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Representation Learning by Rotating Your Faces
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Abstract—The large pose discrepancy between two face images is one of the fundamental challenges in automatic face recognition.
Conventional approaches to pose-invariant face recognition either perform face frontalization on, or learn a pose-invariant
representation from, a non-frontal face image. We argue that it is more desirable to perform both tasks jointly to allow them to leverage
each other. To this end, this paper proposes a Disentangled Representation learning-Generative Adversarial Network (DR-GAN) with
three distinct novelties. First, the encoder-decoder structure of the generator enables DR-GAN to learn a representation that is both
generative and discriminative, which can be used for face image synthesis and pose-invariant face recognition. Second, this
representation is explicitly disentangled from other face variations such as pose, through the pose code provided to the decoder and
pose estimation in the discriminator. Third, DR-GAN can take one or multiple images as the input, and generate one unified identity
representation along with an arbitrary number of synthetic face images. Extensive quantitative and qualitative evaluation on a number
of controlled and in-the-wild databases demonstrate the superiority of DR-GAN over the state of the art in both learning
representations and rotating large-pose face images.

Index Terms—representation learning, generative adversarial network, pose-invariant face recognition, face rotation and frontalization
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1 INTRODUCTION

F ACE recognition is one of the most widely studied topics in
computer vision due to its wide application in law enforce-

ment, biometrics, marketing, and etc. Recently, great progress
has been achieved in face recognition with deep learning-based
methods [1], [2], [3]. For example, surpassing human performance
is reported by Schroff et al. [3] on Labeled Faces in the Wild
(LFW) database. However, one of the shortcomings of the LFW
database is that it does not offer a high degree of pose variation
— the variance that has been shown to be a major challenge in
face recognition. Up to now, the key ability of Pose-Invariant Face
Recognition (PIFR) desired by real-world applications is far from
solved [4], [5], [6], [7], [8]. A recent study [9] observes a signif-
icant drop, over 10%, in performance of most algorithms from
frontal-frontal to frontal-profile face verification, while human
performance only degrades slightly. This indicates that the pose
variation remains to be a significant challenge in face recognition
and warrants future study.

In PIFR, the facial appearance change caused by pose variation
often significantly surpasses the intrinsic appearance differences
between individuals. To overcome these challenges, a wide variety
of approaches have been proposed, which can be grouped into
two categories. First, some work employ face frontalization on the
input image to synthesize a frontal-view face, where traditional
face recognition algorithms are applicable [10], [11], or an identity
representation can be obtained via modeling the face frontaliza-
tion/rotation process [12], [13], [14]. The ability to generate a
realistic identity-preserved frontal face is also beneficial for law
enforcement practitioners to identify suspects. Second, other work
focus on learning discriminative representations directly from
the non-frontal faces through either one joint model [2], [3] or
multiple pose-specific models [15], [16]. In contrast, we propose a
novel framework to take the best of both worlds — simultaneously
learn pose-invariant identity representation and synthesize faces
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Fig. 1: Given one or multiple in-the-wild face images as the input,
DR-GAN can produce a unified identity representation, by virtually
rotating the face to arbitrary poses. The learnt representation is
both discriminative and generative, i.e., the representation is able
to demonstrate superior PIFR performance, and synthesize identity-
preserved faces at target poses specified by the pose code.

with arbitrary poses, where face rotation is both a facilitator and
a by-product for representation learning.

As shown in Fig. 1, we propose Disentangled Representation
learning-Generative Adversarial Network (DR-GAN) for PIFR.
Generative Adversarial Networks (GANs) [17] can generate sam-
ples following a data distribution through a two-player game
between a generator G and a discriminator D. Despite many
recent promising developments [18], [19], [20], [21], [22], image
synthesis remains to be the main objective of GAN. To the best
of our knowledge, this is the first work that utilizes the generator
in GAN for representation learning. To achieve this, we conduct
G with an encoder-decoder structure (Fig. 2 (d)) to learn a
disentangled representation for PIFR. The input to the encoder
Genc is a face image of any pose, the output of the decoder Gdec
is a synthetic face at a target pose, and the learnt representation
bridges Genc and Gdec. While G serves as a face rotator, D is
trained to not only distinguish real vs. synthetic (or fake) images,
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but also predict the identity and pose of a face. With the additional
classifications, D strives for the rotated face to have the same
identity as the input real face, which has two effects on G: 1) The
rotated face looks more like the input subject in terms of identity.
2) The learnt representation is more inclusive or generative for
synthesizing an identity-preserved face.

In conventional GANs, G takes a random noise vector to
synthesize an image. In contrast, our G takes a face image, a
pose code c, and a random noise vector z as the input, with the
objective of generating a face of the same identity with the target
pose that can fool D. Specifically, Genc learns a mapping from
the input image to a feature representation. The representation
is then concatenated with the pose code and the noise vector to
feed to Gdec for face rotation. The noise models facial appearance
variations other than identity or pose. Note that it is a crucial
architecture design to concatenate one representation with varying
randomly generated pose codes and noise vectors. This enables
DR-GAN to learn a disentangled identity representation that is
exclusive or invariant to pose and other variations, which is the
holy grail for PIFR when achievable.

Most existing face recognition algorithms only takes one
image for testing. In practice, there are many scenarios when
an image collection of the same individual is available [23]. In
this case, prior work fuse results either in the feature level [24]
or the distance-metric level [25], [26]. Differently, our fusion is
conducted within a unified framework. Given multiple images
as the input, Genc operates on each image, and produces an
identity representation and a coefficient, which is an indicator of
the quality of that input image. Using the dynamically learned
coefficients, the representations of all input images are linearly
combined as one representation. During testing, Genc takes any
number of images and generates a single identity representation,
which is used by Gdec for face synthesis along with the pose code.

Our generator is essential to both representation learning and
image synthesis. We propose two techniques to further improve
Genc and Gdec respectively. First, we have observed that our
Genc can always outperform D in representation learning for
PIFR. Therefore, we propose to replace the identity classification
part of D with the latest Genc during training so that a superior
D can push Genc to further improve itself. Second, since our
Gdec learns a mapping from the feature space to the image space,
we propose to improve the learning of Gdec by regularizing
the average representation of two representations from different
subjects to be a valid face, assuming a convex space of face
identities. These two techniques are shown to be effective in
improving the generalization ability of DR-GAN.

A preliminary version of this work was published in 2017
IEEE Conference on Computer Vision and Pattern Recogni-
tion [27]. We extend it in numerous ways: 1) Instead of having
an extra dimension of the fake class in the identity classification
task of the discriminator, we split it into two tasks: real/fake
and identity classification. 2) We propose two techniques to
improve model generalization during training. 3) We conduct all
experiments using the new models with color image input, and add
numerous experiments to reveal how DR-GAN works including
the disentangled representation, the coefficients analysis, etc.

In summary, this paper makes the following contributions.

• We propose DR-GAN via an encoder-decoder structured
generator that can frontalize or rotate a face with an
arbitrary pose, even the extreme profile.

• Our learnt representation is explicitly disentangled from
the pose variation via the pose code in the generator
and the pose estimation in the discriminator. Similar
disentanglement is conducted for other variations, e.g.,
illumination.

• We propose a novel scheme to adaptively fuse multiple
faces to a single representation based on the learnt coeffi-
cients, which empirically shows to be a good indicator of
the face image quality.

• We propose two techniques to improve the generalization
ability of our generator via model switch and representa-
tion interpolation.

• We achieve state-of-the-art face frontalization and face
recognition performance on multiple benchmark datasets,
including Multi-PIE [28], CFP [9], and IJB-A [23].

2 PRIOR WORK

Generative Adversarial Network (GAN). Goodfellow et al. [17]
introduce GAN to learn generative models via an adversarial
process. With a minimax two-player game, the generator and
discriminator can both improve themselves. GAN has been used
for image synthesis [19], [29], image super resolution [30], and
etc. More recent work focus on incorporating constraints to z or
leveraging side information for better synthesis. E.g., Mirza and
Osindero [18] feed class labels to both G and D to generate
images conditioned on class labels. In [31] and [32], GAN is
generalized to learn a discriminative classifier where D is trained
to not only distinguish between real vs. fake, but also classify the
images. In InfoGAN [21], G applies information regularization to
the optimization by using the additional latent code. In contrast,
this paper proposes a novel DR-GAN aiming for face represen-
tation learning, which is achieved via modeling the face rotation
process. In Sec. 3.6, we will provide in-depth discussion on our
difference to most relevant work in GANs.

One crucial issue with GANs is the difficulty for quantitative
evaluation. Previous work either perform human study to evaluate
the quality of synthetic images [19] or use the features in the
discriminator for image classification [20]. In contrast, we inno-
vatively construct the generator for representation learning, which
can be quantitatively evaluated for PIFR.
Face Frontalization. Generating a frontal face from a profile
face is very challenging due to self-occlusion. Prior methods in
face frontalization can be classified into three categories: 3D-
based methods [10], [11], [33], statistical methods [34], and
deep learning methods [12], [13], [14], [35], [36]. E.g., Hassner
et al. [10] use a mean 3D face model to generate a frontal face
for any subject. A personalized face model could be used but
accurate 3D face reconstruction remains a challenge [37], [38],
[39]. In [34], a statistical model is used for joint frontalization
and landmark localization by solving a constrained low-rank
minimization problem. For deep learning methods, Kan et al. [12]
propose SPAE to progressively rotate a non-frontal face to a frontal
one via auto-encoders. Yang et al. [35] apply the recurrent action
unit to a group of hidden units to incrementally rotate faces in
fixed yaw angles.

All prior work frontalize only near frontal in-the-wild
faces [10], [11] or large-pose controlled faces [13], [14]. In
contrast, we can synthesize arbitrary-pose faces from a large-
pose in-the-wild face. We use the adversarial loss to improve the
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Fig. 2: Comparison of previous GAN architectures and our proposed DR-GAN.

quality of the synthetic images and identity classification in the
discriminator to preserve identity.

Representation Learning. Designing the appropriate objectives
for learning a good representation is an open question [40]. The
work in [41] is among the first to use an encoder-decoder structure
for representation learning, which, however, is not explicitly
disentangled. DR-GAN is similar to DC-IGN [42] — a variational
autoencoder-based method to disentangled representation learn-
ing. However, DC-IGN achieves disentanglement by providing
batch training samples with one attribute being fixed, which may
not be applicable to unstructured in-the-wild data.

Prior work also explore joint representation learning and face
rotation for PIFR where [13], [14] are most relevant to our
work. In [13], Multi-View Perceptron [13] is used to untangle
the identity and view representations by processing them with
different neurons and maximizing the data log-likelihood. Yim
et al. [14] use a multi-task CNN to rotate a face with any pose and
illumination to a target pose, and the L2 loss-based reconstruction
of the input is the second task. Both work focus on image synthesis
and the identity representation is a by-product during the network
learning. In contrast, DR-GAN focuses on representation learning,
of which face rotation is both a facilitator and a by-product. We
differ to [13], [14] in four aspects. First, we explicitly disentangle
the identity representation from pose variations by pose codes.
Second, we employ the adversarial loss for high-quality synthesis,
which drives better representation learning. Third, none of them
applies to in-the-wild faces as we do. Finally, our ability to learn
the representation from multiple unconstrained images has not
been observed in prior work.

Face Image Quality Estimation. Low image quality is known to
be a challenge for vision tasks [43], [44]. Image quality estimation
is important for biometric recognition systems [45], [46], [47].
Numerous methods have been proposed to measure the image
quality of different biometric modalities including face [48], [49],
[50], iris [51], [52], fingerprint [53], [54], and gait [55], [56]. In
the scenario of face recognition, an effective algorithm for face
image quality estimation can help to either (i) reduce the number
of poor images acquired during enrollment, or (ii) improve feature
fusion during testing. Both cases can improve the face recognition
performance. Abaza et al. [48] evaluate multiple quality factors
such as contrast, brightness, sharpness, focus and illumination as
a face image quality index for face recognition. However, they did

not consider pose variance, which is a major challenge in face
recognition. Ozay et al. [50] employ a Bayesian network to model
the relationships between predefined quality related image features
and face recognition, which is show to boost the performance
significantly. The authors in [57] propose a patch-based face image
quality estimation method, which takes into account of geometric
alignment, pose, sharpness, and shadows.

In this work, we employ quality estimation in a unified GAN
framework that considers all factors of image quality presented
in the dataset, with no direct supervision. For each input image,
DR-GAN can generate a coefficient that indicates the quality of the
input image. The representations from multiple images of the same
subject are fused based on the learnt coefficients to generate one
unified representation. We will show that the learnt coefficients are
correlated to the image quality, i.e., a measurement of how good
it can be used for face recognition.

3 THE PROPOSED DR-GAN MODEL

Our proposed DR-GAN has two variations: the basic model can
take one image per subject for training, termed single-image DR-
GAN, and the extended model can leverage multiple images per
subject for both training and testing, termed multi-image DR-
GAN. We start by introducing the original GAN, followed by two
DR-GAN variations, and the proposed techniques to improve the
generalization of our generator. Finally, we will compare our DR-
GAN with previous GAN variations in detail.

3.1 Generative Adversarial Network
Generative Adversarial Network consists of a generator G and
a discriminator D that compete in a two-player minimax game.
The discriminator D tries to distinguish between a real image x
and a synthetic image G(z). The generator G tries to synthesize
realistic-looking images from a random noise vector z that can
fool D, i.e., G(z) being classified as a real image. Concretely, D
and G play the game with the following loss function:

min
G

max
D
Lgan = Ex∼pd(x)[logD(x)]+

Ez∼pz(z)[log(1−D(G(z)))]. (1)

It is proved in [17] that this minimax game has a global
optimum when the distribution pg of the synthetic samples and
the distribution pd of the real samples are the same. Under mild
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conditions (e.g., G and D have enough capacity), pg converges
to pd. In the beginning of training, the samples generated from G
are extremely poor and are rejected by D with high confidences.
In practice, it is better for G to maximize log(D(G(z))) instead
of minimizing log (1−D(G(z))) [17]. This objective results in
the same fixed point of the dynamics of G and D but provides
much stronger gradients early in learning. As a result, G and D
are trained to alternatively optimize the following objectives:

max
D
LDgan = Ex∼pd(x)[logD(x)]+

Ez∼pz(z)[log(1−D(G(z)))], (2)

max
G
LGgan = Ez∼pz(z)[log(D(G(z))]. (3)

3.2 Single-Image DR-GAN

Our single-image DR-GAN has two distinctive novelties com-
pared to prior GANs. First, it learns an identity representation for
a face image by using an encoder-decoder structured generator,
where the representation is the encoder’s output and the decoder’s
input. Since the representation is the input to the decoder to
synthesize various faces of the same subject, i.e., virtually rotating
his/her face, it is a generative representation.

Second, the appearance of a face is determined by not only
the identity, but also the numerous distractive variations, such as
pose, illumination, expression. Thus, the identity representation
learned by the encoder would inevitably include the distractive
side variations. E.g., the encoder would generate different identity
representations for two faces of the same subject with 0◦ and 90◦

yaw angles. To remedy this, in addition to the class labels similar
to semi-supervised GAN [31], we employ side information such
as pose and illumination to explicitly disentangle these variations,
which in turn helps to learn a discriminative representation.

3.2.1 Problem Formulation

Given a face image x with label y = {yd, yp}, where yd

represents the label for identity and yp for pose, the objectives
of our learning problem are twofold: 1) to learn a pose-invariant
identity representation for PIFR, and 2) to synthesize a face image
x̂ with the same identity yd but at a different pose specified by
a pose code c. Our approach is to train a DR-GAN conditioned
on the original image x and the pose code c with its architecture
illustrated in Fig. 2 (d).

Different from the discriminator in conventional GAN, our
D is a multi-task CNN consisting of three components: D =
[Dr, Dd, Dp]. Dr ∈ R1 is for real/fake image classification.
Dd ∈ RN

d

is for identity classification with Nd as the total
number of subjects in the training set. Dp ∈ RN

p

is for pose
classification with Np as the total number of discrete poses.
Note that, in our preliminary work [27], Dr is implemented as
an additional Nd + 1th element of Dd, which has the problem
of unbalanced training data for each dimension in Dd, i.e., the
number of synthetic images (Nd + 1th dimension) equals to
the summation of all images in the real classes (the first Nd

dimensions). This version fixes this problem and is referred as
“split” in Tab. 8. Given a face image x, D aims to classify it
as the real image class, and estimate its identity and pose; while

given a synthetic face image from the generator x̂ = G(x, c, z),
D attempts to classify x̂ as fake, using the following objectives:

LDgan = Ex,y∼pd(x,y)[logD
r(x)]+

E x,y∼pd(x,y),
z∼pz(z),c∼pc(c)

[log(1−Dr(G(x, c, z)))], (4)

LDid = Ex,y∼pd(x,y)[logD
d
yd(x)], (5)

LDpos = Ex,y∼pd(x,y)[logD
p
yp(x)], (6)

where Dd
i and Dp

i are the ith element in Dd and Dp. For clarity,
we will eliminate all subscripts for expected value notations, as all
random variables are sampled from their respected distributions
(x,y ∼ pd(x,y), z ∼ pz(z), c ∼ pc(c)). The final objective for
training D is the weighted average of all objectives:

max
D
LD = λgLDgan + λdLDid + λpLDpos, (7)

where we set λg = λd = λp = 1.
Meanwhile, G consists of an encoder Genc and a decoder

Gdec. Genc aims to learn an identity representation f(x) =
Genc(x) from a face image x. Gdec aims to synthesize a face
image x̂ = Gdec(f(x), c, z) with identity yd and a target pose
specified by c, and z ∈ RN

z

is the noise modeling other variations
besides identity or pose. The pose code c ∈ RN

p

is a one-hot
vector with the target pose yt being 1. The goal of G is to fool D
to classify x̂ to the identity of input x and the target pose with the
following objectives:

LGgan = E[logDr(G(x, c, z))], (8)

LGid = E[logDd
yd(G(x, c, z))], (9)

LGpos = E[logDp
yt(G(x, c, z))]. (10)

Similarly, the final objective for training the discriminator G
is the weighted average of each objective:

max
G
LG = µgLGgan + µdLGid + µpLGpos, (11)

where we set µg = µd = µp = 1.
G and D improves each other during the alternative training

process. With D being more powerful in distinguishing real
vs. fake images and classifying poses, G strives for synthesizing
an identity-preserved face with the target pose to compete with D.
We benefit from this process in three aspects. First, the learnt
representation f(x) will preserve more discriminative identity
information. Second, the pose classification in D guides the pose
of the rotated face to be more accurate. Third, with a separate pose
code as input to Gdec, Genc is trained to disentangle the pose
variation from f(x), i.e., f(x) should encode as much identity
information as possible, but as little pose information as possible.
Therefore, f(x) is not only generative for image synthesis, but
also discriminative for PIFR.

3.2.2 Network Structure
The network structure of single-image DR-GAN is shown in
Tab. 1. We adopt CASIA-Net [58] with batch normalization (BN)
for Genc and D. Besides, since the stability of the GAN game
suffers if sparse gradient layers (MaxPool, ReLU) are used, we
replace them with strided convolution and exponential linear
unit (ELU) respectively. D is trained to optimize Eqn. 7 by
adding a fully connected layer with the softmax loss for real
vs. fake, identity, and pose classifications respectively. G includes
Genc and Gdec that are bridged by the to-be-learned identity
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TABLE 1: The structures of Genc, Gdec and D networks in single-
image and multi-image DR-GAN. Blue texts represent extra elements
to learn the coefficient ω in the Genc of multi-image DR-GAN.

Genc and D Gdec

Layer Filter/Stride Output Size Layer Filter/Stride Output Size

FC 6× 6× 320
Conv11 3× 3/1 96× 96× 32 FConv52 3× 3/1 6× 6× 160
Conv12 3× 3/1 96× 96× 64 FConv51 3× 3/1 6× 6× 256

Conv21 3× 3/2 48× 48× 64 FConv43 3× 3/2 12× 12× 256
Conv22 3× 3/1 48× 48× 64 FConv42 3× 3/1 12× 12× 128
Conv23 3× 3/1 48× 48× 128 FConv41 3× 3/1 12× 12× 192

Conv31 3× 3/2 24× 24× 128 FConv33 3× 3/2 24× 24× 192
Conv32 3× 3/1 24× 24× 96 FConv32 3× 3/1 24× 24× 96
Conv33 3× 3/1 24× 24× 192 FConv31 3× 3/1 24× 24× 128

Conv41 3× 3/2 12× 12× 192 FConv23 3× 3/2 48× 48× 128
Conv42 3× 3/1 12× 12× 128 FConv22 3× 3/1 48× 48× 64
Conv43 3× 3/1 12× 12× 256 FConv21 3× 3/1 48× 48× 64

Conv51 3× 3/2 6× 6× 256 FConv13 3× 3/2 96× 96× 64
Conv52 3× 3/1 6× 6× 160 FConv12 3× 3/1 96× 96× 32
Conv53 3× 3/1 6× 6× (Nf+1) FConv11 3× 3/1 96× 96× 3

AvgPool 6× 6/1 1× 1× (Nf+1)

FC (D only) Nd +Np + 1

representation f(x) ∈ RN
f

, which is the AvgPool output in our
Genc. f(x) is concatenated with a pose code c and a random
noise z. A series of fractionally-strided convolutions (FConv) [20]
transforms the (Nf +Np +Nz)-dim concatenated vector into a
synthetic image x̂ = G(x, c, z), which is the same size as x. G
is trained to maximize Eqn. 11 when a synthetic face x̂ is fed to
D and the gradient is back-propagated to update G.

Previous work in face rotation use L2 loss [13], [14] to enforce
the synthetic face to be similar to the ground truth face at the
target pose. This line of work requires the training data to include
face image pairs of the same identity at different poses, which
is achievable for controlled datasets such as Multi-PIE, but hard
to fulfill for in-the-wild datasets. On contrary, DR-GAN does not
require image pairs since there is no direct supervision on the
synthetic images. This enables us to utilize extensive real-world
unstructured datasets for model training. To initialize the training,
given a training image, we randomly sample the pose code with
equal probability for each pose view. Such a random sampling is
conducted at each epoch during the training, for the purpose of
assigning multiple pose codes to one training image. For the noise
vector, we also randomly sample each dimension independently
from the uniform distribution in the range of [−1, 1].

3.3 Multi-Image DR-GAN

Our single-image DR-GAN extracts an identity representation and
performs face rotation by processing one single image. Yet, we
often have multiple images per subject in training and sometimes
in testing. To leverage them, we propose multi-image DR-GAN
that can benefit both the training and testing stages. For training,
it can learn a better identity representation from multiple images
that are complementary to each other. For testing, it can enable
template-to-template matching, which addresses a crucial need in
real-world surveillance applications.

The multi-image DR-GAN has the same D as single-image
DR-GAN, but a different G as shown in Fig. 3. Given n images
{xi}ni=1 of the same identity yd at various poses as input, besides
extracting the feature representation f(xi), Genc also estimates a
confident coefficient ωi for each image, which predicts the quality
of the learnt representation. The fused representation of n images
is the weighted average of all representations,
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Fig. 3: Generator in mlti-image DR-GAN. From an image set of
a subject, we can fuse the features to a single representation via
dynamically learnt coefficients and synthesize images in any pose.

f(x1, ...,xn) =

∑n
i=1 ωif(xi)∑n

i=1 ωi
. (12)

This fused representation is then concatenated with c and z
and fed to Gdec to generate a new image, which is expected to
have the same identity as all input images and a target pose yt

specified by the pose code. Thus, each sub-objective for learning
G has (n+ 1) terms:

LGgan =
n∑
i=1

[
E[log(Dr(G(xi, c, z)))]

]
+E[log(Dr(G(x1, ...,xn, c, z)))]. (13)

The similar extension applied for LGid and LGpos. The coef-
ficient ωi in Eqn. 12 is learned so that an image with a higher
quality contributes more to the fused representation. The quality
is an indicator of the PIFR performance of the image, rather than
the low-level image quality. Face quality prediction is a classic
topic where many prior work attempt to estimate the former from
the latter [50], [57]. Our coefficient learning is essentially the
quality prediction, from novel perspectives in contrast to prior
work. That is, without explicit supervision, it is driven by D
through the decoded imageGdec(f(x1, ...,xn), c, z), and learned
in the context of, as a byproduct of, representation learning. Note
that, jointly training multiple images per subject results in one,
but not multiple, generator, i.e., all Genc in Fig. 3 share the same
parameters. This makes it flexible to take an arbitrary number of
images during testing for representation learning and face rotation.

For the network structure, multi-image DR-GAN only makes
minor modification from the single-image counterpart. Specifi-
cally, at the end of Genc, we add one more convolutional filter
to the layer before AvgPool to estimate the coefficient ω. We
apply Sigmoid activation to constrain ω in the range of [0, 1].
During training, despite unnecessary, we keep the number of input
images per subject n the same for the sake of convenience in
image sampling and network training. To mimic the variation in
the number of input images, we use a simple but effective trick:
applying Dropout on the coefficients ω: each ω is set to 0 with a
probability of 0.5. Hence, during training, the network takes any
number of inputs varying from 1 to n.

DR-GAN can be used in PIFR, image quality prediction, and
face rotation. While the network in Fig. 2 (d) is used for training,
our network for testing is much simplified. First, for PIFR, only
Genc is used to extract the representation from one or multiple
images. Second, for quality prediction, only Genc is used to
compute ω from one image. Thirdly, both Genc and Gdec are used
for face rotation by specifying a target pose and a noise vector.
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Fig. 4: Recognition performance of Genc and Dd when training DR-
GAN with different Dd on Multi-PIE dataset.

3.4 Improving Genc via Model Switch
The ultimate goal of DR-GAN is to learn a disentangled rep-
resentation for PIFR. Our Genc aims for identity representation
learning. While our Dd aims for identity classification, it also
learns an identity representation that could be used for face
recognition during testing, the same as most previous work [58],
[59]. The fact that both Genc and Dd can be used for face
recognition motivates us to explore two questions. First, whether
Genc can outperform Dd for PIFR. Second, whether a better Dd

will lead to a better Genc in representation learning.
To answer the above questions, we conduct a bounding ex-

periment to compare the face recognition performance of Genc
and Dd. Specifically, using the Multi-PIE training set, we train
a single-task CNN-based face recognition model for 20 epochs.
We save the models at 5th, 10th, 15th, and 20th epochs, termed
as Dd

5 , Dd
10, Dd

15, Dd
20 respectively. These four models can be

used as Dd and to train four single-image DR-GAN models.
Each model is trained until converged where we only update
G with Dd being fixed, which leads to four Genc termed as
G5
enc, G

10
enc, G

15
enc, G

20
enc respectively.

Both Genc and Dd are used to extract identity features for
face recognition on Multi-PIE, with the results in Fig. 4. We
have three observations. First, the performance of Dd shows
that Dd

5 < Dd
10 < Dd

15 < Dd
20. This is expected since the

performance increases as the model is being trained for more
epochs. Second, the performance of Genc also shows a similar
trend with G5

enc < G10
enc < G15

enc < G20
enc, which indicates that a

better Dd indeed leads to a better Genc. Third, Genc consistently
outperforms Dd, which suggests that the learnt representation in
Genc is more discriminative than the representation in conven-
tional CNN-based face recognition models.

Based on the above observations, we propose an iterative
scheme to switch between Genc and Dd in order to further
improve Genc. As shown in Tab. 1, Genc and Dd shares the same
network structure except thatGenc has an additional convolutional
filter for the coefficient estimation. During training, we iteratively
replace Dd with the latest Genc by removing the additional
convolutional filter after several epochs. Since Genc can always
outperform Dd, we will expect a better Dd after model switch.
Moreover, a better Dd will lead to a better Genc, which is then
used as Dd for the next switch. This iterative switch will lead to a
better representation and thus better PIFR performance.

3.5 Improving Gdec via Representation Interpolation
Our Genc learns a mapping from the image space to a represen-
tation space and Gdec learns the mapping from the representation
space to the image space. Genc is important for PIFR while Gdec

is crucial for face synthesis. The usage of pose code, random noise,
as well as the model switch techniques are useful for learning a
better disentangled representation for Genc. However, even with
a perfect representation from Genc, a poor Gdec may synthesize
unsatisfactory face images.

To learn a better Gdec, we propose to employ representation
interpolation to regularize the learning process. Prior GANs [20]
have observed that interpolation between two noise vectors can
still produce a valid image. Similarly in our work, by assuming a
convex identity space, the interpolation between two representa-
tions f(x1), f(x2) extracted from the face images x1, x2 of two
different identities should still be a valid face but with an unknown
identity. During training, we randomly pair images with different
identities to generate an interpolated representation:

fα(x1,x2) = αf(x1) + (1− α)f(x2). (14)

We use the average, f 1
2

, for simplicity. Other fixed or random
weights can be used as well. Similar to the objectives for G and D
in multi-image DR-GAN, we have additional terms to regularize
the averaged representation. D aims to classify the generated
image to the fake class by having the following extra term:

E[log(1−Dr(Gdec(f 1
2
(x1,x2), c, z)))]. (15)

And G aims to generate an image that can fool D to classify
it as the real class and the target pose, and ignore the identity part,
with two additional terms in LGgan and LGpos:

E[log(Dr(Gdec(f 1
2
(x1,x2), c, z)))], (16)

E[log(Dp
yt(Gdec(f 1

2
(x1,x2), c, z)))]. (17)

With the proposed techniques to improve bothGenc andGdec,
we expect to improve the generalization ability of DR-GAN for
both representation learning and image synthesis. As will be
shown in the experiments, the proposed techniques are effective in
improving the performance of DR-GAN.

3.6 Comparison to Prior GANs
We compare DR-GAN with most relevant GAN variants (Fig. 2).
Conditional GAN. Conditional GAN [18], [60] extends GAN by
feeding the labels to bothG andD to generate images conditioned
on labels, either class labels, modality information, or even partial
data for inpainting. It has been used to generate MNIST digits
conditioned on the class label and to learn multi-modal models.
In conditional GAN, D is trained to classify a real image with
mismatched conditions to a fake class. In DR-GAN, D classifies
a real image to the corresponding class based on the labels.
Auxiliary Classifier GAN. Odena et al. [61] extends conditional
GAN to add an additional classifier to D to classify real images
into N c classes. DR-GAN shares a similar loss for D but with a
distinguish purpose. The auxiliary classifier in Odenaet al. [61] is
used to help improving the stability and quality of GAN training.
Meanwhile, we employ two additional classifiers to guide the
representation learning in the encoder-decoder structure G.
Adversarial Autoencoder (AAE). In AAE [62],G is the encoder
of an autoencoder. AAE has two objectives in order to turn an
autoencoder into a generative model: the autoencoder reconstructs
the input image, and the latent vector generated by the encoder
matches an arbitrary prior distribution by training D. DR-GAN
differs to AAE in two aspects. First, the autoencoder in [62] is
trained to learn a latent representation similar to an imposed prior
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Fig. 5: The mean faces of 13 pose groups in CASIA-Webface. The blurriness shows the challenges of pose estimation for large poses.

distribution, while our encoder-decoder learns discriminative iden-
tity representations. Second, D in AAE is trained to distinguish
real/fake distributions while our D is trained to classify real/fake
images, the identity and pose of the images.

4 EXPERIMENTS

DR-GAN can be used for face recognition by using the learnt
representation fromGenc, and face rotation by specifying different
pose codes and noise vectors with G. We evaluate DR-GAN
quantitatively for PIFR and qualitatively for face rotation. We
further conduct experiments to analyze the training strategy, dis-
entangle representation, and image coefficients. Our experiments
are conducted for both controlled and in-the-wild databases.

4.1 Experimental Settings

Databases. Multi-PIE [28] is the largest database for evaluating
face recognition under pose, illumination, and expression varia-
tions in controlled setting. For fair comparison, we follow the
setting in [13]: using 337 subjects with neutral expression, 9 poses
within±60◦, and 20 illuminations. The first 200 subjects are used
for training and the rest 137 subjects for testing. In the testing set,
one image per subject with frontal view and neutral illumination
forms the gallery set and the others are the probe set. For Multi-
PIE experiments, we add an additional illumination code similar to
the pose code to disentangle the illumination variation. Therefore,
we have Nd = 200, Np = 9, N il = 20. Further, to demonstrate
our ability in synthesizing large-pose faces, we train a second
model with training faces up to 90◦ (i.e., Np = 13).

For the in-the-wild setting, we train on CASIA-WebFace [58]
and AFLW [63], and test on CFP [9] and IJB-A [23]. CASIA-
WebFace includes 494, 414 near-frontal faces of 10, 575 subjects.
We add the AFLW (25, 993 images) to the training set to supply
more pose variation. Since there is no identity information in
this dataset, those images only used to compute GAN, pose
related losses. CFP consists of 500 subjects each with 10 frontal
and 4 profile images. The evaluation protocol includes frontal-
frontal (FF) and frontal-profile (FP) face verification, each having
10 folders with 350 same-person pairs and 350 different-person
pairs. As another large-pose database, IJB-A has 5, 396 images
and 20, 412 video frames of 500 subjects. It defines template-to-
template face recognition where each template has one or multiple
images. We remove 27 overlap subjects between CASIA-Webface
and IJB-A from the training. We have Nd = 10, 548, Np = 13.
We set Nf = 320, Nz = 50 for both settings.
Implementation Details. Following [58], we align all face
images to a canonical view of size 110×110. We randomly sample
96× 96 regions from the aligned 110× 110 face images for data
augmentation. Image intensities are linearly scaled to the range of
[−1, 1]. To provide pose labels yp for CASIA-WebFace, we apply
3D face alignment [64], [65], [66] to classify each face to one of
13 poses. The mean face image of each pose group is shown in
Fig. 5. The mean faces of profile faces are less sharp than those of

TABLE 2: DR-GAN and its partial variants performance comparison.

Verification Identification

Method @FAR=.01 @FAR=.001 @Rank-1 @Rank-5

DR-GAN −Dr 80.0± 2.2 55.5± 3.5 88.7± 0.8 95.0± 0.8
DR-GAN −Dp 78.0± 2.0 53.9± 6.8 87.5± 0.8 94.5± 0.7
DR-GAN 81.2± 2.7 56.2± 9.1 89.0± 1.4 95.1± 0.9

−Dr

−Dp

Fig. 6: Generated faces of DR-GAN and its partial variants.

the near-frontal pose groups, which indicates the pose estimation
error caused by the face alignment algorithm.

Our implementation is extensively modified from a publicly
available implementation of DC-GAN. We follow the optimization
strategy in [20]. The batch size is set to be 64. All weights
are initialized from a zero-centered normal distribution with a
standard deviation of 0.02. Adam optimizer [67] is used with a
learning rate of 0.0002 and momentum 0.5.
Evaluation. The proposed DR-GAN aims for both face repre-
sentation learning and face image synthesis. The cosine distance
between two representations is used for face recognition. We also
evaluate the performance of face recognition w.r.t. different num-
bers of images in both training and testing. For image synthesis,
we show qualitative results by comparing different losses and
interpolation of the learnt representations. We also evaluate the
various effects of different components in our method.

4.2 Ablation study
Discriminator Components. Our discriminator is designed as
a multi-task CNN with three components, namely Dg, Dd, Dp,
for real/fake, identity and pose classification respectively. While
Dd plays a critical role to guide the generator to preserve the
input identity, we would like to study the role of the remaining
components. Table 2 presents the recognition performance of
single-image DR-GAN partial variants with each of D compo-
nents removed. While the variant without adversarial loss has a
slightly performance drop, the model without pose classification
task has more severe drop. This shows the important of generating
face images in different poses. Also, the role of each component is
shown in generated faces (Fig. 6). When removing Dr , generated
images has lower quality although they can be realized as faces
and in correct poses. When removing Dp, the pose of generated
images can’t be controlled by the pose code and usually affected
by the input face’s pose. This can be caused by pose information
residing in the feature representation. This also explains the severe
drop in the model’s recognition performance.
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Fig. 7: Responses of two filters: filter with the highest responses to
identity (left), and pose (right). Responses of each row are of the same
subject, and each column are of the same pose. Note the within-row
similarity on the left and within-column similarity on the right.

Disentangled Representation. In DR-GAN, we claim that the
learnt representation is disentangled from pose variations via the
pose code. To validate this, following the energy-based weight
visualization method proposed in [59], we perform feature visu-
alization on the FC layer, denoted as h ∈ R6×6×320, in Gdec.
Our goal is to select two out of the 320 filters that have highest
responses for identity and pose respectively. The assumption is
that if the learnt representation is pose-invariant, there should be
separate neurons to encode the identity features and pose features.

Recall that we concatenate f(x) ∈ R320, c ∈ R13 and
z ∈ R50 into one feature vector, which multiplies with a weight
matrix Wfc ∈ R(320+13+50)×(6×6×320) and generates the output
h with hi ∈ R6×6 being the feature output of one filter in
FC. Let Wfc = [Wfx;Wc;Wz] denote the weight matrix
with three sub-matrices, which would multiply with f(x), c, z
respectively. Taking the identity matrix as an example, we have
Wfx = [W1

fx,W
2
fx, ...,W

320
fx ] where Wi

fx ∈ R320×36. We
compute an energy vector sd ∈ R320 with each element as:
sid = ||Wi

fx||F . We then find the filter with the highest energy in
sd as kd = argmaxi s

i
d. Similarly, by partitioning Wc, we find

another filter, denoted as kp, with the highest energy for pose.
Given the representation f(x) of one subject, along with a

pose code c and noise z, we can compute the responses of two fil-
ters via hkd = (f(x); c; z)T Wkd

fc and hkp = (f(x); c; z)T W
kp
fc .

By varying the subjects and pose codes, we generate two arrays of
responses in Fig. 7, for identity (hkd ) and pose (hkp ) respectively.
For both arrays, each row represents the responses of the same
subject and each column represents the same pose. The responses
for identity encode the identity features, where each row shows
similar patterns and each column does not share similarity. On
contrary, for pose responses, each column share similar patterns
while each row is not related. This visualization supports our claim
that the learnt representation is pose-invariant.
Single vs. Multiple Image DR-GAN. We evaluate the effect
of the number of training images (n) per subject on the face
recognition performance on CFP. Specifically, with the same
training set, we train three models with n = 1, 4, 6, where
n = 1 denotes single-image DR-GAN and n > 1 denotes
multi-image DR-GAN. The face verification performance on CFP
using f(x) of each model are shown in Tab. 3. We observe
the advantage of multi-image DR-GAN over the single-image
counterpart despite they use the same amount of training data,
which attributes to more constraints in learning Genc that leads to
a better representation. However, we do not keep increasing n due

TABLE 3: Comparison of single vs. multi-image DR-GAN on CFP.

Method Frontal-Frontal Frontal-Profile

DR-GAN: n=1 97.13± 0.68 90.82± 0.28
DR-GAN: n=4 97.86± 0.75 92.93± 1.39
DR-GAN: n=6 97.84± 0.79 93.41± 1.17

TABLE 4: Performance of Genc on Multi-PIE when keep switching
to Dd. At Epoch 0, Genc is trained with only the softmax loss.

Epoch No. 0 20 40 60 80 100

Identification rate (%) 79.7 84.8 87.1 88.7 89.8 90.4

to the limited computation capacity. In the rest of the paper, we
use multi-image DR-GAN with n = 6 unless specified.
Model Switch. In Sec. 3.4, we propose to improve Genc via
model switch, i.e., replacing Dd with Genc during training.
Table 4 shows the performance of Genc for face recognition
on Multi-PIE. At the beginning, Genc is initilized with a model
trained with the softmax loss for identity classification. We use
Genc to replace Dd and retrain G with random initialization.
When G converges, based on the accuracy on a 5-held-out-
subjects validation set, we replace Dd with Genc and repeat above
steps. Table 4 reports face recognition performance of Genc on
Multi-PIE test set at each switch. Clearly, the performance keeps
improving as training goes on. This study implies that DR-GAN
may leverage the future development of face recognition, by using
a 3rd party recognizer as Dd and further improve upon it.

4.3 Confident Coefficients

In multi-image DR-GAN, we learn a confident coefficient for each
input image by assuming that the learnt coefficient is indicative of
the image quality, i.e., how good it can be used for face recogni-
tion. Therefore, a low-quality image should have a relatively poor
representation and small coefficients so that it would contribute
less to the fused representation. To validate this assumption, we
compute the confident coefficients for all images in IJB-A and
CFP databases and plot the distribution as shown in Fig. 8.

For IJB-A, we show four example images with low, medium-
low, medium-high, and high coefficients. It is obvious that the
learnt coefficients are correlated to the image quality. Images with
relatively low coefficients are usually blurring, with large poses
or failure cropping. While images with relatively high coefficients
are of very high quality with frontal faces and less occlusion.
Since CFP consists of 5, 000 frontal faces and 2, 000 profile faces,
we plot their distributions separately. Despite some overlap in the
middle region, the profile faces clearly have relatively low coeffi-
cients compared to the frontal faces. Within each distribution, the
coefficient are related to other variations expect yaw angles. The
low-quality images for each pose group are with occlusion and/or
challenging lighting conditions, while the high-quality ones are
with less occlusion and under normal lighting.

To quantitatively evaluate the correlation between the coeffi-
cients and face recognition performance, we conduct an identity
classification experiment on IJB-A. Specifically, we randomly
select all frames of one video for each subject and select half
of images for training and remaining for testing. The training and
testing sets share the same identities. Therefore, in the testing
stage, we can use the output of the softmax layer as the probability
of each testing image belonging to the right identity class. This
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Fig. 8: Coefficient distributions on IJB-A (a) and CFP (b). For IJB-A, we visualize images at four regions of the distribution. For CFP, we plot
the distributions for frontal faces (blue) and profile faces (red) separately and show images at the heads and tails of each distribution.
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Fig. 9: Coefficients and classification probabilities correlation.

TABLE 5: Performance of IJB-A when removing images by threshold
ωt. “Selected” shows the percentage of retained images.

ωt
Selected Verification Identification

(%) @FAR=.01 @FAR=.001 @Rank-1 @Rank-5

0 100.0 84.3± 1.4 72.6± 4.4 91.0± 1.5 95.6± 1.1
0.1 94.9 84.2± 1.7 72.7± 2.9 91.3± 1.3 95.7± 1.0
0.25 71.9 83.6± 1.2 73.3± 3.0 90.7± 1.2 95.2± 1.0
0.5 24.6 80.9± 1.9 71.3± 4.7 86.5± 1.9 93.1± 1.6
1.0 5.7 77.8± 2.2 64.0± 6.2 83.4± 2.3 91.6± 1.2

probability is an indicator of how well the input image can be
recognized as the true identity. Given the estimated coefficients,
we plot these two values for the testing set, as shown in Fig. 9.
These two values are highly correlated to each other with a
correlation of 0.69, which again supports our assumption that the
learnt coefficients are indicative of the image quality.
Image selection with ω. One common application of image
quality is to prevent low-quality images from contributing to
face recognition. To validate whether our coefficients have such
usability, we design the following experiment. For each template
in IJB-A, we keep images whose coefficients ω are larger than
a predefined threshold ωt, or if all ω are smaller we keep one
image with the highest ω. Tab. 5 reports the performance on IJB-
A, with different ωt. With ωt being 0, all test images are kept and
the result is the same as Tab. 8. These results show that keeping
all or majority of the samples are better than removing them.
This is encouraging as it reflects the effectiveness of DR-GAN
in automatically diminishing the impact of low-quality images,
without removing them by thresholding.
Feature fusion with ω. We also would like to show our proposed
feature fusion using coefficient ω is effective for the template to
template matching purpose. We compare it with multiple fusion

TABLE 6: Fusion schemes comparisons on IJB-A dataset.

Verification Identification

Method @FAR=.01 @FAR=.001 @Rank-1 @Rank-5

Sc
or

e

Min 78.3± 2.7 46.0± 6.9 86.7± 1.4 94.0± 0.6
Max 22.8± 2.0 12.3± 2.3 30.6± 2.8 52.8± 2.7
Mean 72.8± 2.9 49.2± 5.3 85.7± 1.3 93.1± 0.6
Mean-min 82.4± 2.2 58.5± 6.3 90.2± 1.0 95.6± 0.5
Softmax 84.3± 1.6 69.2± 6.8 90.1± 1.0 95.5± 0.8

Fe
at

ur
e Max 19.0± 1.3 12.1± 1.7 45.4± 5.3 62.6± 0.9

Mean 83.0± 1.5 67.0± 4.8 89.6± 1.5 95.4± 0.7
ω-fusion 84.3± 1.4 72.6± 4.4 91.0± 1.5 95.6± 1.1

methods in both feature level and score level. Table 6 shows
comparisons of different fusion methods on our multi-image DR-
GAN features. To compare two template with size n1, n2, for
score-level, min, max, mean are respectively taking minimum,
maximum and average of all n1n2 possible pairwise distances.
Mean-min is the average of n1 + n2 minimum distances from
each feature from one template to the other. All of these meth-
ods have the time complexity of O(n1n2). Softmax, proposed
in [68], aggregates multiple weighted averages of the pair-wise
scores, where each weight is the function of the score using an
exponential function in different scales. It has the time complexity
of O(mn1n2), where m is the number of weight scale. Here,
following [15], we use a total of m = 21 scales from 0 to 20. For
feature-level fusion, max, mean are respectively max-pooling and
average-pooling along each feature dimension. All feature-level
fusion methods, including our ω-fusion, have the time complexity
ofO(n1+n2). From Tab. 6, our fusion using estimated ω achieves
the best performance among all methods.

4.4 Representation Learning
Loss Function Comparison. Our Gdec and D can be viewed
as a loss function for f(x). Typical loss functions used in deep
learning-based face recognition can be divided into two categories:
probability- and energy-based losses. Probability-based losses
(i.e., softmax and its variants) usually compute a distribution
of probability to all identities. Meanwhile, energy-based losses
(contrastive, triplet, etc.) associate an energy to each configuration.
Here, we compare DR-GAN to multiple common loss functions
of face recognition. To have a fair comparison on IJB-A, for all
functions, we use our Genc network architecture and “mean min”
fusion. DR-GAN by itself can surpass all prior loss functions
(Tab. 7). Also, any advanced loss function can also be beneficial
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TABLE 7: Loss function comparisons. All use “mean min” fusion.

Verification Identification

Method @FAR=.01 @FAR=.001 @Rank-1 @Rank-5

Softmax 75.9± 3.9 44.1± 9.9 87.8± 0.9 94.6± 0.6
Center [70] 74.9± 3.1 50.3± 7.0 87.2± 1.4 95.2± 0.9
Triplet [3] 74.9± 3.1 50.3± 7.0 87.2± 1.4 95.2± 0.9
AM-Softmax [69] 81.3± 3.0 52.7± 8.9 88.7± 0.7 94.3± 0.4
DR-GANsingle img. 81.2± 2.7 56.2± 9.1 89.0± 1.4 95.1± 0.9
DR-GAN 82.4± 2.3 58.5± 8.0 90.2± 1.0 95.6± 0.5
DR-GANAM 85.7± 1.6 70.3± 5.79 91.0± 1.5 95.6± 1.1

TABLE 8: Performance comparison on IJB-A dataset.

Verification Identification

Method @FAR=.01 @FAR=.001 @Rank-1 @Rank-5

GOTS [23] 40.6± 1.4 19.8± 0.8 44.3± 2.1 59.5± 2.0
Wang et al. [25] 72.9± 3.5 51.0± 6.1 82.2± 2.3 93.1± 1.4
DCNN [24] 78.7± 4.3 – 85.2± 1.8 93.7± 1.0
PAMfrontal [15] 73.3± 1.8 55.2± 3.2 77.1± 1.6 88.7± 0.9
PAMs [15] 82.6± 1.8 65.2± 3.7 84.0± 1.2 92.5± 0.8
p-CNN [59] 77.5± 2.5 53.9± 4.2 85.8± 1.4 93.8± 0.9
FF-GAN [71] 85.2± 1.0 66.3± 3.3 90.2± 0.6 95.4± 0.5

DR-GAN [27] 77.4± 2.7 53.9± 4.3 85.5± 1.5 94.7± 1.1
DR-GANsplit 84.3± 1.4 72.6± 4.4 91.0± 1.5 95.6± 1.1
DR-GANsplit+inter 85.6± 1.5 75.1± 4.2 91.3± 1.6 95.8± 1.0
DR-GANAM 87.2± 1.4 78.1± 3.5 92.0± 1.3 96.1± 0.7

TABLE 9: Performance (Accuracy) comparison on CFP.

Method Frontal-Frontal Frontal-Profile

Sengupta et al. [9] 96.40± 0.69 84.91± 1.82
Sankarana et al. [72] 96.93± 0.61 89.17± 2.35
Chen et al. [73] 98.67± 0.36 91.97± 1.70
Human 96.24± 0.67 94.57± 1.10

DR-GAN [27] 97.84± 0.79 93.41± 1.17
DR-GANsplit+inter 98.13± 0.81 93.64± 1.51
DR-GANAM 98.36± 0.75 93.89± 1.39

to DR-GAN: energy-based losses (center, triplet, etc.) can be
employed directly on our representation f(x) or probability-
based losses (angular, additive-margin softmax, etc.) can be used
to replace the Dd’s softmax. Empirically, using additive-margin
softmax [69] as a softmax replacement on Dd can further improve
DR-GAN performance, we name this variant as DR-GANAM.
Results on Benchmark Databases. We compare DR-GAN with
state-of-the-art face recognizers on IJB-A, CFP and Multi-PIE.

Table 8 shows the performance of both face identification
and verification on IJB-A. For our results, we report results of
multi-image DR-GAN using the proposed ω-fusion. The first row
shows the performance of our preliminary work [27]. “split”
represents the model trained with the separated Dr . “+inter”
represents the additional changes made by the representation
interpolation proposed in Sec. 3.5, which is shown to be effective
in improving the face recognition performance. The final row
presents the variant using additive margin softmax [69] (also
with “split” and “interpolation”). Compared to the state of the
art, DR-GAN achieves superior results on both verification and
identification. Also, our work has made substantial improvement
over the preliminary version [27]. These in-the-wild results show
the power of DR-GAN for PIFR.

TABLE 10: Identification rate (%) comparison on Multi-PIE dataset.

Method 0◦ 15◦ 30◦ 45◦ 60◦ Average

Zhu et al. [74] 94.3 90.7 80.7 64.1 45.9 72.9
Zhu et al. [13] 95.7 92.8 83.7 72.9 60.1 79.3
Yim et al. [14] 99.5 95.0 88.5 79.9 61.9 83.3
Using L2 loss 95.1 90.8 82.7 72.7 57.9 78.3

DR-GAN [27] 97.0 94.0 90.1 86.2 83.2 89.2
DR-GAN 98.1 94.9 91.1 87.2 84.6 90.4
DR-GANAM 98.1 95.0 91.3 88.0 85.8 90.8

TABLE 11: Representation f(x) vs. synthetic image x̂ on IJB-A.

Verification Identification

Features @FAR=.01 @FAR=.001 @Rank-1 @Rank-5

f(x̂) 78.5± 1.9 60.3± 3.7 86.9± 1.6 94.2± 1.3
Dd(x̂) 77.1± 2.9 53.5± 6.2 85.7± 1.7 93.6± 1.6
f ′(x̂) 79.2± 2.9 60.8± 7.3 89.2± 1.4 95.3± 1.1

f ′(x̂)&f(x̂) 83.0± 1.8 71.7± 3.6 90.7± 1.4 95.6± 1.0
f(x) 84.3± 1.4 72.6± 4.4 91.0± 1.5 95.6± 1.1

Table 9 shows the comparison on CFP evaluated with Accu-
racy. Results are reported with the average with standard deviation
over 10 folds. Overall, we achieve comparable performance on
frontal-frontal verification while having 1.92% improvement on
the frontal-profile verification.

Table 10 shows the face identification performance on Multi-
PIE compared to the methods with the same setting. Our method
shows a significant improvement for large-pose faces, e.g., there is
more than 20% improvement margin at±60◦ poses. The variation
of recognition rates across different poses is much smaller than the
baselines, which suggests that our learnt representation is more
robust to the pose variation.
Representation vs. Synthetic Image for PIFR. Many prior
work [10], [11] use frontalized faces for PIFR. To evaluate the
identity preservation of synthetic images from DR-GAN, we also
perform face recognition using our frontalized faces. Any face
feature extractor could be applied to them, including Genc or
Dd. However, both are trained on real images of various poses.
To specialize to synthetic frontal faces, we fine-tune Genc with
the synthetic images and denote as f ′(·). As shown in Tab. 11,
although the performance of synthetic images (and its score-level
fusion denoted as f ′(x̂)&f(x̂)) is not as good as the learnt
representation, using the fine-tuned Genc on synthetic frontal still
achieves comparable perfromance to the previous methods, which
shows the identity preservation ability of DR-GAN.

4.5 Face Rotation
Adversarial Loss vs. L2 loss. Prior work [14], [35], [74] on
face rotation normally employ the L2 loss to learn a mapping
between two views. To compare the L2 loss with our adversarial
loss, we train a model where G is supervised by an L2 loss on
the ground truth face with the target view. The training process is
kept the same for a fair comparison. As shown in Fig. 10, DR-
GAN can generate far more realistic faces that are similar to the
ground truth faces in all views. Meanwhile, images synthesized
by the L2 loss cannot maintain high frequency components and
are blurry. In fact, L2 loss treats each pixel equally, which leads
to the loss of discriminative information. This inferior synthesis
is also reflected in the lower PIFR performance in Tab. 10. In
contrast, by integrating the adversarial loss, we expect to learn a
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Input Lighting 00 01 04 12 Pose 0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦

L2

DR-GAN

GT

Fig. 10: Face rotation comparison on Multi-PIE. Given the input (in illumination 07 and 75◦ pose), we show synthetic images of L2 loss (top),
adversarial loss (middle), and ground truth (bottom). Column 2-5 show the ability of DR-GAN in simultaneous face rotation and re-lighting.

(a)

(b)
Input 0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦

(c)

Fig. 11: Interpolation of f(x), c, and z. (a) Interpolating between identity representations of two faces (Column 1 and 12). Note the smooth
transition between different genders and facial attributes. (b) Interpolating in-between unseen poses via continuous pose codes, shown above
Row 3 (0◦, 15◦, 30◦, 45◦, 60◦, 75◦, 90◦ are available in training). (c) Interpolating between z = −1 (Column 2) and z = 1 (Column 12).

(a)

(b)

(c)

(a)

(b)

(c)

Fig. 12: Face frontalization on CFP: (a) input, (b) frontalized faces, (c) real frontal faces. We expect the frontalized faces to preserve the
identity, rather than all facial attributes. This is very challenging for face rotation due to the in-the-wild variations and extreme profile
views. Also, synthetic faces can remove some variations (roll, expression, or occlusions) for frontal input.
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Fig. 13: Face frontalization on IJB-A. For each of four subjects, we show 11 input images with estimated coefficients overlaid at the top left
corner (first row) and their frontalized counter part (second row). The last column is the groundtruth frontal and synthetic frontal from the
fused representation of all 11 images. Note the challenges of large poses, occlusion, and low resolution, and our opportunistic frontalization.

Fig. 14: Face frontalization on IJB-A for an image set (first subject) and a video squecence (second subject). For each subject, we show 11
input images (first row), their respective frontalized faces (second row) and the frontalized faces using incrementally fused representations from
all previous inputs up to this image (third row). In the last column, we show the groundtruth frontal face.
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more discriminative representation for better recognition, and a
more generative representation for better face synthesis.
Variable Interpolations. Taking two images of different subjects
x1,x2, we extract features f(x1) and f(x2) from Genc. The
interpolation between f(x1) and f(x2) can generate many repre-
sentations, which can be fed to Gdec to synthesize face images.
In Fig. 11 (a), the top row shows a transition from a female
subject to a male subject with beard and glasses. Similar to [20],
these smooth semantic changes indicate that the model has learned
essential identity representations for image synthesis.

Similar interpolation can be conducted for the pose codes as
well. During training, we use a one-hot vector c to specify the
discrete pose of the synthetic image. During testing, we could
generate face images with continuous poses, whose pose code is
the weighted average, i.e., interpolation, of two neighboring pose
codes. Note that the resultant pose code is no longer a one-hot
vector. As in Fig. 11 (b), this leads to smooth pose transition from
one view to many views unseen to the training set.

We can also interpolate the noise vector z. We synthesize
frontal faces at z = −1 and z = 1 (a vector of all 1s) and
interpolate between two z. Given the fixed identity representation
and pose code, the synthetic images are identity-preserved frontal
faces. As in Fig. 11 (c), the change of z leads to the change of
the background, illumination condition, and facial attributes such
as beard, while the identity is well preserved and faces are of the
frontal view. Thus, z models less significant face variations.
Face Rotation on Benchmark Databases. Our generator is
trained to be a face rotator. Given one or multiple face images
with arbitrary poses, we can generate multiple identity-preserved
faces at different views. Figure 10 shows the face rotation results
on Multi-PIE. Given an input image at any pose, we can generate
multi-view images of the same subject but at a different pose by
specifying different pose codes or in a different lighting condition
by varying illumination code. The rotated faces are similar to the
ground truth with well-preserved attributes such as eyeglasses.

One application of face rotation is face frontalization. Our DR-
GAN can be used for face frontalization by specifying the frontal-
view as the target pose. Figure 12 shows the face frontalization on
CFP. Given an extreme profile input image, DR-GAN can generate
a realistic frontal face that has similar identity characteristics as
the real frontal face. To the best of our knowledge, this is the
first work that is able to frontalize a profile-view in-the-wild face
image. When the input image is already in the frontal view, the
synthetic images can correct the pitch and roll angles, normalize
illumination and expression, and impute occluded facial areas, as
shown in the last few examples of Fig. 12.

Figure 13 shows face frontalization results on IJB-A. For each
subject or template, we show 11 images and their respective
frontalized faces, and the frontalized face generated from the fused
representation. For each input image, the estimated coefficient ω is
shown on the top-left corner of each image, which clearly indicates
the quality of the input image as well as the frontalized image. For
example, coefficients for low-quality or large-pose input images
are very small. These images will have very little contribution
to the fused representation. Finally, the face from the fused
representation has superior quality compared to all frontalized
images from a single input face. This shows the effectiveness of
our multi-image DR-GAN in taking advantage of multiple images
of the same subject for better representation learning.

To further evaluate face frontalization results w.r.t. different
numbers of input images, we vary the number of input images

from 1 to 11 and visualize the frontalized images from the
incrementally fused representations. As shown in Fig. 14, the
individually frontalized faces have varying degrees of resemblance
to the true subject, according to the qualities of different input
images. The synthetic images from fused representations (third
row) improve as the number of images increases.

5 CONCLUSIONS

This paper presents DR-GAN to learn a disentangled representa-
tion for PIFR, by modeling the face rotation process. We are the
first to construct the generator in GAN with an encoder-decoder
structure for representation learning, which can be quantitatively
evaluated by performing PIFR. Using the pose code for decoding
and pose classification in the discriminator lead to the disentangle-
ment of pose variation from the identity features. We also propose
multi-image DR-GAN to leverage multiple images per subject in
both training and testing to learn a better representation. This is
the first work that is able to frontalize an extreme-pose in-the-wild
face. We attribute the superior PIFR and face synthesis capabilities
to the discriminative yet generative representation learned in G.
Our representation is discriminative since the other variations
are explicitly disentangled by the pose/illumination codes, and
random noise, and is generative since its decoded (synthetic)
image would still be classified as the original identity.
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