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Abstract

The ability to determine the identity of a skull found at

a crime scene is of critical importance to the law enforce-

ment community. Traditional clay-based methods attempt

to reconstruct the face so as to enable identification of the

deceased by members of the general public. However, these

reconstructions lack consistency from practitioner to prac-

titioner and it has been shown that the human recognition

of these reconstructions against a photo gallery of potential

victims is little better than chance. In this paper we pro-

pose the automation of the reconstruction process. For a

given skull, a data-driven 3D generative model of the face is

constructed using a database of CT head scans. The recon-

struction can be constrained based on prior knowledge such

as age and or weight. To determine whether or not these

reconstructions have merit, geometric methods for compar-

ing reconstructions against a gallery of facial images are

proposed. First, Active Shape Models are used to automati-

cally detect a set of facial landmarks on each image. These

landmarks are associated with 3D points on the reconstruc-

tion. Direct comparison of the reconstruction is problem-

atic since in general the camera geometry used for image

capture is unknown and there are uncertainties associated

with the reconstruction and landmark detection processes.

The first method of comparison uses constrained optimiza-

tion to determine the optimal projection of the reconstruc-

tion on to the image. Residuals are then analyzed resulting

in a ranking of the gallery. The second method uses boost-

ing to learn which points are both reliable and discriminat-

ing. This results in a match/no-match classifier. Experimen-

tal evidence indicating that skull recognition from facial im-

ages can be achieved is presented.

1. Introduction

When an unknown skull is found at a crime scene, law

enforcement officials attempt to reconstruct the victim’s

face so that it can be presented to the public and/or com-

pared against a gallery of facial images of missing per-

sons. Traditional approaches often rely on clay based meth-

ods [23, 2]. However [22] has shown that when persons

Figure 1. The identity of a skull (top-left) is established by com-

paring a statistical skin-surface reconstruction (top-right) and as-

sociated landmarks with a set of images depicting missing persons

(bottom) for which corresponding landmarks have been estimated

using an active appearance model.

not familiar with the deceased are asked to compare clay

based reconstructions against facial images, the resulting

recognition rates are little better than chance. There are a

number of contributing factors. Clay based reconstruction

is a highly subjective process and results can vary drasti-

cally from practitioner to practitioner. Soft-tissue uncer-

tainty associated with regions such as the tip of the nose

can be considerable. Humans seem to rely on various ap-

pearance cues that cannot always be inferred directly from

the bone and they are often distracted by inaccuracies in-

curred during reconstruction. In this work a fully automatic

face reconstruction process is proposed. To validate this ap-

proach, geometric methods are used to automatically com-

pare these reconstructions against a facial image gallery of

missing persons (See Figure 1).

In previous work [24] we have proposed the collection of

a CT head scan database for the purposes of creating a face

space that is constrained by the shape of an unknown skull.

Skin and bone surfaces are extracted from the CT head

scans. Via bone-to-bone registration of the database against

the unknown skull, each skin surface becomes an estimate



of the unknown face. In this work, the warped skin surfaces

along with their age and weight information are represented

as structurally identical vectors. This means that vector el-

ements representing semantically identical points such as

the tip of the nose and the corners of the eyes will be in

correspondence. Principle Component Analysis (PCA) on

these skin vectors constitutes a face-space tailored to the

unknown skull. Prior knowledge such as the estimated age

and/or weight of the unknown individual can be used to con-

strain the face space.

The automatic recognition of an unknown skull against

a gallery of facial images of missing persons is a difficult

task. There is uncertainty associated with the soft-tissue of

the deceased and information regarding the imaging condi-

tions of the gallery will be imperfect. To our knowledge this

type of automatic recognition has never been accomplished.

In this paper we seek evidence that the task of automatic

recognition is achievable. Our approach starts by taking ad-

vantage of the fact that each reconstruction is structurally

identical. Landmark positions in the images can then be as-

sociated with specific points on the reconstructions. Such

image landmarks are found using Active Appearance Mod-

els (AAM). The task at hand is to determine whether or not

a given set of reconstruction and image landmarks consti-

tutes a match. Two approaches are considered. In the first

method, constrained optimization based on the landmark

positions with the least amount of soft-tissue variance is

used to determine a projective transformation between the

3D reconstruction and the 2D image. Projection residuals

are then calculated providing a ranking of the missing per-

son image. In the second approach, boosting is used to con-

struct a strong match/no-match classifier. In this way we

learn which landmarks are both reliable and discriminating.

2. Face Reconstruction

A database of CT head scans of over 280 individuals

across 6 demographics has been collected. The age and

weight of each individual were also recorded. For purposes

of validation, a frontal and profile image of each subject

was taken. The marching cubes algorithm [16] was used

to extract a polygonal mesh of the skin and bone surfaces

of each individual. Each skin surface was manually labeled

with a number of specific landmark points and using an ap-

proach similar to [17] they are represented by structurally

identically skin vectors of the form

Xi = [wi,ai,xi1,yi1, zi1, ...,xiM,yiM, ziM] (1)

where (xij , yij , zij) is the jth point on the skin of individ-

ual i which is semantically identical to the jth point of all

other skin vectors. For example if the jth point for a par-

ticular skin vector corresponds to the tip of the nose, then

the jth point for all skin vectors will correspond to the tip

of the nose. The value wi and ai are the age and weight of

individual i. Each skin vector is based on M surface points.

When presented with an unknown skull, a registration

and deformation is automatically computed between each

database bone surface and the unknown skull. Details on

this step can be found in [25]. Based on this registration

process, thin plate splines [6] are used to warp each skin

vector onto the unknown skull. This process is illustrated in

Figure 2. Like the work of [4], Principle Component Anal-

ysis (PCA) can be used to create a face space. However,

the morphing process restricts the face space based on the

shape of the unknown skull, hence this face space is tailored

to the unknown individual.

Let X̄ and C equal to the mean and covariance of the

warped skin vectors. The eigenvectors and diagonal matrix

of eigenvalues of C are E and λ. Each reconstruction R is

a weighted sum of the eigenvectors added to the mean and

can be formulated as:

R = X̄ + Ey (2)

where y is a unique set of weights defining the reconstruc-

tion. Figure 3 shows an example of a slice through a face

space.

For y equal to zero, the reconstruction is reduced to the

average face. In the absence of any a priori knowledge,

this is the most likely and hence a reasonable estimate of

the unknown face. However, if prior knowledge such as

age and/or weight estimates of the unknown individual are

available, this knowledge can be used to constrain the re-

construction. A vector c is defined such that its ith element

is set to 0 unless this element corresponds to a component of

the skin vector that can be estimated in which case it is set

to the estimated value minus the mean value of this compo-

nent. An indicator matrix S is defined such that S(i, i) = 1

iff c(i) 6= 0. All other elements of S are set to 0.

A cost functional Q(y) that is to be minimized can now

be defined as:

Q(y) = (SEy − c)T(SEy − c) + αyTλ−1y (3)

The first part of the cost function penalizes a reconstruction

that deviates from the constraints. The second part of the

function is a regularization term that keeps the reconstruc-

tion from deviating too far from the statistical mean of the

population. The α term is user defined.

By setting
dQ(y)

dy
equal to zero and solving for the opti-

mum value ŷ we find that

ŷ = (αλ−1 + EtStSE)−1EtStc (4)

In general there will be a unique solution for a given choice

of α, however if the matrix (αλ−1 + EtStSE) is rank de-

ficient, singular value decomposition can be used and the
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Figure 2. The registration of a database skull onto an unknown

skull is achieved in four stages. The first generates a rough align-

ment of the skulls. The second aligns the crest-line points. The

third generates a tighter alignment of crest-line points. The fourth

aligns both low curvature and crest-line points. The transforma-

tions are also applied to the database skin resulting in an estimate

of the unknown face. At each stage we see the unknown skull in

gray and the warped database skull in yellow.

user must choose a reconstruction from the resulting null

space.

Note that prior knowledge need not be restricted to age

and weight, it can also be the location of specific points

on the skin such as the tip of the nose. Figure 4 shows a

set or reconstructions covering a range of ages and weights.

This form of estimation can be viewed as a constrained so-

lution. In contrast, approaches such as [14] perform age and

weight progression by establishing trajectories in a general

face space covering a large population - one major differ-

ence is that our approach does not require multiple samples

of the same individual at different ages and weights.

Figure 3. Cross-section of a tailored face space: The gray (light)

faces are entries from the database warped onto an unknown skull.

The tan (dark) faces are synthesized from the face space along the

axes of the first two eigenvectors. The face in the bottom right

corner is the true face to be estimated. The gold face (dark face

left from center) is the projection of the true face into the face

space.

Work related to automatic facial reconstruction can be
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Figure 4. This figure shows an unknown skull, the mean recon-

struction and a variety of reconstructions constrained by age or

weight.

found in [18, 26, 12, 19, 8]. To our knowledge no other re-

construction system is based on a CT database of the mag-

nitude presented in this work.

3. Face Recognition

Many appearance cues such as facial hair and skin

texture which are important for face recognition by hu-

mans [20] cannot be accurately estimated based solely on

knowledge of the skull. In order to validate the efficacy of

our reconstructions we seek an automatic method of recog-

nition that does not require such information. The problem

at hand is how best to automatically compare a 3D recon-

struction with a 2D facial image and to determine whether

or not there is a match. Kakadiaris et al. [13] have shown

that 3D structure plus appearance information can be used

to recognize 2D facial images. However in our application,

appearance information is not available. Blanz and Vet-

ter [5] have shown that 3D models can be generated from

2D images. Iterative Closest Point algorithms [1] could then

be used to perform recognition. Conversely, as shown by

Viola and Wells III [27], mutual information can be used

to directly compare a 3D reconstruction with 2D images.

However, it is not clear that these methods would be suc-

cessful under the uncertainty associated with the facial re-

construction process. Given an image that is to be com-

pared to a reconstruction, specific landmarks such as the tip

of the nose and the corners of the eyes can be defined auto-

matically using Active Shape and Appearance Models [3].

Since each reconstruction is structurally identical, equiva-

lent 3D landmarks on the reconstructions will be known in

advance. The recognition of known 3D objects based on



landmark correspondences with their images is a well stud-

ied problem in computer vision, however there is relatively

little work in the area of face recognition based on com-

paring 3D landmarks to 2D image landmarks [7]. Two ap-

proaches are considered: projective registration and learn-

ing via boosting.

3.1. Projective Registration

As a first approach we evaluate possible matches be-

tween unknown skulls and images of missing individ-

uals by comparing 3D reconstruction landmarks with

their corresponding 2D image landmarks. We assume

that the 2D image landmarks x = {(xi,yi), i =
1, . . . ,v} are projections of the 3D reconstruction land-

marks X = {(Xi,Yi,Zi), i = 1, . . . ,v} obtained with an

unknown camera P

xi = PXi. (5)

Given a sufficient number of 2D to 3D correspondences, the

projection P can be estimated. A good quantitative evalua-

tion of the match is then given as the reprojection error

RMS2 =
1

v

v∑

i=1

||xi − PXi||
2
2. (6)

The datasets under consideration make this approach chal-

lenging for multiple reasons: First, inherent errors in the

skull-to-skin surface reconstruction and errors in the 2D

image landmark location estimation violate the assumption

that the 2D landmarks are actually a good projection of the

3D landmarks under the true but unknown camera P. In

practice many landmarks, especially from the jaw contour

and the eyebrows correspond poorly between the 3D and

2D datasets. Hence, only certain landmarks provide good

guidance for camera estimation. Secondly, the camera es-

timation process can sometimes obtain reasonably good es-

timates even for mismatched datasets where a skin recon-

struction is compared to an image of an incorrect individual.

The reason for this is that important geometric facial prop-

erties such as aspect ratio can be obtained from any set of

3D face points by modifying the aspect ratio of the camera

intrinsics. Hence such freedoms in the camera estimation

process need to be prohibited.

We use the following approach for estimating the cam-

era P = KR[I| − c]. First, we assume a unit (or at least

known) aspect ratio and zero skew as well as an image cen-

tered principle point. This leaves only seven degrees of

freedom: rotation R, translation c and focal length in the

camera matrix K. These seven parameters are estimated

by performing linear estimation of the unconstrained P ma-

trix, followed by non-linear least squares minimization of

the reprojection errors with penalty terms for constraint vi-

olations, followed by LS minimization with the enforced

constraints. This first process is performed using all avail-

able landmarks. We then further refine the camera estimate

with only a subset of the facial landmarks to overcome the

landmark error challenge.

We employ two approaches for choosing the landmark

subset. The first approach is to manually perform the selec-

tion based on experience and intuition for what are likely

to constitute stable and accurate landmarks that are good

for the camera estimation and subsequent reprojection er-

ror based match evaluation. The second approach is to use

training data and exhaustively search for the optimal land-

mark subset.

3.2. Learning via Boosting

RANSAC [10] approaches have been shown to be robust

to the noisy landmark problem. In this method a minimal

number of correspondences are randomly selected to gen-

erate a transformation between the 3D reconstruction space

and the 2D image space. This transformation is then ap-

plied to a subset of the remaining landmarks. Residuals are

measured and analyzed. Based on this approach, a classi-

fier using specific landmarks for transformations and resid-

ual comparisons can be used to discriminate between true

and false image/reconstruction pairs. Unlike the previous

section which relies on a single optimal projection, it is pro-

posed that the AdaBoost algorithm [11] be used to generate

a strong classifier based on a linear combination of weak

landmark classifiers each with its own projection transfor-

mation. The weak classifiers are iteratively selected by min-

imizing the expected error associated with a training set of

true and false matches. In this way we learn which land-

marks are both stable and discriminating. Thus recognition

becomes a process of classification between true and false

matches.

For each weak classifier a more restrictive projective

transform that is simple to compute is used. It is assumed

that the face plane containing the corners of the eyes and

the bottom of the chin is roughly parallel to the imaging

plane. Points on the reconstruction can be mapped to the

image by first projecting them on to the face plane and then

applying a metric transform between the face plane and the

image plane. A metric transform can be defined by as little

as two correspondences. This transform can be applied to

a third landmark on the reconstruction and if the resulting

residual is less than a threshold, the weak classifier responds

positively. If the converse is true, a negative response is re-

ported. At each round of boosting the optimal weak classi-

fier with respect to expected classification error is selected.

3.3. Facial Landmarks

We now consider the method used for extracting the 2D

image landmarks. The shape model and appearance model

part of an AAM are trained with a representative set of
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Figure 5. The mean and first 7 basis vectors of the shape model

(a) and the appearance model (b) trained from the IMM database.

The shape basis vectors are shown as arrows at the corresponding

mean shape landmark locations.

facial images. The procedure for building a shape model

is as follows. Given a face database, each facial image

is manually labeled with a set of 2D landmarks, [xi, yi]
i = 1, 2, ..., v. The collection of landmarks of one image

is treated as one observation from the random process de-

fined by the shape model, s = [x1, y1, x2, y2, ..., xv, yv]T .

Eigen-decomposition is applied to the observation set and

the resulting model represents a shape as,

s(P) = s0 +
n∑

i=1

pisi (7)

where s0 is the mean shape, si is the shape basis, and

P = [p1, p2, ..., pn] are the shape parameters. By design,

the first four shape basis vectors represent global rotation

and translation. Together with other basis vectors, a map-

ping function from the model coordinate system to the co-

ordinates in the image observation is defined as W(x;P),
where x is a pixel coordinate within the face region F (s0)
defined by the mean shape s0.

Given the shape model, each facial image is warped into

the mean shape via a piecewise affine transformation. These

shape-normalized appearances from all training images are

processed via eigen-decomposition and the resulting model

represents an appearance as,

A(x;λ) = A0(x) +
m∑

i=1

λiAi(x) (8)

where A0 is the mean appearance, Ai is the appearance

basis, and λ = [λ1, λ2, ..., λn] are the appearance parame-

ters. Note that the resolution of the appearance model here

is the same as the resolution of the training images. Figure 5

shows an AAM trained using 40 images from the IMM face

database [21].

An AAM can synthesize facial images with arbitrary

shape and appearance within a population. Thus, the AAM

can be used to explain a facial image by finding the optimal

shape and appearance parameters such that the synthesized

image is as similar to the image observation as possible.

This leads to the cost function used for model fitting [9],

J(P, λ) =
1

N

∑

x∈F (s0)

||I(W(x;P)) − A(x;λ)||2 (9)

which is the mean-square-error (MSE) between the warped

observation I(W(x;P)) and the synthesized appearance

instance A(x;λ), and N is the total number of pixels in

F (s0).
Traditionally this minimization is solved by gradient-

decent methods. Baker and Matthews [3] proposed the In-

verse Compositional (IC) and Simultaneously Inverse Com-

positional (SIC) method that greatly improves the fitting

performance. Their basic idea is that the role of the appear-

ance templates and the input image is switched when com-

puting ∆P. Thus the time-consuming steps of parameter

estimation can be pre-computed and remain constant dur-

ing each iteration. Liu et al. [15] introduced a face model

enhancement scheme, where face modeling and model fit-

ting are iteratively performed using the training image set,

to improve the fitting convergence. In this paper, we employ

the enhanced ASM/AAM and the SIC method to process the

set of 2D images.

4. Experiments

For purposes of validation, a testbed of 35 reconstruc-

tions of Caucasian males with known frontal images has

been assembled. No prior knowledge was assumed, hence

the mean reconstructions were used. Each image was la-

beled with 48 landmark positions using the methods de-

scribed in section 3.3. All possible image/reconstruction

pairs were processed using the projective registration ap-

proach described in section 3.1. It was found that the av-

erage ranking of the true reconstruction was 11.1 based

on user defined landmarks. The user selected landmarks

where {0, 1, 19, 17, 18, 45, 3, 16, 7, 13} (see Fig. 6) and

resulted in the Cumulative Match Characteristic (CMC)

graph is shown in Figure 7. To determine how representa-

tive the user selection was, an exhaustive search was per-

formed on a larger landmark subset. During the search

six-tuples of landmarks where selected from the subset

{0, 1, 19, 17, 18, 45, 3, 16, 7, 13, 41, 43} and the selection

that obtained the best average rank was recorded. This ex-

periment obtained the optimal subset {0, 19, 18, 45, 3, 16},

with an average rank of 9.97 and hence only slightly better

than the expert selected landmarks. Both of these average

rankings are significantly higher than 17.5 which would be

the expected result of a totally random process.

In the next experiment, we consider the boosting ap-

proach described in section 3.2. In this experiment, the

database was divided into two, one for training and one

for testing. The training database consists of 31 im-

age/reconstruction pairs. This results in 31 true matches
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Figure 6. The landmark set used for registration and matching.
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Figure 7. The Cumulative Match Characteristic Graph. For vali-

dation purposes a database of 35 Caucasian males was assembled.

All possible image/reconstruction pairs were processed using the

projective registration approach described in section 3.1. The hor-

izontal axis shows the ranking of the true match. The verticle axis

shows the percentage of subjects that achieve a true match ranking

greater than a given value. The red curve shows the performance

of our method and the green curve shows the performance that

would be expected based on chance alone.

and 930 false matches. The testing database consists of

5 image/reconstruction pairs. Boosting was applied so as

to generate a strong classifier and when the same classifier

was used to process the testing data, a true positive rate of

0.8 and a false positive rate of 0.2 was observed. This re-

sults in a κ score of 0.49 with an 80% confidence interval of

+/− 0.24. A κ score above 0.4 implies that it is reasonable

to infer that the classifier is performing better than chance.

Since the confidence interval is still relatively large, we be-

lieve that the collection of a larger database is warranted -

it should be noted that for validation purposes, difficult to

acquire CT head scans are not necessary - skulls from de-

ceased individuals with associated photos will suffice.

5. Conclusions

In this work, we have presented a fully automatic ap-

proach to face reconstruction from skeletal remains. The

system is based on a database of CT head scans, which to

our knowledge is the only such database of this magnitude

in existence. The ability to generate a person specific face

space enables the user to incorporate prior knowledge such

as estimates of age and weight directly into the reconstruc-

tion.

We have presented landmark face recognition ap-

proaches that enables the recognition of skull identity based

on a gallery of facial images. To our knowledge this is the

first time that such results have been reported. Initial ex-

periments indicate that better than chance recognition rates

are achievable. However, from a statistical point of view,

it will be important to perform more experimentation on

larger datasets.

From a law enforcement perspective, hundreds of un-

known skulls are discovered each year. The ability to match

these skulls against a database of missing persons would be

a boon to law enforcement and victim’s advocacy. The work

presented here is a significant step towards this goal.

Future work will incorporate contour-based features and

distance measures as well as shape from shading types of

approaches for comparing face reconstructions with image

galleries.
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