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Abstract

We propose a subspace learning algorithm for face
recognition by directly optimizing recognition perfor-
mance scores. Our approach is motivated by the fol-
lowing observations: 1) Different face recognition tasks
(i.e., face identification and verification) have differ-
ent performance metrics, which implies that there exist
distinguished subspaces that optimize these scores, re-
spectively. Most prior work focused on optimizing var-
ious discriminative or locality criteria and neglect such
distinctions. 2) As the gallery (target) and the probe
(query) data are collected in different settings in many
real-world applications, there could exist consistent ap-
pearance incoherences between the gallery and the probe
data for the same subject. Knowledge regarding these
incoherences could be used to guide the algorithm de-
sign, resulting in performance gain. Prior efforts have
not focused on these facts. In this paper, we rigor-
ously formulate performance scores for both the face
identification and the face verification tasks, provide a
theoretical analysis on how the optimal subspaces for
the two tasks are related, and derive gradient descent
algorithms for optimizing these subspaces. Our exten-
sive experiments on a number of public databases and
a real-world face database demonstrate that our algo-
rithm can improve the performance of given subspace
based face recognition algorithms targeted at a specific
face recognition task.

1. Introduction
A core challenge of face recognition is to derive a

feature representation of facial images where the de-
fined distance metrics of the face image pairs faith-
fully reveal their identities [14, 26]. Among the var-
ious types of face recognition algorithms, subspace
based face recognition has received substantial atten-
tion for many years. It has been shown that high
face recognition performance can be achieved by pro-

jecting the facial images into some low dimensional
subspaces that preserve certain intrinsic properties
of the data. Early work (PCA [12, 24], ICA [1],
etc.) focused on finding subspaces that preserves cer-
tain distributive properties of the data. Later efforts
shifted towards finding subspaces that preserve certain
discriminative properties of the data (e.g., FDA [2],
Bayesian “dual eigenspace” [15], Bayesian Optimal
LDA [9]). In recent years, many efforts focused on
finding subspaces that preserve some locality proper-
ties of the data (e.g., LPP [11], OLPP [4], MFA [28],
NPE [10]), prompted by the progress of manifold anal-
ysis (LLE [21], ISOMAP [23], Laplacian map [3]).

While the state-of-the-art subspace learning algo-
rithms aim at finding subspaces that optimize various
objective functions for preserving certain discrimina-
tive or locality properties of the data, to the best of our
knowledge, few of them have explicitly optimized the
actual face recognition performance scores (i.e., the face
verification error, or the identification rate) w.r.t. the
subspace to be estimated. Given the distinction in the
definitions of the performance scores for different face
recognition tasks, the optimal subspaces w.r.t. these
scores are likely different. Though the various discrim-
inative or locality objective functions align well with
the face recognition performance scores most of the
time, they may still result in suboptimal subspaces in
terms of the specific face recognition score, especially
when the data does not satisfy the algorithm’s assump-
tions (i.e., Gaussian, manifold). This could happen
especially when there exist consistent appearance in-
coherences between the gallery (target) and the probe
(query) data for each subject, as the gallery and the
probe data are usually acquired in different settings in
many real-world applications.

To address this issue, we present a novel method
to learn subspaces that directly optimize the perfor-
mance scores of the face recognition tasks. In par-
ticular, we study two popular face recognition tasks,
face verification (1:1) and face identification (1:N).



We first provide mathematical formulations for their
performance scores and give a theoretical analysis on
how their differences result in different optimal sub-
spaces. We then propose gradient descent algorithms
to find the desired subspaces by optimizing these per-
formance scores on the training data. As the choice
of distance metric plays a important role in the eval-
uation of the performance scores [18], we show that
our algorithms can work with various distance met-
rics, in particular, the conventional Euclidean distance
and the normalized correlation based distance. With
extensive face recognition experiments on various fa-
cial databases (FERET, CAS-PEAL, CMU-PIE, and
an airport check-in database), we demonstrate that our
proposed subspace learning approach can improve the
face recognition performance over the state-of-the-art
subspace approaches for each specific task.

We note a few relevant prior works as follows. In
[27], an affine subspace for verification (ASV) was pro-
posed for face verification. It however did not directly
optimize the face verification score and its proposed
solution is different from our approach. In [8, 25], sub-
spaces are optimized for nearest neighbor classification
tasks, which is similar to the face identification task in
our case. Comparing to their approach, our solution
is novel and the problems we address in the context of
face recognition are different.

2. Face Recognition Revisited
There are two typical face recognition tasks: face

verification (1:1) and face identification (1:N). The goal
for face verification is to verify whether two face im-
ages are from the same person or not. The goal for
face identification is to discover the identity of a given
face image, w.r.t a gallery of face image(s) of known
identities (gallery set G) that has been provided before-
hand. Given a gallery (target) set G and a set of query
face images with identity ground truth (probe set P),
face verification and identification performance can be
evaluated by comparing the recognition results against
ground truth (here we assume the face image pairs for
face verification are drawn one from the gallery set and
one from the probe set respectively).

The performance of face verification is measured by
the probability of verification error (PE). Assuming
uniform priors, PE is the average of the false alarm
rate (FAR) and the false rejection rate (FRR). FAR
is the probability of wrongly generating an alarm by
declaring image pairs from the same person as being
from different persons, and FRR is the probability of
wrongly rejecting an alarm by declaring image pairs
from different persons as being from the same person.

The performance of face identification is defined by

C The number of subjects.
|S| The number of facial images in a set S.
P {X1, X2, ..., X|P||X ∈ Rd, |P| ≥ C}, the probe set.
I {I1, I2, ..., I|P||I ∈ [1, 2, ..., C]}, the probe identity

ground truth.
G {Y1, Y2, ..., Y|G||Y ∈ Rd, |G| ≥ C}, the gallery set.
J {J1, J2, ..., J|G||J ∈ [1, 2, ..., C]}, the gallery iden-

tity list.
Id(X) The ground truth identity of a facial image X, i.e.,

Ik = Id(Xk),Xk ∈ P; Jk = Id(Yk),Yk ∈ G
SI {X|X ∈ S, Id(X) = I}, subset of images in the set

S with identity I. S ∈ {G,P}.
S¬I {X|X ∈ S, Id(X) 6= I} , subset of images in S with

identities other than I.
A A subspace. x = AX, y = AY , ∀X ∈ P, Y ∈ G.

(x, y ∈ Rt, t ≤ d )
SA SA=AS, projection of a set S into subspace A.
h(x, y) Distance between sample x and sample y.
h(x,G) h(x, y∗) = min{h(x, y)|y ∈ G}, the distance from a

probe sample x to a gallery set G.
Table 1. Notation.

the identification rate (IR), the percentage of correct
identifications over all the images in the probe set.
2.1. Mathematical Formulation

Consider the typical close-set face recognition task
for C subjects where each subject has at least one pic-
ture in a gallery set and at least one picture in a probe
set, we define notations in Table 1.

Given a subspace A and a verification decision
threshold hT , face verification is carried out by com-
paring the distance between the image pair in the sub-
space A against the threshold hT . The FAR and FRR
evaluated over the data set {P,G} can be defined as:

FAR =

∑
x∈PA

∑
y∈GId(x)

A
f(h(x, y)− hT )∑

x∈PA
|GId(x)

A |
, (1)

FRR =

∑
x∈PA

∑
y∈G¬Id(x)

A
f(hT − h(x, y))∑

x∈PA
|G¬Id(x)

A |
, (2)

where the error penalty function f(u) is a step function

f(u) = Π(u) =
{

0, if u < 0
1, if u ≥ 0

.

In some applications, the subjects may have multiple
exemplar gallery images, and the verification is done
by comparing the probe face image against the most
similar gallery image from the claimed person. The
FAR therefore is re-defined as:

FAR =
∑
x∈PA

f(h(x,GId(x)
A )− hT )

|PA|
. (3)

The verification error rate can be formulated as

PE = FAR+ FRR

2 . (4)

For face identification, the identification rate can be
formulated as:

IR = 1
|PA|

∑
x∈PA

f(h(x,G¬Id(x)
A )− h(x,GId(x)

A )). (5)
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Figure 1. PE is the average of FAR and FRR.

h

(b)

PFR(h)

(a)

p(h|0)p(h|1)

PFR(h)

ha h

p(h|0)p(h|1)

Figure 2. Different IR’s with the same minimal PE.

Note that we assume here the gallery and probe
images of the same person may not be interchange-
able (instead of allowing random split of face images
into gallery and probe sets), because the gallery and
probe images are usually collected at different times
and under different imaging conditions in many real-
world applications. We believe better performance can
be achieved if the existing statistical incoherences be-
tween the gallery and probe sets due to different imag-
ing conditions can be taken into account in the algo-
rithm design.
2.2. Optimality Analysis of Face Verification and

Identification Subspaces
Consider a simplified case where each subject has

one image in the gallery set and one image in the
probe set, and assume that the distance distribution
{h(x, y)|x ∈ Pc, y ∈ G¬c,∀c} (of image pairs from dif-
ferent persons) is modeled as p(h|0) and the distance
distribution {h(x, y)|x ∈ Pc, y ∈ Gc,∀c} (of image
pairs from the same person) is modeled as p(h|1), The
FAR and FRR can be defined as:

FAR = PFA(hT ) =
∫ ∞
hT

p(h|1)dh, (6)

FRR = PFR(hT ) =
∫ hT

−∞
p(h|0)dh. (7)

We can find an optimal threshold h∗T so that the ver-
ification error PE is minimized, as illustrated in Fig.
1. As most of the subspace learning algorithms find
a subspace where p(h|0) and p(h|1) is maximally sepa-
rated, the separation however may not be characterized
by a minimized PE. And some assumptions have to
be made about the data (e.g., Gaussian distribution,
manifold smoothness, etc), which may not always be
satisfied for real-world applications.

For face identification, the probe image x from sub-
ject c is correctly identified if {h(x, y)|y ∈ Gc} <

min{h(x, z)|z ∈ G¬c}. Assuming the subject identity
prior {P (c)|c = 1, 2, ...C} is uniform, and the distance
distributions p(h|0) and p(h|1) are independent, we can
consider the identification process an approximation to
the M-ary Orthogonal Signal Demodulation in telecom-
munication [20] and have

IR =
∑
c

P (c)
∫
x∈Pc

P{
⋂
y∈Gc,
z∈G¬c

[h(x, z) > h(x, y)]|c}dx

∼
∫ ∞
−∞

p(h|1)(
∫ ∞
h

p(g|0)dg)C−1dh

=
∫ ∞
−∞

p(h|1)(1− PFR(h))C−1dh. (8)

Eq. 6, 7, 8 bring us insights on how the face verifica-
tion performance scores are related to the face identi-
fication score through a complicated integration pro-
cess. As expected, the equations indicate PE → 0
and IR → 1 when p(h|0) and p(h|1) are separated
(PFR(h) = 0 for p(h|1) 6= 0,∀h). An interesting but
expected observation is that, IR is a decreasing func-
tion of the number of subjects C in the gallery set.
Given a discriminative subspace with the same PE,
the manner in which the IR degenerates w.r.t increas-
ing C is dependent on how p(h|0) and p(h|1) over-
lap. As an example in Fig. 2, the distance distri-
butions p(h|0) and p(h|1) in Fig. 2-(a) and 2-(b) are
symmetrically switched, and thus yields the same op-
timal face verification performance (PE). They will
however produce different IR’s when C is large. For

Fig. 2-(a), we will have lim
C→∞

IR =
∫ ha

−∞
p(h|0)dh,

because lim
C→∞

(1 − PFR(h))C−1 →

{
0, for h > ha

1, for h ≤ ha
.

For Fig. 2-(b), we will have lim
C→∞

IR = 0, because

lim
C→∞

(1− PFR(h))C−1 → 0, for ∀h.
Therefore, it is not guaranteed that face identifica-

tion performance is optimal in a subspace where the
data distributions are maximally separated. The pat-
tern of the distribution overlap plays an important role
in the performance of face identification.

In the next section, we present algorithms that find
the optimal subspaces by optimizing PE and IR, re-
spectively.

3. Optimizing Subspaces
Given a training set, the optimal subspace A∗ and

decision threshold h∗T for face verification can be ob-
tained as (A∗, h∗T ) = arg minA,hT {PE}, where PE is
defined by Eq. 1 (or 3), 2, and 4 based on the training
set. Similarly the optimal subspace for face identifica-
tion can be obtained as A∗ = arg maxA{IR}, where



IR is defined by Eq. 5. The hope is that performance
optimization on the training set can be generalized to
the testing data.

Noticing that PE and IR are not differentiable due
to the step function f(·), we can re-define f(·) as

(1) Sigmoid function f(u) = 1
1+e−u/σ with ∂f

∂u =
1
σf(u)(1−f(u)); f(u)→ Π(u) for σ → 0. This function
subdues outliers in the data and improves robustness.

(2) Exponential function f(u) = eu/σ with ∂f
∂u =

1
σf(u). f(u) puts increasing penalty on the classifica-
tion errors if σ → 0. If the data contains no outliers,
this function results in fast optimization.

According to the chain rule of differentiation, we
can calculate ∂PE(A,hT )

∂A,hT and ∂IR(A)
∂A once we define

∂h(x,y)
∂A = ∂h(AX,AY )

∂A .
If we define the distance metric as a Euclidean dis-

tance, we have

∂h(AX,AY )
∂A : = ∂

∂A :‖AX −AY ‖2

= 2(A(X − Y )(X − Y )t) :T , (9)

where the colon operator ‘ : ‘ stands for the vectoriza-
tion of a matrix.

For correlation based distance measure, we have

∂h(AX,AY )
∂A : = ∂

∂A :{1−
XTATAY√

XTATAY
√
Y TATAX

}

= {aXY AXXT

a3
XaY

+ aXY AY Y T

aXa3
Y

−A(Y XT +XY T )
aXaY

} :T , (10)

where aX =
√
XTATAX, aY =

√
Y TATAY , and

aXY = XTATAY .
It is straightforward to optimize PE and IR using

gradient descent optimization methods once ∂PE(A,hT )
∂A,hT

and ∂IR(A)
∂A are calculated, respectively.

3.1. Optimal Subspace for Face Verification
We can now summarize the Optimal Subspace for

Face Verification (OSFV) algorithm in Alg. 1. The al-
gorithm takes the probe and gallery set of a training
set as input, and finds a subspace A and an optimal
threshold hT by optimizing the face verification score
PE iteratively. An initial guess for A0 can be obtained
using one of the state-of-the-art subspace learning algo-
rithms, such as LDA, LPP, MFA, etc. The parameter
σ for f(·) is initialized with a large σ1, and is gradually
reduced to a smaller σε in a fashion similar to simu-
lated annealing, so that the gradient search on the cost
function is initially done on a smoothed cost surface,

Algorithm 1 OSFV(P, I,G,J ,A0)
1: Initialize σ = σ1.
2: A = A0.
3: while A has not converged do
4: hT ← func opt thres(PA, I,GA,J ).
5: A← A− α ∂PE(A,hT )

∂A .
6: if σ > σε then
7: σ ← βσ, {0 < β < 1}.
8: end if
9: end while

10: return A, hT

Algorithm 2 func opt thres(PA, I,GA,J )
1: Compute pairwise face match scores H = {h(x, y)|x ∈
PA, y ∈ GA}, |H| = |PA| × |GA|.

2: Obtain pairwise match ground-truth G = {δ(Id(x)− Id(y))|
x ∈ PA, y ∈ GA, Id(x) ∈ I, Id(y) ∈ J}, where δ(u) = 1 i.f.f.
u = 0.

3: Obtain Hsorted by sorting H in a descending order; and ob-
tain Gsorted by rearranging G according to the sorting order.

4: Compute the sequential false alarm rate FAR as the cumu-
lative sum of the sequence Gsorted.

5: Compute the sequential true rejection rate TRR = 1−FRR
as the cumulative sum of 1−Gsorted.

6: Normalize FAR← FAR∑
G

, TRR← TRR∑
(1−G)

.

7: Obtain the sequential error rates PE = FAR+1−TRR
2 , which

corresponds to the sorted decision thresholds in Hsorted.
8: Obtain the index i∗ ← arg min(PE).
9: h∗T ← Hsorted(i∗).

10: return h∗T

which increases the chance of guiding the optimization
toward the global minima.

While it is possible to optimize the decision thresh-
old hT by gradient descent, we present an efficient algo-
rithm that obtains the globally optimal decision thresh-
old in Alg. 2 following the idea of an efficient ROC gen-
eration method in [5]. Suppose there are n image pairs
for performance evaluation, this algorithm generates an
ROC curve by sorting the distance scores and obtains
the decision threshold that minimizes the verification
error on the ROC curve in O(n logn) time.
3.2. Optimal Subspace for Face Identification

Similarly, we summarize the Optimal Subspace for
Face Identification (OSFI) algorithm in Alg. 3. The
computation of ∂IR

∂A has to be carried out during the
evaluation of IR (Eq. 5), as the gradients are accu-
mulated only from the gallery image of each ID that
is closest to the probe image, i.e., ∂h(x,GI)

∂A = ∂h(x,y∗)
∂A ,

y∗ = arg min{h(x, y)|y ∈ GI}.

3.3. Parameterization
We define [σε, σ1] = [γε, γ1] × median({h(x, y)|x ∈

PA0 , y ∈ GA0}), so that we can conveniently param-
eterize the range of σ suitable for optimization inde-
pendent of the magnitude of the data variations. The



Algorithm 3 OSFI(P, I,G,J ,A0)
1: Initialize σ = σ1.
2: A = A0.
3: while A has not converged do
4: A← A + α ∂IR

∂A .
5: if σ > σε then
6: σ ← βσ, {0 < β < 1}.
7: end if
8: end while
9: return A
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Figure 3. A toy example for OSFV (best viewed in color).

user can then choose the appropriate [γε, γ1] for em-
phasis on either better generalization capability (when
the training data is sparse and contains no outlier) or
for better robustness (when the training data contains
a large number of outliers). If f(·) is the sigmoid func-
tion, we empirically assign γε = 0.001 and γ1 = 0.03.
If f(·) is the exponential function, we empirically fix
γ = γε = γ1 = 0.2. We set α = 1 and β = 0.98.

4. Experiments
4.1. Toy Example

Fig. 3 shows a toy data distribution of two subjects
where the statistics of the galleries and that of the
probes are consistently incoherent. The FDA subspace
(the green arrow) achieves a suboptimal PE of 12%.
Using an exponential function and Euclidian distance
metric, we perform OSFV optimization with A0 ini-
tialized by the FDA subspace, with different γ selected
from [0.05 0.5]. The obtained OSFV subspaces (indi-
cated by black arrows) reduce PE to 0 if γ > 0.1, and
approximate the conceptually optimal subspace (indi-
cated by the red arrow) if γ is further increased.

4.2. Performance Evaluation for OSFV and OSFI
4.2.1 Experimental Setup
We now evaluate our algorithms on subsets of three
widely used face databases, the FERET database [19],
the CAS-PEAL database [7], and the CMU-PIE
database [22]. Some major properties of the prepared
database subsets are listed in Table 2.

For the FERET database, we consider the fa set
(faces with regular expressions) as the gallery set and
the set fb (faces with alternative expressions) as the

Property FERET CASPEAL CMU-PIE
C 1009 1025 59
|G| 1760 1025 767
|P| 1517 5859 15340
P/G diff. Expr. Pose Illum.
Ctr : Cte 706:303 717:308 39:20

Table 2. Data Preparation. C is the number of subjects; |G|
and |P| are the number of images in the gallery and probe
set; P/G diff. describes the major appearance differences in
gallery and probe sets; and Ctr : Cte is the ratio of subject
number in the training set and testing set.

probe set. For the CAS-PEAL data, we only consider
the faces under ambient lighting, and take the frontal
faces (PM + 00) as the gallery set, and the faces with
pose variations (PM±22, PM±30, PU+00, PD+00)
as the probe set. Due to the fact that these data sets do
not have significant illumination variations, we specify
the distance metric to be Euclidean distance.

For the CMU-PIE database, we only consider the
face images captured in Illumination 2 setting, in
which each subject’s face is captured with 13 poses, and
21 illuminations. We use the face images of 13 poses
for each subject under frontal illumination (Flash f09)
as the gallery set, and the faces under other illumina-
tions (13 × 20 images) as the probe set. Considering
there exists a huge illumination variation in the data,
we adopt the correlation based distance measure, which
has been shown to be a good metric for face recogni-
tion under illumination variations [13, 6]. Since there
are 13 face images of different poses in the gallery set
for each subject, the computation of FAR is defined by
Eq. 3 when evaluating PE.

The face images are cropped according to the manu-
ally labeled eye locations, rectified to image size 32×32,
and normalized to zero mean and standard deviation
after histogram equalization. As all the databases are
well processed and contain few outliers, we specify f(·)
to be the exponential function for the OSFV/I opti-
mization.

Finally, we split the data (the gallery and probe sets)
into training sets and testing sets with non-overlapped
subject identity according to the ratio Ctr : Cte (See
Table 2). We obtain the OSFV/I subspaces by opti-
mizing face verification/identification performance on
the training set, and evaluate the performance on the
testing set. We show both the optimized performance
on the training set and the evaluated performance on
the testing set, so that we can get insight regarding
how well the performance gain on the training set can
be generalized to the testing set.

4.2.2 The Results
We now apply the subspace learning algorithms
(PCA [24], FDA [2], LPP [11], OLPP [4], MFA [28],
NPE [10], and the proposed OSFI/V algorithms) to



PE(%) FERET CAS-PEAL CMU-PIE
Train Test Train Test Train Test

PCA 13.4 14.5 23.1 23.4 12.0 13.0
FDA 7.8∗ 11.7∗ 11.3∗ 11.9∗ 5.2∗ 5.8∗
LPP 0.0 15.5 1.7 4.9 2.1 6.6
OLPP 2.0 10.4 4.7 6.1 12.3 15.9
MFA 0.3 14.9 1.6 5.5 2.5 4.5
NPE 11.3 16.9 3.4 5.9 5.8 8.9
OSFV ∗ 2.9∗ 8.6∗ 2.3∗ 4.4∗ 0.3∗ 2.7∗
OSFV 1.5 9.1 1.7 3.9 0.1 3.1

Table 3. Face Verification Performance

learn the subspace model from the training set, and
evaluate the face recognition performances (PE and/or
IR) on the testing set. Since our intention is to show
how OSFV/I can further optimize the subspaces, for
fair comparison, we empirically fix the dimensions of
the subspaces to 80 for all evaluated algorithms.

We first evaluate the face verification performance of
these algorithms and the results are shown in Table 3.
Without OSFV optimization, OLPP, LPP, and MFA
achieves the lowest PE on the testing set for FERET,
CAS-PEAL, and CMU-PIE, respectively. We apply
OSFV optimization initialized by FDA subspace for
all three databases. The row of OSFV ∗ indicates that
OSFV can consistently reduce the PE of FDA by on
average 6.3% on the training set and 4.2% on the test-
ing sets (e.g., the PE for the testing set of CAS-PEAL
reduces from 11.9% to 4.4%). We then apply OSFV op-
timization initialized by a subspace that achieves the
best performance on the testing set of each database
(as indicated by the underscored PE’s). The row of
OSFV shows that the PE of OLPP, LPP, and MFA
can be further reduced by on average 1% for the train-
ing set and 1.2% for the testing set.

We then carry out face identification performance
evaluation and list the results in Table 4. Without
OSFI optimization, NPE achieves the highest identi-
fication rate on the testing sets for both FERET and
CAS-PEAL, and FDA achieves the best performance
on CMU-PIE. The row of OSFI∗ lists the OSFI op-
timization results initialized with the FDA subspace.
It is shown that OSFI∗ can consistently increase the
IR of FDA to nearly 100% in all the training sets.
And the performance on the testing set can also be
boosted consistently by 2-3% for FERET and CMU-
PIE, and 12% for CAS-PEAL. We also perform OSFI
optimization initialized by a subspace other than FDA
that achieves the highest performance on the testing set
of each database (indicated by the underscored IR’s).
As indicated by the row of OSFI, though these al-
gorithms have achieved near 100% identification rate
on the training set, OSFV can further improve their
performance by 1-2% consistently on both the train-
ing and the testing set. This margin, in our view, is
large considering the fact that the base performances
are already around 95%.

IR(%) FERET CAS-PEAL CMU-PIE
Train Test Train Test Train Test

PCA 74.6 80.5 42.6 48.2 85.8 88.3
FDA 92.5∗ 93.1∗ 78.0∗ 79.1∗ 96.1∗ 96.2∗
LPP 99.9 92.0 98.8 94.5 99.2 93.0
OLPP 98.8 92.4 84.2 83.8 84.0 78.9
MFA 99.5 90.7 96.0 90.7 97.8 95.4
NPE 98.5 94.1 98.2 95.4 96.4 94.5
OSFI∗ 99.9∗ 95.6∗ 97.9∗ 91.2∗ 100∗ 98.2∗
OSFI 99.9 95.4 98.8 95.8 100 97.4

Table 4. Face Identification Performance

From the results, we summarize as follows:
(1) For each training and testing set division, the

performance improvement by the OSFV/I on the train-
ing set always generalizes to the testing set.

(2) For each individual task, none of the state-
of-the-art subspace learning algorithms we tested can
achieve the best performance across all databases. The
OSFV/I algorithm however can consistently improve
their performances independent of the database.

(3) For each individual database, none of the state-
of-the-art subspace learning algorithms can achieve
best performances for both the face verification and
the face identification tasks. By directly optimizing the
performance scores, the proposed OSFV and OSFI can
always achieve the best performance for each specific
task, respectively, with proper initialization.

(4) Across both tables, a variety of five subspaces
are utilized as the initialization of the OSFV/I opti-
mization, and their performances are shown to be fur-
ther improved. This indicates that it is practical to
utilize the OSFV/I algorithms to further improve the
performance of the other subspace based face recogniz-
ers for a specific face recognition task.

4.2.3 Recognition performances w.r.t. C
To verify our theoretical analysis in Sec. 2, we take
the FDA, OSFV ∗, and OSFI∗ subspaces trained on
the FERET and evaluate their PE and IR on subsets
of the FERET testing set with the number of subjects
increasing from 10 to 170. By randomly generating
the testing subsets of different number of subjects 200
times, we are able to plot the statistics of PE and IR
w.r.t. C in Fig. 4.

Fig. 4-(a) shows that OSFV achieves smaller PE in
general. While PE is not a function of C by definition
(Eq. 4), we observe the mean of PE decreases when
C is small. We believe it is because the estimation of
p(h|0) and p(h|1) is biased when the data set is small.
The estimation of PE stabilizes after C > 70.

Fig. 4-(b) shows that IR in general decreases when
C increases. However, OSFI resists this trend the best
because it finds a subspace in which the overlap pat-
tern of p(h|0) and p(h|1) is optimal for face identifica-
tion. The IR of OSFV decreases the fastest though it
achieves the lowest PE in Fig. 4-(a).
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Figure 4. Performance w.r.t. the number of subjects C.

4.3. Face Verification for Airport Security Check-in
For the purpose of improving airport security and

speeding up the check-in process, it is desirable to de-
velop a face verification system that automatically ver-
ifies the identity of a passenger in real time by com-
paring facial images captured by a video camera and a
face image scanned from a government issued ID, such
as a driver license. Such a system installed at a airport
check-in gate can greatly reduce the workload of airport
security officers. Based on this application scenario, we
collected a face database of 464 subjects from volun-
teers at our local airport. In the database, the face im-
age on the driver license of each passenger is scanned
as gallery data, and 3-8 face images are captured by a
video camera as probe data. Large appearance varia-
tions can be observed due to differences in illumination,
aging, pose, and facial expression between the gallery
and probe data. In particular, a majority of photo ID
scans contain confounding artifacts on the faces (such
as a seal) or textured waveforms overlaid by the ID
card. These artifacts pose additional difficulties to the
face verification task. Fig. 5 illustrates some sample
data of three subjects.

In [17], O’Toole made the observation that com-
puters can achieve better face verification performance
than humans under illumination variations. To get
an idea on how good humans can perform face veri-
fication in our setting, we ask 10 human subjects to
manually perform face verification tasks based on 100
same-person image pairs and 100 different-person im-
age pairs randomly drawn from the data set. We find
it takes on average 4 seconds for a human subject to
evaluate a image pair, and the average PE is 22.6%.

We then split the data into a training set and a test-
ing set with non-overlapped person identity. The train-
ing set contains 348 gallery images and 1512 probe im-
ages for 348 subjects, and the testing set contains 116
gallery images and 458 probe images for 116 subjects.
The faces are then rectified according to the eye loca-
tions detected by a commercial face detector [16]. As
the textured waveforms contain mostly high frequency
information that can be removed by anti-aliasing filter-
ing when the images are downsized, we choose to down-

Figure 5. The airport check-in data: The scanned ID face
images (the first row) and the corresponding face image
captured by a video camera (the second row).

PE(%) #Dim Train Test
PCA 150 25.7 28.0
FDA 400 4.2 22.9
FDA 50 17.9∗ 24.3∗
LPP 50 1.8 22.1
OLPP 50 15.5 28.9
MFA 550 6.1 22.4
NPE 350 23.1 26.1
OSFV ∗ 50 9.0∗ 19.0∗
OSFV 50 1.3 21.7
Human — — 22.6

Table 5. Face verification for airport check-in.

size the rectified face images to size 32 × 32. Several
state-of-the-art subspace learning algorithms are then
applied to learn the models from the training data, and
their face verification performances are then evaluated
on the testing data. By varying the number of dimen-
sions of the subspaces from 30 to 600, we report the
lowest PE on the testing set for each algorithm w.r.t
the subspace dimension number. The results are shown
in Table 5. The best performance on the testing set is
achieved by LPP subspace with 50 dimensions.

We now perform OSFV optimization. As there ex-
ist substantial outliers and illumination variations in
the data, we specify f(·) to be the sigmoid function
and adopt normalized correlation based distance met-
ric. Noticing the FDA subspace of 50 dimensions per-
forms just slightly worse than the FDA subspace of 400
dimensions. We initialize the OSFV optimization by
the FDA subspace of 50 dimensions. The performances
shown in the row of OSFV ∗ indicate that OFSV re-
duces the PE by 5% on the testing set. We then apply
the OSFV optimization initialized by the LPP sub-
space. The face verification performance is also im-
proved, but not as much as when initialized by the
FDA subspace. Overall, we find most of the subspace
learning algorithms can not exceed the performance of
human (and LPP and MFA perform barely better than
human), probably due to the existence of large amount
of outliers in the data. And the OSFV subspace opti-
mization is able to reduce the PE to 19% which is 3.9%
better than the human performance.



5. Conclusion
We proposed a novel OSFV/I algorithm that di-

rectly optimizes the performance scores of various face
recognition tasks. The algorithm in nature takes into
consideration the differences of the performance score
definitions of the different tasks and the intrinsic ap-
pearance incoherences between the gallery images and
the probe images of the same subject caused by the
data collection procedures in real-world applications.
In the experiments on the FERET, CAS-PEAL and
CMU-PIE database, we demonstrated how the pro-
posed OSFV/I algorithms can further improve the per-
formance of the state-of-the-art subspace learning al-
gorithms on both the training set and the testing set.
And we presented its successful application to a new
real-world database we collected for the airport check-
in face verification task.

Our theoretical analysis and experiments verified
several points that were not emphasized by prior face
recognition work: There exists different optimal face
subspaces for different face recognition tasks. And
there could exists consistent appearance incoherences
in the gallery and the probe set in real-world appli-
cations. By customizing the algorithm design specific
for a face recognition task and taking advantage of the
knowledge in the consistent appearance incoherence in
the gallery and probe set, the performance of the exist-
ing subspace based face recognition algorithm can be
further improved. While these points are made in the
context of subspace based face recognition, our future
work is to study how they can be extended to other
types of face recognizers (such as boosting, SVM, etc.).
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