
Missing Modalities Imputation via Cascaded Residual Autoencoder

Luan Tran, Xiaoming Liu, Jiayu Zhou

Department of Computer Science and Engineering

Michigan State University, East Lansing MI 48824

{tranluan, liuxm, jiayuz}@msu.edu

Rong Jin

Alibaba Group Holding Limited

Hangzhou, Zhejiang, China

jinrong.jr@alibaba-inc.com

Abstract

Affordable sensors lead to an increasing interest in ac-

quiring and modeling data with multiple modalities. Learn-

ing from multiple modalities has shown to significantly im-

prove performance in object recognition. However, in prac-

tice it is common that the sensing equipment experiences

unforeseeable malfunction or configuration issues, lead-

ing to corrupted data with missing modalities. Most ex-

isting multi-modal learning algorithms could not handle

missing modalities, and would discard either all modali-

ties with missing values or all corrupted data. To leverage

the valuable information in the corrupted data, we propose

to impute the missing data by leveraging the relatedness

among different modalities. Specifically, we propose a novel

Cascaded Residual Autoencoder (CRA) to impute missing

modalities. By stacking residual autoencoders, CRA grows

iteratively to model the residual between the current predic-

tion and original data. Extensive experiments demonstrate

the superior performance of CRA on both the data imputa-

tion and the object recognition task on imputed data.

1. Introduction

The soaring advances in sensor technologies have greatly

reduced the cost of producing sensors for different pur-

poses, which allows researchers to collect data with mul-

tiple modalities. The multi-modal data describes one sam-

ple or datum point from different perspectives, and these

perspectives provide complementary information about the

datum point [13], but are also closely related because they

describe the same sample. Researchers have conducted ex-

tensive research on how to combine the useful informa-

tion from different modalities to better achieve application-

specific goals [6, 10, 12, 17–19, 21, 25]. Especially, com-

bining information from multiple modalities is shown to be

very effective in various computer vision tasks, such as ob-

ject detection from aerial videos [19], where we may obtain

multiple sensing information, including RGB, LiDAR, mul-

tispectral imaging, hyperspectral imaging, GPS, etc.

Figure 1: Learning with missing modalities. Given a large collec-

tion of sensor data from multiple modalities, data imputation may

take advantage of all available data to learn multi-object classifiers

despite the missing modalities (white area). In contrast, the exist-

ing approaches may have to remove some modalities and/or train-

ing samples so that all remaining training samples are observed in

all remaining modalities (dashed box).

Most prior work on information fusion of multi-modal

data assumes that all modalities are available for every train-

ing data point [10, 21]. This assumption can greatly limit

applications of multi-modal analysis because in practice

data collection process may likely generate data points with

missing modalities. E.g., unforeseeable sensor malfunction

may fail to retrieve sensing information. Moreover, con-

figuration issues in sensing equipment may lead to incom-

patible data. Thus, when jointly analyzing data from dif-

ferent agencies, sample coverage may not be entirely the

same and some corresponding modalities may be incompat-

ible. We call samples with missing modalities as corrupted

samples. Such corrupted samples can impose significant

challenges to apply multi-modal analysis: we may need to

choose from (i) remove corrupted samples from training or

(ii) remove the modalities with corrupted samples. We il-

lustrate the problem of missing modalities in Fig. 1. Both

options, unfortunately, would eliminate potentially useful

information we have collected. Moreover, the multi-modal

analysis would fail when a significant portion of training

data is corrupted.

The missing modality problem is a special type of miss-

ing data problem. Traditionally, by assuming that the miss-

ing values of a data matrix are random (i.e., missing-at-

1

random, MAR), there are many readily usable imputation

methods, whose underlying principle is to take advantage

of the latent relatedness among matrix elements, and in-

fer the missing values from the observed elements. One

well-studied imputation method is matrix completion [4,5].

However, in the multi-modal data, when concatenating fea-

tures of different modalities into the data matrix, the miss-

ing values are no longer randomly distributed, but rather ap-

pear in blocks: the missing values would simultaneously ap-

pear in one modality (Fig. 1). Due to the violation of MAR,

traditional methods can no longer establish guarantees in re-

covering corrupted samples with missing modalities. Also,

many matrix completion methods involve iterative Singu-

lar Value Decomposition (SVD) of the entire data matrix,

rendering it computationally prohibitive for large data.

In this paper, we propose a novel cascaded residual au-

toencoder (CRA) for imputation with missing modalities,

which is composed of a set of stacked residual autoencoders

(RAs) that iteratively model the residuals. The conventional

autoencoder has been used to impute missing data in many

domains such as traffic data [11] and sensor networks [35],

where the input layer is the data sample with missing entries

and the output layer is the complete data sample. In con-

trast, for the RA at each layer of the CRA, its desired output

is the difference between the input (i.e., incomplete) data

sample and the complete data sample. Starting from the

first layer, each RA is learned sequentially such that its out-

put pushes the overall imputed data to be closer to the full

data. This forward learning paradigm results in a cascaded

autoencoder that takes the corrupted data and estimate a

function well approximating the complete data. Further,

we also develop a joint optimization scheme to simultane-

ously estimate the parameters of all RAs in CRA such that

the overall loss can be further minimized. This optimiza-

tion is performed similar to the back propagation in Con-

volutional Neural Network (CNN). Experimental results on

benchmark datasets demonstrate the superiority of CRA on

both the data imputation and subsequent object recognition

based on the imputed data.

In summary, this paper makes these contributions: 1)

identify the general problem of missing modality in multi-

modal data; 2) propose a data imputation method using cas-

caded residual autoencoder; 3) demonstrate state-of-the-art

performance on imputing data with missing modalities.

2. Related Works

Since we propose a novel data imputation method for

the missing modality problem, we review prior works on

imputation, e.g., matrix completion and autoencoders.

Matrix completion is the task of filling in the missing en-

tries of a partially observed matrix. Matrix completion often

assumes the missing entries are related to the observed ones,

which is equivalent to a low-rank structure in the completed

� �

W1 W2

b1 b2

…

…

Figure 2: Autoencoder.

matrix. This low-rank assumption could be applicable to

our missing modality problem due to correlations among

different modalities. Some existing approaches are based on

the nuclear norm minimization, such as SVT [3] and Soft-

Impture [26]. OptSpace [20], on the other hand, formulates

from a matrix factorization view based on traditional SVD.

There are two limitations of applying matrix completion

to our problem: (i) they usually compute the SVD of the

data matrix - computationally expensive with a large data

matrix, which is often the case with multiple modalities; (ii)

many matrix completion settings assume missing at random

(MAR) (e.g., [5]). However, missing continuous blocks in

multi-modal data obviously break this assumption. Hence,

matrix completion might not be optimal for our problem, as

demonstrated by the results in Fig. 8.

Autoencoder (AE) is originally an unsupervised learning

method, with the objective of learning a latent (hidden)

data representation, from which we may reconstruct orig-

inal data through a neural network. It encodes an input vec-

tor to a hidden representation via a non-linear mapping, and

then decodes it back via another mapping (Fig. 2). The au-

toencoder is trained so that the output (x̂) is as similar to

the input (x) as possible. One early AE-based imputation

method combines AE with genetic algorithms (GA) [1,28].

Given a trained AE, the complete vector combining the

guessed and observed values is fed into the AE as input. GA

will select the vector that minimizes the difference between

input and output of the AE. Vincent et al. [33] propose a

noise-robust variant of AE for feature extraction, called De-

noising Autoencoder (DA). DA reconstructs the noise-free

signal given its corrupted counterpart as the input. DA is

more applicable to imputation than combining AE and GA.

Stacked Autoencoders (sDA) Despite the success of au-

toencoders in various datasets [1,9,11,28], it is challenging

for a single-layer autoencoder to model complex relation-

ship among data in different modalities. Several autoen-

coders can be stacked to form a deep hierarchy [33]. An

AE can be placed inside a previous AE, and receive its input

from the previous AE’s latent representation (hidden layer)

and learn to reconstruct this representation. It is shown

in [16] that without pretraining, the deep autoencoder al-

ways reconstructs the average of the training data. However,

in our application it can be difficult to learn a deep autoen-

coder with multiple latent layers, given the limited training

samples due to the large amount of missing data in multiple

modalities, which is validated by Tab. 3.

Autoencoder in Multi-modal Data There are also auten-

coder methods tailored for multi-modal data. Ngiam et

al. [30] use deep autoencoder to learn interaction between

high-level features of speech and video signals. Wang et

al. [34] enforce the correlation in the feature representation

of multi-modal data. Since these works focus more on rep-

resentation learning, they do not necessarily lead to good

imputation performance, as will be shown in Tab. 3.

Deep Residual Network Our proposed CRA is inspired

by recent achievement in deep CNN for object recogni-

tion. He et al. [15] propose a residual learning frame-

work termed ResNet for object recognition. They refor-

mulate the layers as learning residual functions with ref-

erence to the layer inputs, instead of learning unreferenced

functions. While CRA and ResNet share similarity in net-

work design, they serve different purposes. CRA is for data

imputation and ResNet is for object recognition. Further,

CRA adopts layer-by-layer learning followed by joint opti-

mization, while the parameters of ResNet are learned end-

to-end. Finally, CRA is able to dynamically determine its

depth while ResNet needs a pre-defined depth.

3. Cascaded Residual Autoencoder

The Autoencoder is used in prior work [11, 27, 28, 35]

to impute missing data, in the case of missing at random

(MAR). For MAR, it is rare to have a continuous large block

of missing entries. E.g., even when the data sparsity is 10%
(i.e., 90% of data are missing), the probability of having 20
continuous missing entries is merely 12%. For data with a

missing modality, the missing entries typically occur in a

much larger continuous block. This key difference implies

that in missing modality the correlation between the avail-

able and missing entries is more complicated than that of

MAR. This clearly poses a challenge for a single autoen-

coder to accurately recover the missing modality.

An intuitive solution for this problem is to add extra hid-

den layers inside an autoencoder to create a deep neural

network, e.g., sDA. However, our experiments reveal that

in our applications the performance of sDA is not better

than a denoising autoencoder. We hypothesize that the deep

autoencoder is more difficult to train, especially with lim-

ited training samples (see Tab. 3) - a typical scenario due

to missing modalities. To this end, we propose a novel cas-

caded residual autoencoder (CRA) framework for data im-

putation. In each cascade layer, a residual autoencoder is

trained to approximate the residual between the input data,

which is the currently recovered data, and the desired un-

corrupted data. With multiple cascade layers, CRA progres-

sively refines its estimation toward the uncorrupted data.

3.1. Autoencoder

An autoencoder aims to learn the latent representation

of data, which can reconstruct original data. It maps a d-

dim input vector x to a d′-dim hidden representation z =

conv2 deconv2 deconv1 conv1 fc fc

∆�

3×3, 2, 8 3×3, 2, 1 3×3, 2, 16 3×3, 2, 16

Figure 3: Convolutional residual autoencoder. The format of the

convolution parameter is: filter size, stride, filter number.

f(W(1)
x+b

(1)), where W(1) ∈ R
d×d′

, b(1) ∈ R
d′

and f

is a non-linear function of ReLU. The hidden representation

is then mapped to the output x̂ = f(W(2)
z+ b

(2)), where

W
(2) ∈ R

d′×d and b
(2), x̂ ∈ R

d. By generalizing to a deep

autoencoder with L layers, and denoting the value at the l-th

layer as a(l), we have a
(l+1) = f(W(l)

a
(l) + b

(l)).
To this end, an autoencoder maps the input to output via:

θW,b(x) : R
d → R

d : θW,b(x) = a
(L)

θW,b(x) = f
(

W
(L)f(...f(W(1)

x+ b
(1))...) + b

(L)
)

.(1)

The parameters {W,b} are obtained by minimizing the

L2 loss between x and x̂ over all training data:

L = 1
2‖x− x̂‖22 = 1

2‖x− θW,b(x)‖
2
2. (2)

With the same architecture as the autoencoder, a denois-

ing autoencoder (DA) reconstructs a complete output from

a partially observed input.

3.2. Residual Autoencoder

The basic building block of our proposed CRA is a vari-

ant of autoencoder called Residual Autoencoder (RA). An

RA has the same structure as the conventional autoencoder

or DA, including the input layer, latent layer(s) and output

layer. Both RA and DA take the corrupted data as the input

layer. In the output layer, DA produces the completed data,

while RA generates the difference between the input data

and the completed data. This seemingly minor difference

has a significant impact: it enables us to stack a set of RA in

a cascaded architecture, to refine the estimation after each

autoencoder. Mathematically, for a single RA, we transform

incomplete input data x̃ into a hidden layer, and then to the

output layer, both through nonlinear mappings as in autoen-

coder. The desired output is defined as ∆x = x − x̃. RA

aims to make the estimated output, ∆x̂ = θW,b(x̃), to be

as close to the desired output as possible, in terms of least

squares. This leads to the following loss function:

L = 1
2‖∆x−∆x̂‖22 = 1

2‖(x− x̃)− θW,b(x̃)‖
2
2. (3)

3.3. Convolutional Residual Autoencoder

When input data are 2D images, we extend RA to con-

volutional residual autoencoder, as shown in Fig. 3. This

� ૚ ∆� ૚ � ૛ ∆� ૛ � � ∆� �

+ + +

…

� ૙ = � ∆� ૙= ૙

+

Figure 4: The architecture of an L-layer CRA, where each layer is an RA. The black dots are missing modalities.

has the benefits of leveraging the 2D image structure, utiliz-

ing learned features instead of the raw pixels, and reducing

the number of parameters of RA. Due to limited ranges of

convolution receptive fields, two fully connected (fc) lay-

ers are used to enable the long-range interactions among

modalities. Similar to RA, we estimate the residual from

the corrupted data sample. Depending on the type of layers,

the relation between consecutive layers is represented as:

a
(l+1) = f(a(l) ∗W(l)+b

(l)) (∗ is a convolution operator)

or a(l+1) = f(W(l)
a
(l) + b

(l)).

In order to learn a convolutional RA, we first train a con-

volutional and deconvolutional network that maps from an

input x to itself, by estimating the four convolutional filters.

We then construct a convolutional RA by adding two fully

connected layers and learning their weights, so as to enable

interaction among modalities. Finally, both the filters and

weights within one convolutional RA are jointly optimized

by minimizing the loss in Eqn. 3.

3.4. Cascaded Residual Autoencoder

The proposed cascaded residual autoencoder is con-

structed by connecting a series of RAs, as shown in Fig. 4.

For the first RA, the input is the corrupted data, i.e., x̂0 = x̃.

For the remaining RAs, the input is the summation of the in-

put of the last RA and the output of the last RA. Specifically,

let ∆x̂0 = 0. The input of k-th RA can be represented as

x̂k = x̂k−1 + ∆x̂k−1, where ∆x̂k−1 is the output of the

last RA. Each RA will be learned to minimize the different

between current estimation and the complete data, which

leads to the loss function of the k-th RA:

Lk = 1
2‖∆xk −∆x̂k‖

2
2 = 1

2‖(x− x̂k)− θ
(k)
W,b(x̂k)‖

2
2. (4)

During training, CRA dynamically determines its opti-

mal depth by iteratively learning RA and adding it to the

current CRA, until the loss function stabilizes. Finally, an

L-layer CRA is obtained with L sets of parameters W and

b. To this end, we expect the reconstruction error reduces

as increasing layers. Our experiment in Sec. 4.3 shows that,

a deeper CRA outperforms a shallow one. When convolu-

tional RAs are used instead of RAs, we call the resultant

CRA as convolutional CRA.

3.5. Joint Optimization

As described, a CRA is trained in a forward and layer-

wise fashion. Each additional RA is trained to further mini-

mize the reconstruction error of the current CRA stack. Al-

though each single RA added has arrived at a local mini-

mum, we might fine-tune the CRA by jointly considering

the stacked RAs. To this end, we develop a joint learn-

ing scheme to simultaneously estimate the parameters of all

RAs in an CRA, such that the overall reconstruction error

can be minimized. Specifically, combining the outputs of

all RAs ∆x̂i, the estimation is given by:

x̂ = x̂L +∆x̂L = (x̂L−1 +∆x̂L−1) + ∆x̂L = ...

= x̂0 +
∑L

i=1
∆x̂i. (5)

The joint loss function for a CRA is defined as:

L = 1
2‖x− x̂‖22 = 1

2‖x− (x̂0 +
∑L

i=1
∆x̂i)‖

2
2. (6)

3.5.1 Optimization via Back-propagation

The loss function of Eqn. 6 depends on the outputs of all

RAs, which are controlled by the parameters W and b. All

L sets of parameters W and b are learned simultaneously

when minimizing this loss. Motivated by the CNN learn-

ing, we adopt the commonly used back-propagation scheme

to minimize this loss, which relies on the recursively com-

puted derivatives of L w.r.t. each parameter. The following

derivation is for CRA, the derivation for convolutional CRA

is similar and omitted due to the limited space.

We denote each RA has nl layers (i.e., the first and last

layers corresponding to the input and output respectively),

and the value at the l-th layer of k-th RA as a
(l)
k . The loss

function w.r.t. a single training sample is:

L = 1
2‖x− (x̂0 +

∑L

i=1
∆x̂i)‖

2
2

= 1
2‖x− (x̃+

∑L

i=1
a
(nl)
i)‖22. (7)

We note that the derivatives w.r.t. parameters (e.g.,
∂L

∂W
(l)
k

) can be directly computed from derivatives w.r.t. their

associated intermediate layer (∂L

∂a
(l)
k

). Hence, we first show

Algorithm 1: Computation of gradients

input : Sample x, x̃, CRA values a
(l)
k

with x̃ as input

output: Derivatives w.r.t. parameters∇
W

(l)
k

L,∇
b
(l)
k

L

1 for k ← L to 1 do

// Compute the derivative w.r.t. the output

layer of the k-th RA

2 δ
(nl)

k
← −

(

x− x̃−
∑

L

i=1 a
(nl)

i

)

⊺

;

3 if k 6= L then

// δ
(nl)

k
are calculated using Eqn. 9

4 δ
(nl)

k
← δ

(nl)

k
+ δ

(1)
k+1;

// Compute remaining desired derivatives

5 for l← nl − 1 to 1 do

// Compute derivatives w.r.t. each layer

6 δ
(l)
k
← (W

(l)
k

δ
(l+1)
k

) ◦ f ′(W
(l)
k

a
(l)
k

+ b
(l)
k

);

// Compute derivatives w.r.t. parameters

7 ∇
W

(l)
k

L← δ
(l+1)
k

f ′(W
(l)
k

a
(l)
k

+ b
(l)
k

).(a
(l)
k

)⊺;

8 ∇
b
(l)
k

L← δ
(l+1)
k

f ′(W
(l)
k

a
(l)
k

+ b
(l)
k

);

how to compute derivatives of the loss function w.r.t. the

value at autoencoders’ l-th layer in a recursive fashion. Let

δ
(l)
k = ∂L

∂a
(l)
k

, the relations of δ
(l)
k between layers within the

k-th RA is expressed as [29]:

δ
(l)
k = (W

(l)
k δ

(l+1)
k) ◦ f ′(W

(l)
k a

(l)
k + b

(l)
k), (8)

where ◦ is element-wise product. The derivatives w.r.t. the

output layer a(nl) of the k-th RA (k = 1, 2..., L− 1) are:

δ
(nl)
k = −

(

x− x̃−

L
∑

i=1

a
(nl)
i

)⊺(
L
∑

i=1

∂a
(nl)
i

∂a
(nl)
k

)

= −

(

x− x̃−

L
∑

i=1

a
(nl)
i

)⊺

− ...

−

(

x− x̃−
L
∑

i=1

a
(nl)
i

)⊺(
L
∑

i=k+1

∂a
(nl)
i

∂a
(1)
k+1

)

= −

(

x− x̃−

L
∑

i=1

a
(nl)
i

)⊺

+ δ
(1)
k+1. (9)

Due to the limited space, the full derivation of Eqn. 9 is

omitted here. Equations 8 and 9 allows us to recursively

compute the derivatives w.r.t. the network parameters. The

detailed algorithm is described in Algorithm 1.

3.5.2 Learning Strategy

There are two different learning strategies in training a

CRA. One is called one-shot CRA, where each RA is trained

sequentially, and added to the CRA until the reconstruction

error cannot be further reduced. After that, the joint opti-

mization updates the parameters of all RAs simultaneously.

The other is called aggressive CRA, where the joint opti-

mization of the entire network is performed after each RA

missing

missing

Training data

Test data

d1 d2

n

m

nt

ne

(a)

missing

missing

Full training data

Partial training data

1st modality data

2nd modality data

2nd modality data

(b)

Figure 5: (a) Data partition for imputation experiments; (b) Vari-

ous types of training data for recognition experiments.

being added into the CRA. In other words, this allows the

overall loss to be further reduced before adding the next RA,

which may have the potential benefit of faster convergence.

We compare these two strategies in the experiments.

4. Experimental Results

The objectives of experiments are to evaluate different

methods on data imputation for missing modalities, as well

as on using imputed data for object recognition. Thus, we

have two main experiments: imputation experiments and

recognition experiments, each serving one objective. We

implement CRA with Caffe and share the code here.

4.1. Experimental Protocols

Since imputation experiments require uncorrupted data

for evaluation, we cannot utilize databases with “real-

world” missing modalities. Instead, given a multi-modal

database, we synthesize the missing modality by removing

some modalities for part of training samples. Fig. 5a shows

the partition of training and test data for imputation exper-

iments. Note that the training data is used by autoencoder-

based, not matrix completion methods. In general, one

might expect these training data have no missing modali-

ties. In practices, we can leverage any data samples as long

as they have at least two observed modalities, among which

we may remove one or more modalities and learn to re-

cover them via the rest observed modalities. For these data

samples, missing portion would not be evaluated in the loss

function. Hence, the test and training portions may overlap

for data with over two modalities. It is the strength of CRA

to even leverage data with missing modality for imputation

training. After different imputation methods recover miss-

ing modalities, the recognition experiments utilize classi-

fiers trained on four types of data as shown in Fig. 5b: (1)

partial training data with samples that are available for all

modalities, (2) available portion of each single modality, (3)

full training data without missing modality, and (4) training

data recovered using different imputation methods.

Evaluation Metrics For a comprehensive evaluation of

imputation experiments, we use two metrics, each from

a different perspective. Normalized Mean Squared Error

http://cvlab.cse.msu.edu/project-fuse-missing-modalities.html

Table 1: Properties of four datasets, in the number of modalities

(m), data dimensions (d), number of training samples (nt) and test

samples (ne) for imputation, missing ratio (r), number of classes

(c), training samples per class (n), and test samples per class (k) in

recognition experiments. The missing ration is the ratio between

the number of missing elements and total number of elements.

Dataset m d nt ne r(%) c n k

GRSS 2 [111, 37] ∼ 20 ∼ 180 45 15 ∼ 200 ∼ 1000
RGB-D 2 [2500, 2500] ∼ 170 ∼ 513 40 51 ∼ 683 ∼ 138
MTPIE 5 [1024,...,1024] 1529 729 50 137 1529 781
HSFD 24 [625, ..., 625] 76 38 40 38 76 2− 5

(NMSE) is a generic metric, NMSE =
‖X−X̂‖F
‖X‖F

, where

X, X̂ are the original and recovered data matrices and ‖.‖F
is the Frobenious norm. The Peak Signal to Noise Ra-

tio (PSNR) is commonly used to quantify image compres-

sion and reconstruction. In our problem, since data sam-

ples are normalized to the range of [0, 1], we have PSNR =
10 log10

d
(x−x̂)T (x−x̂)

. For recognition experiments, we use

the recognition rate on the test set as the metric.

4.2. Datasets

We use four benchmark datasets: the 2013 GRSS Data

Fusion Contest Dataset (GRSS), the RGB-D Object Dataset

(RGB-D), Multi-PIE (MTPIE), and the hyperspectral face

dataset from Hong Kong Polytechnic University (HSFD).

Table 1 summarizes main properties of four datasets.

GRSS The GRSS dataset [8] includes a hyperspectral im-

age (HSI), a LiDAR-derived digital surface model of a uni-

versity campus. There are 15 classes including both natu-

ral and man-made objects. For the classification task, we

follow the framework in [21]. Specifically, the spatial fea-

tures in the hyperspectral and LiDAR data are extracted via

the morphological attribute profile [7]. Then, the MLRsub

classifier [23] is used for classification. Markov random

fields [24] is also employed for spatial regularization to pro-

mote spatial smoothness in the final classification results.

RGB-D RGB-D dataset [22] contains 41, 877 RGB-D im-

ages of 300 physically distinct everyday objects, organized

into 51 classes. This dataset contains both textured and

texture-less objects, with large lighting variations. We im-

pute the missing data in either raw depth or grayscale im-

ages. To create a data matrix, we place all images at the cen-

ter of a 200×200 empty image and downsample to 50×50.

For classification, we use hierarchical matching pursuit [2]

to extract features, and then employ linear SVM. Follow-

ing the experimental setting in [22], we leave one object

instance out from each category for testing, and train on the

remaining 300− 51 = 249 objects at each trial.

MTPIE The Multi-PIE dataset [14] consists of 754, 200
face images for 337 subjects with variations in time frames,

poses, expressions, and illuminations. In our experiments,

we only use faces with frontal illumination and neutral ex-

pression. Each sample consists of five different poses in

1 2 3 4 5 6

0.04

0.045

0.05

0.055

0.06

Number of RAs

N
M

S
E

One−shot CRA Test

One−shot CRA Train
Greedy CRA Test

Greedy CRA Train

Figure 6: Learning strategy compar-

ison. Vertical lines, occurring after

adding each RA to aggressive CRA

and once in one-shot CRA, show im-

provements due to joint optimization.

0.25 0.5 0.75 1
0.15

0.155

0.16

0.165

0.17

0.175

Training data ratio

N
M

S
E

stage−by−stage

end−to−end

Figure 7: Imputation

performance of two

learning approaches with

different amount/ratio of

training data.

ranges of [0o, 60o] corespondent to five modalities (images

with negative poses is flipped to double data samples). For

classification, we use the first 200 subjects for training and

remaining 137 subjects for testing. Each test subject has

a frontal image as a gallery; we match a face image with

an arbitrary pose to a frontal gallery face. Features are ex-

tracted using a simple CNN (three conv and two fc layers).

HSFD HSFD [10] includes hyperspectral face images of

48 subjects. Each of the first 25 subjects has four to seven

cubes while the rest 23 subjects only have one cube per sub-

ject. Each cube contains 33 bands (i.e., modalities) covering

the 400 to 720 nm spectral range. Following the experimen-

tal protocol of [10], our experiments use the first 25 subjects

comprising 113 total cubes. The first six and the last three

bands are very noisy and discarded as suggested by [10].

For each subject, two cubes are randomly selected as gallery

and the remaining 63 cubes as probes. Faces are cropped

using eye coordinates and resized to 25× 25. For each sub-

ject, one of two gallery cubes is corrupted in multiple bands.

Recovered face cubes are fused into 2D face images using

the spatiospectral fusion method [32], and the recognition

is performed by collaborative representation [36].

4.3. Results of Imputation Experiments

Learning strategy Fig. 6 compares the imputation perfor-

mance of one GRSS class during the training and test stages,

for two learning strategies of CRA. This experiment shows

that both strategies lead to similar final imputation perfor-

mance, while the aggressive CRA requires less number of

RAs (3.4 RAs vs 5.6 RAs of one-shot CRA, averaged over

15 classes). This is expected since the aggressive CRA per-

forms joint optimization more often, and hence converges

faster. For the rest experiments, we use the aggressive CRA

since it is more efficient due to its smaller depth.

We also compare our proposed layer-by-layer learning

approach with end-to-end learning. In all four datasets, we

observe that the former always achieves better performance

than the latter. We hypothesize this is because the number

of training samples is not sufficiently large, which is usually

Table 2: Affects of CRA depth on HSFD performance.

Depth PSNR NMSE Recognition rate (%)

1 26.27 0.233 76.42
2 27.42 0.223 77.79
3 27.69 0.218 77.88
4 27.91 0.213 77.95
5 28.01 0.209 78.03

0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

SoftImpute

CRA

Figure 8: Compare blockwise (left) and elementwise (right) miss-

ing data imputation with different missing ratios on GRSS class of

soil. In the blockwise corruption, we have to keep at least 1 of 2
modalities, hence the missing ratio must be less than 0.5.

the case for multi-modal datasets. To validate this hypoth-

esis, we modify the experiment setting of MTPIE by using

face images with all illuminations and expressions. Sam-

ples from 200 subjects are used for training and remaining

137 subjects are used to evaluate imputation, which results

in 62, 767 and 32, 167 training and testing samples, respec-

tively. Fig. 7 shows that layer-by-layer learning is more suit-

able when there are limited training samples (e.g., 25%, and

50% of the full training set).

Affect of CRA depth We explore how the number of RAs

in CRA (i.e., CRA depth) affects the performance. Specif-

ically, from optimized convolutional CRAs, different ver-

sions of CRA are generated based on its depth (the num-

ber of RAs). On HSFD, their performances are reported in

Tab. 2. The table shows that stacking RAs to build a deep

architecture improves both imputation and object recogni-

tion, and deeper CRA outperforms shallow ones.

MAR vs missing modality Low-rank matrix completion

methods work well by assuming MAR. However, missing

continuous blocks in multi-modal data can break these as-

sumptions. In this experiment, we compare a matrix com-

pletion method (SoftImpute) with CRA in both types of cor-

ruption. Fig. 8 shows the imputation error of these two

methods with different missing ratios. SoftImpute, as ex-

pected, works well when corruption is elementwise random.

However, when data is missing in blocks, SoftImpute pe-

forms significantly worse than CRA, e.g., the imputation

error grows exponentially when the missing ratio increases.

From Fig. 8, we also observe that CRA produces similar

errors regardless the type of corruption.

Imputation results on benchmark datasets This exper-

iment evaluates different imputation methods in recover-

ing the missing modalities. Among eights baseline meth-

ods, three are classic matrix completion methods, includ-

(a) Partial data (b) Full data

(c) sDA (d) CRA

Figure 9: Color-coded visualization of imputed test matrices on

GRSS dataset. Each row is a 137-d data sample of HIS (left) and

LiDAR feature (right). Color from blue to red corresponds to a

value in the range of [0, 1] with 0 (blue) indicates missing entries.

ing SVT [3], SoftImpute [26] and OptSpace [20], all

using the authors’ implementation. The other five are

autoencoder-based methods, including Genetic Algorithm

(EA&GA) [1], Denoising Autoencoder (DA) [33], stacked

Denoising Autoencoder (sDA) [33], multi-modal autoen-

coder (Mul-mod AE) [30], deep canonically correlated au-

toencoders (DCCAE) [34], all using our own implementa-

tion. The CRA dynamically determines optimal depth by

itself. CRA depths vary from 3 to 6 depending on specific

dataset/class, with an average of 4.6 across four datasets.

To have fair comparisons and consider that benchmark net-

works have pre-defined depths, we fix their depths to be

5. With cross validation, we find that the hidden layer size

being half of the input size works well for all methods. All

convolutional CRAs use 3×3 filters with stride of 2 (Fig. 3).

For GRSS and RGB-D, the number of autoencoder models

is the same as the number of classes (c). For face datasets

(MTPIE, HSFD), we train only one model for all subjects.

Table 3 shows the imputation error of different methods

in four datasets. Our proposed CRA consistently outper-

forms baseline methods in all four datasets. The CRA with

joint optimization is slightly better than the one without,

and convolutional CRA further improves the performance.

It is worth noting that PSNR increased by 1 is considered

substantial improvement in image compression [31]. For

NMSE, even though the absolute margins between the top

two results appear small, the relative margins show our

improvement. Further, despite numerically DA and sDA

seem to have imputation errors close to CRA, they actu-

ally recover data closed to the mean of training samples.

Fig. 9 visualizes the imputed data of the soil class in GRSS.

The CRA can clearly recover more individual characteris-

tics than sDA. The contrast between Fig. 9 and the relative

margin of NMSE shows the limitation of NMSE in quanti-

fying the recovery of detailed information. Fig. 10 shows

examples of imputed grayscale and depth images from the

Table 3: Comparision of imputation errors and recognition rates in four datasets. “-” denotes an unconverged solution. Empty space

denotes inapplicable value, e.g., DCCAE can not be applied to datasets with more than two modalities, or convolutional CRA can not be

used on GRSS samples since they are not 2D images. The best and second best results as well as upper and lower bounds are labeled in

boldface and italic, respectively. The relative margin is the ratio (%) of the difference between the top two results to the second best result,

or to the difference between the upper and lower bounds.

PSNR NMSE Recognition rate (%)

GRSS RGB-D MTPIE HSFD GRSS RGB-D MTPIE HSFD GRSS RGB-D MTPIE HSFD

M
et

h
o

d
s

SVT [3] - 21.51 17.02 14.47 - 0.548 0.307 0.633 - 21.17 38.73 74.24
SoftImpute [26] 17.27 22.39 19.86 26.33 0.271 0.401 0.241 0.232 86.22 23.38 40.52 76.36

OptSpace [20] 12.88 20.17 - 23.82 0.421 0.611 - 0.353 83.97 20.79 - 75.02

AE&GA [1] 26.81 23.01 20.73 18.23 0.105 0.362 0.225 0.401 84.01 68.83 42.33 74.24
DA [33] 29.62 24.05 22.09 24.38 0.079 0.341 0.171 0.276 85.77 69.17 44.34 76.02
sDA [33] 29.74 24.07 23.31 20.13 0.079 0.331 0.151 0.372 86.02 69.54 45.32 75.96

Mul-mod AE [30] 30.01 24.81 25.91 18.23 0.105 0.362 0.113 0.401 86.01 70.21 54.24 76.20
DCCAE [34] 30.05 24.11 0.079 0.341 86.25 69.94

CRA w/o opt 30.80 25.25 25.99 26.63 0.077 0.265 0.112 0.225 86.38 70.63 54.32 76.58
CRA w/ opt 31.04 25.93 26.55 27.51 0.076 0.248 0.105 0.222 86.42 71.04 56.42 77.88
Conv CRA 26.12 27.05 28.01 0.234 0.093 0.209 71.81 57.10 78.03

B
o

u
n

d
s Full data 88.46 78.32 59.24 80.00

1st modality only 79.52 68.72

2nd modality only 63.91 64.48
Partial data 83.24 56.51 41.14 72.21

Relative margin 3.29 5.28 4.40 6.38 3.79 2.93 17.70 9.91 3.26 12.50 16.02 21.43

Figure 10: Imputed images by CRA. Left three columns are

grayscale images and the right three columns are depth images.

The top row is original images that are missing. The bottom row

is imputed images using the available modality via CRA.

RGB-D dataset. CRA can reconstruct images well approxi-

mating the original ones.

4.4. Results of Recognition Experiments

The recognition rates of classifiers trained on imputed

training data are reported in Tab. 3. These results are also

compared with baselines where classifiers are trained on

different amount of data: full training data, partial training

data or a single modality, as in Fig. 5b. We observe that in

all datasets, CRA with optimization or convolutional CRA

achieves the best performance among all methods. Also,

the achieved performance is more closer to the upper bound

than to the lower bound, which shows the power of learning

with missing modality. Finally, since the difference of the

two bounds defines the potential range of performance that

could be achieved by the classifier learned from the imputed

training data, we use such a difference as the normalization

to compute the relative margin. The average relative margin

of 13% across four datasets demonstrates the effectiveness

of CRA in object recognition with missing modalities.

(a) Partial data (b) Full data (c) SoftImpute (d) CRA

Figure 11: Visualization of all training data of GRSS (recovered

and original) in the same space spanned by the first two principal

components of full data. Colors represent classes.

Fig. 11 visualizes the distribution of training samples

of GRSS, before and after the imputation of two methods.

CRA produces the similar distribution as the original full

data. Meanwhile the matrix completion method of SoftIm-

pute generates some outliners, at the lower-right corner of

Fig. 11c. This figure also helps to explain why using im-

puted data samples may benefit classifier learning, i.e., the

original data distribution is well represented by the imputed

data, but not the partial data.

5. Conclusions

Motivated by the need to exploit the advantage of multi-

modal data, this paper draws attention to a relatively less ex-

plored problem of imputing data with missing modality. To

this end, we propose a novel approach to combine a series of

residual autoencoders into a cascaded architecture to learn

complex relationship among data from different modalities.

The cascaded residual autoencoder provides a data impu-

tation framework that leverages strengths of residual learn-

ing and autoencoder networks. Extensive experiments on

benchmark datasets demonstrate the superiority of our al-

gorithm in both data imputation and object recognition.

References

[1] M. Abdella and T. Marwala. The use of genetic algo-

rithms and neural networks to approximate missing data

in database. In Computational Cybernetics, 2005. ICCC

2005. IEEE 3rd International Conference on, pages 207–

212. IEEE, 2005. 2, 7, 8

[2] L. Bo, X. Ren, and D. Fox. Unsupervised feature learning for

RGB-D based object recognition. In Experimental Robotics,

pages 387–402. Springer, 2013. 6

[3] J.-F. Cai, E. J. Candès, and Z. Shen. A singular value thresh-

olding algorithm for matrix completion. SIAM Journal on

Optimization, 20(4):1956–1982, 2010. 2, 7, 8

[4] E. J. Candes and Y. Plan. Matrix completion with noise.

Proceedings of the IEEE, 98(6):925–936, 2010. 2

[5] E. J. Candès and B. Recht. Exact matrix completion via con-

vex optimization. Foundations of Computational mathemat-

ics, 9(6):717–772, 2009. 2

[6] J. A. Cruz, X. Yin, X. Liu, S. M. Imran, D. D. Morris, D. M.

Kramer, and J. Chen. Multi-modality imagery database for

plant phenotyping. 7:1–15, October 2015. 1

[7] M. Dalla Mura, J. A. Benediktsson, B. Waske, and L. Bruz-

zone. Morphological attribute profiles for the analysis of

very high resolution images. Geoscience and Remote Sens-

ing, IEEE Transactions on, 48(10):3747–3762, 2010. 6

[8] C. Debes, A. Merentitis, R. Heremans, J. Hahn, N. Fran-

giadakis, T. van Kasteren, W. Liao, R. Bellens, A. Pizurica,

S. Gautama, et al. Hyperspectral and LiDAR data fusion:

Outcome of the 2013 GRSS data fusion contest. Selected

Topics in Applied Earth Observations and Remote Sensing,

IEEE Journal of, 7(6):2405–2418, 2014. 6

[9] S. M. Dhlamini, F. V. Nelwamondo, and T. Marwala. Con-

dition monitoring of HV bushings in the presence of missing

data using evolutionary computing. WSEAS Transactions on

Power Systems, 1(2):280–287, 2006. 2

[10] W. Di, L. Zhang, D. Zhang, and Q. Pan. Studies on hy-

perspectral face recognition in visible spectrum with feature

band selection. Systems, Man and Cybernetics, Part A: Sys-

tems and Humans, IEEE Transactions on, 40(6):1354–1361,

2010. 1, 6

[11] Y. Duan, L. Yisheng, W. Kang, and Y. Zhao. A deep learn-

ing based approach for traffic data imputation. In Intelli-

gent Transportation Systems (ITSC), 2014 IEEE 17th Inter-

national Conference on, pages 912–917. IEEE, 2014. 2, 3

[12] J. Elseberg, D. Borrmann, and A. Nüchter. Full wave analy-

sis in 3D laser scans for vegetation detection in urban envi-

ronments. In Information, Communication and Automation

Technologies (ICAT), 2011 XXIII International Symposium

on, pages 1–7. IEEE, 2011. 1

[13] L. Gomez-Chova, D. Tuia, G. Moser, and G. Camps-Valls.

Multimodal classification of remote sensing images: a re-

view and future directions. Proceedings of the IEEE,

103(9):1560–1584, 2015. 1

[14] R. Gross, I. Matthews, J. Cohn, T. Kanade, and S. Baker.

Multi-PIE. Image and Vision Computing, 28(5):807–813,

2010. 6

[15] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

pages 770–778, 2016. 3

[16] G. E. Hinton and R. R. Salakhutdinov. Reducing the

dimensionality of data with neural networks. Science,

313(5786):504–507, 2006. 2

[17] J. Im and J. R. Jensen. Hyperspectral remote sensing of veg-

etation. Geography Compass, 2(6):1943–1961, 2008. 1

[18] J. Jordan and E. Angelopoulou. Supervised multispectral im-

age segmentation with power watersheds. In Image Process-

ing (ICIP), 2012 19th IEEE International Conference on,

pages 1585–1588. IEEE, 2012. 1

[19] A. Kanaev, B. Daniel, J. Neumann, A. Kim, and K. Lee. Ob-

ject level HSI-LiDAR data fusion for automated detection of

difficult targets. Optics express, 19(21):20916–20929, 2011.

1

[20] R. H. Keshavan, S. Oh, and A. Montanari. Matrix completion

from a few entries. In Information Theory, 2009. ISIT 2009.

IEEE International Symposium on, pages 324–328. IEEE,

2009. 2, 7, 8

[21] M. Khodadadzadeh, J. Li, S. Prasad, and A. Plaza. Fusion of

hyperspectral and LiDAR remote sensing data using multiple

feature learning. Selected Topics in Applied Earth Observa-

tions and Remote Sensing, IEEE Journal of, 8(6):2971–2983,

2015. 1, 6

[22] K. Lai, L. Bo, X. Ren, and D. Fox. A large-scale hierarchical

multi-view RGB-D object dataset. In Robotics and Automa-

tion (ICRA), 2011 IEEE International Conference on, pages

1817–1824. IEEE, 2011. 6

[23] J. Li, J. M. Bioucas-Dias, and A. Plaza. Spectral–spatial hy-

perspectral image segmentation using subspace multinomial

logistic regression and Markov random fields. Geoscience

and Remote Sensing, IEEE Transactions on, 50(3):809–823,

2012. 6

[24] S. Z. Li. Markov random field modeling in image analysis.

Springer Science & Business Media, 2009. 6

[25] E. H. Lim and D. Suter. 3D terrestrial LiDAR classifications

with super-voxels and multi-scale conditional random fields.

Computer-Aided Design, 41(10):701–710, 2009. 1

[26] R. Mazumder, T. Hastie, and R. Tibshirani. Spectral regu-

larization algorithms for learning large incomplete matrices.

The Journal of Machine Learning Research, 11:2287–2322,

2010. 2, 7, 8

[27] V. Miranda, J. Krstulovic, H. Keko, C. Moreira, and

J. Pereira. Reconstructing missing data in state estimation

with autoencoders. Power Systems, IEEE Transactions on,

27(2):604–611, 2012. 3

[28] F. V. Nelwamondo, S. Mohamed, and T. Marwala. Missing

data: A comparison of neural network and expectation max-

imisation techniques. arXiv preprint arXiv:0704.3474, 2007.

2, 3

[29] A. Ng. Sparse autoencoder. CS294A Lecture notes, 72:1–19,

2011. 5

[30] J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, and A. Y. Ng.

Multimodal deep learning. In Proceedings of International

Conference on Machine Learning (ICML), pages 689–696,

2011. 3, 7, 8

[31] A. Said and W. A. Pearlman. A new, fast, and efficient image

codec based on set partitioning in hierarchical trees. Circuits

and Systems for Video Technology, IEEE Transactions on,

6(3):243–250, 1996. 7

[32] M. Uzair, A. Mahmood, and A. Mian. Hyperspectral

face recognition with spatiospectral information fusion and

PLS regression. Image Processing, IEEE Transactions on,

24(3):1127–1137, 2015. 6

[33] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol.

Extracting and composing robust features with denoising au-

toencoders. In Proc. of Int. Conf. Machine Learning (ICML),

pages 1096–1103. ACM, 2008. 2, 7, 8

[34] W. Wang, R. Arora, K. Livescu, and J. Bilmes. On deep

multi-view representation learning. In Proc. of Int. Conf.

Machine Learning (ICML), pages 1083–1092, 2015. 3, 7,

8

[35] L. Z. Wong, H. Chen, S. Lin, and D. C. Chen. Imputing

missing values in sensor networks using sparse data repre-

sentations. In Proceedings of the 17th ACM international

conference on Modeling, analysis and simulation of wireless

and mobile systems, pages 227–230. ACM, 2014. 2, 3

[36] L. Zhang, M. Yang, and X. Feng. Sparse representation or

collaborative representation: Which helps face recognition?

In Computer Vision (ICCV), 2011 IEEE International Con-

ference on, pages 471–478. IEEE, 2011. 6

