To simulate realistic settings, we col-
lect Samba rotation errors and real chemical diffusion pro-
cess. First, the error traces of rotation are collected using
our prototype in the water tank. We measure the rotation
error by the discrepancy between the desired orientation and
actual heading direction of Samba. Second, we record the
diffusion traces of Rhodamine-B, which is a solution fea-
turing red color, in saline water using a camera. Hence,
the evolution of diffusion process is characterized by the ex-
pansion of the red area over time. The traces contain the
detected Rhodamine-B area and corresponding timestamp.

In the simulations, Samba monitors TAP within its circu-
lar surveillance region. According to our measurements, the
camera on Galaxy has an angular view of 5π/18. Hence, we
partition the surveillance region into 8 sectors such that a
full coverage can be achieved by a complete scan. For each
rotation, the actual direction is set based on the collected
error traces and thus is subjected to errors. For each orien-
tation, the monitoring interval is determined by the sched-
uled rotation speed. We use the collected diffusion traces
as severeness measurements, based on which the robot es-
timates the dynamics of TAP and schedules the rotation
speed. Other settings include the desired resolution δ= 25
and controller coefficient c=0.85.

Fig. 17 plots the detected severeness change ∆ s in the
first 10 rounds. We can see that ∆ s quickly converges to
the desired severeness resolution δ. Fig. 17 also shows the
scheduled rotation speed, which is scheduled based on the
current dynamics of TAP and δ. We further evaluate the
response of our algorithm to the sudden changes in TAP
evolution. Specifically, we artificially reduce the severeness
measurements by 30% at the 7th rotation (i.e., the left arrow
in Fig. 18) and continuously since the 14th rotation (i.e., the
right arrow in Fig. 18). For both types of changes, our algo-
rithm converges within a few rounds of rotation. Therefore,
the proposed algorithm can effectively adapt the rotation of
Samba to the evolving dynamics of TAP.

9. CONCLUSION AND FUTURE WORK
This paper presents Samba – a novel aquatic robot de-

signed for monitoring harmful aquatic processes such as oil
spill and HABs. Samba integrates an off-the-shelf Android
smartphone and a robotic fish. Samba features hybrid image
segmentation, TAP detection, and adaptive rotation control
algorithms. Field experiments, lab experiments, and trace-
driven simulations show that Samba can achieve reliable and
real-time TAP detection with a system lifetime up to nearly
two months.

In our future work, we will study several issues such as the
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rounds) of our approach.

impact of the number of sample images, robust thresholding
in patch identification, and adaptive image scaling. More-
over, we plan to exploit the use of both front- and rear-facing
cameras on smartphone to increase the surveillance coverage
and reduce the system energy consumption due to rotation.
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