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On Learning 3D Face Morphable Model
from In-the-wild Images

Luan Tran, and Xiaoming Liu, Member, IEEE

Abstract—As a classic statistical model of 3D facial shape and albedo, 3D Morphable Model (3DMM) is widely used in facial analysis,
e.g., model fitting, image synthesis. Conventional 3DMM is learned from a set of 3D face scans with associated well-controlled 2D face
images, and represented by two sets of PCA basis functions. Due to the type and amount of training data, as well as, the linear bases,
the representation power of 3DMM can be limited. To address these problems, this paper proposes an innovative framework to learn a
nonlinear 3DMM model from a large set of in-the-wild face images, without collecting 3D face scans. Specifically, given a face image as
input, a network encoder estimates the projection, lighting, shape and albedo parameters. Two decoders serve as the nonlinear 3DMM
to map from the shape and albedo parameters to the 3D shape and albedo, respectively. With the projection parameter, lighting, 3D
shape, and albedo, a novel analytically-differentiable rendering layer is designed to reconstruct the original input face. The entire
network is end-to-end trainable with only weak supervision. We demonstrate the superior representation power of our nonlinear 3DMM
over its linear counterpart, and its contribution to face alignment, 3D reconstruction, and face editing.
Source code and additional results can be found at our project page: http://cvlab.cse.msu.edu/project-nonlinear-3dmm.html

Index Terms—morphable model, 3DMM, face, nonlinear, weakly supervised, in-the-wild, face reconstruction, face alignment.
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1 INTRODUCTION

T HE 3D Morphable Model (3DMM) is a statistical model of
3D facial shape and texture in a space where there are explicit

correspondences [1]. The morphable model framework provides
two key benefits: first, a point-to-point correspondence between
the reconstruction and all other models, enabling morphing, and
second, modeling underlying transformations between types of
faces (male to female, neutral to smile, etc.). 3DMM has been
widely applied in numerous areas including, but not limited
to, computer vision [1]–[3], computer graphics [4]–[7], human
behavioral analysis [8], [9] and craniofacial surgery [10].

Traditionally, 3DMM is learnt through supervision by per-
forming dimension reduction, typically Principal Component
Analysis (PCA), on a training set of co-captured 3D face scans
and 2D images. To model highly variable 3D face shapes, a
large amount of high-quality 3D face scans is required. However,
this requirement is expensive to fulfill as acquiring face scans is
very laborious, in both data capturing and post-processing stage.
The first 3DMM [1] was built from scans of 200 subjects with
a similar ethnicity/age group. They were also captured in well-
controlled conditions, with only neutral expressions. Hence, it is
fragile to large variances in the face identity. The widely used
Basel Face Model (BFM) [11] is also built with only 200 subjects
in neutral expressions. Lack of expression can be compensated
using expression bases from FaceWarehouse [12] or BD-3FE [13],
which are learned from the offsets to the neutral pose. After more
than a decade, almost all existing models use no more than 300
training scans. Such small training sets are far from adequate to
describe the full variability of human faces [14]. Until recently,
with a significant effort as well as a novel automated and robust
model construction pipeline, Booth et al. [14] build the first large-
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Fig. 1: Conventional 3DMM employs linear bases models for
shape/albedo, which are trained with 3D face scans and associated
controlled 2D images. We propose a nonlinear 3DMM to model
shape/albedo via deep neural networks (DNNs). It can be trained from
in-the-wild face images without 3D scans, and also better reconstruct
the original images due to the inherent nonlinearity.

scale 3DMM from scans of ∼10, 000 subjects.
Second, the texture model of 3DMM is normally built with

a small number of 2D face images co-captured with 3D scans,
under well-controlled conditions. Despite there is a considerable
improvement of 3D acquisition devices in the last few years, these
devices still cannot operate in arbitrary in-the-wild conditions.
Therefore, all the current 3D facial datasets have been captured
in the laboratory environment. Hence, such models are only learnt
to represent the facial texture in similar, rather than in-the-wild,
conditions. This substantially limits its application scenarios.

Finally, the representation power of 3DMM is limited by not
only the size or type of training data but also its formulation. The
facial variations are nonlinear in nature. E.g., the variations in
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different facial expressions or poses are nonlinear, which violates
the linear assumption of PCA-based models. Thus, a PCA model
is unable to interpret facial variations sufficiently well. This is
especially true for facial texture. For all current 3DMM models,
their low-dimension albedo subspace faces the same problem of
lacking facial hair, e.g., beards. To reduce the fitting error, it
compensates unexplainable texture by alternating surface normal,
or shrinking the face shape [15]. Either way, linear 3DMM-based
applications often degrade their performances when handling out-
of-subspace variations.

Given the barrier of 3DMM in its data, supervision and linear
bases, this paper aims to revolutionize the paradigm of learning
3DMM by answering a fundamental question:

Whether and how can we learn a nonlinear 3D Mor-
phable Model of face shape and albedo from a set of
in-the-wild 2D face images, without collecting 3D face
scans?

If the answer were yes, this would be in sharp contrast to the
conventional 3DMM approach, and remedy all aforementioned
limitations. Fortunately, we have developed approaches to offer
positive answers to this question. With the recent development of
deep neural networks, we view that it is the right time to undertake
this new paradigm of 3DMM learning. Therefore, the core of this
paper is regarding how to learn this new 3DMM, what is the
representation power of the model, and what is the benefit of the
model to facial analysis.

We propose a novel paradigm to learn a nonlinear 3DMM
model from a large in-the-wild 2D face image collection, with-
out acquiring 3D face scans, by leveraging the power of deep
neural networks captures variations and structures in complex
face data. As shown in Fig. 1, starting with an observation that
the linear 3DMM formulation is equivalent to a single layer
network, using a deep network architecture naturally increases the
model capacity. Hence, we utilize two convolution neural network
decoders, instead of two PCA spaces, as the shape and albedo
model components, respectively. Each decoder will take a shape
or albedo parameter as input and output the dense 3D face mesh
or a face skin reflectant. These two decoders are essentially the
nonlinear 3DMM.

Further, we learn the fitting algorithm to our nonlinear 3DMM,
which is formulated as a CNN encoder. The encoder network
takes a face image as input and generates the shape and albedo
parameters, from which two decoders estimate shape and albedo.

The 3D face and albedo would perfectly reconstruct the
input face, if the fitting algorithm and 3DMM are well learnt.
Therefore, we design a differentiable rendering layer to generate a
reconstructed face by fusing the 3D face, albedo, lighting, and the
camera projection parameters estimated by the encoder. Finally,
the end-to-end learning scheme is constructed where the encoder
and two decoders are learnt jointly to minimize the difference
between the reconstructed face and the input face. Jointly learning
the 3DMM and the model fitting encoder allows us to leverage the
large collection of in-the-wild 2D images without relying on 3D
scans. We show significantly improved shape and facial texture
representation power over the linear 3DMM. Consequently, this
also benefits other tasks such as 2D face alignment, 3D recon-
struction, and face editing.

A preliminary version of this work was published in 2018
IEEE Conference on Computer Vision and Pattern Recogni-
tion [16]. We extend it in numerous ways: 1) Instead of having

lighting embedded in texture, we split texture into albedo and
shading. Truthfully modeling the lighting help to improve the
shape modeling as it can help to guide the surface normal learning.
This results in better performance in followed tasks: alignment and
reconstruction, as demonstrated in our experiment section. 2) We
propose to present the shape component in the 2D UV space,
which helps to reserve spatial relation among its vertices. This
also allows us to use a CNN, rather than an expensive multi-
layer perceptron, as the shape decoder. 3) To ensure plausible
reconstruction, we employ multiple constraints to regularize the
model learning.

In summary, this paper makes the following contributions:

• We learn a nonlinear 3DMM model, fully models shape,
albedo and lighting, that has greater representation power
than its traditional linear counterpart.

• Both shape and albedo are represented as 2D images,
which help to maintain spatial relations as well as leverage
CNN power in image synthesis.

• We jointly learn the model and the model fitting algorithm
via weak supervision, by leveraging a large collection of
2D images without 3D scans. The novel rendering layer
enables the end-to-end training.

• The new 3DMM further improves performance in related
tasks: face alignment, face reconstruction and face editing.

2 PRIOR WORK

Linear 3DMM. Blanz and Vetter [1] propose the first generic 3D
face model learned from scan data. They define a linear subspace
to represent shape and texture using principal component analysis
(PCA) and show how to fit the model to data. Since this seminal
work, there has been a large amount of effort on improving 3DMM
modeling mechanism. In [1], the dense correspondence between
facial mesh is solved with a regularised form of optical flow.
However, this technique is only effective in a constrained setting,
where subjects share similar ethnicities and ages. To overcome
this challenge, Patel and Smith [17] employ a Thin Plate Splines
(TPS) warp [18] to register the meshes into a common reference
frame. Alternatively, Paysan et al. [11] use a Nonrigid Iterative
Closest Point [19] to directly align 3D scans. In a different
direction, Amberg et al. [8] extended Blanz and Vetter’s PCA-
based model to emotive facial shapes by adopting an additional
PCA modeling of the residuals from the neutral pose. This results
in a single linear model of both identity and expression variation
of 3D facial shape. Vlasic et al. [20] use a multilinear model to
represent the combined effect of identity and expression variation
on the facial shape. Later, Bolkart and Wuhrer [21] show how
such a multilinear model can be estimated directly from the 3D
scans using a joint optimization over the model parameters and
groupwise registration of 3D scans.
Improving Linear 3DMM. With PCA bases, the statistical dis-
tribution underlying 3DMM is Gaussian. Koppen et al. [22] argue
that single-mode Gaussian can’t well represent real-world distri-
bution. They introduce the Gaussian Mixture 3DMM that models
the global population as a mixture of Gaussian subpopulations,
each with its own mean, but shared covariance. Booth et al. [23]
aim to improve texture of 3DMM to go beyond controlled settings
by learning in-the-wild feature-based texture model. On another
direction, Tran et al. [24] learn to regress robust and discrimi-
native 3DMM representation, by leveraging multiple images from
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Fig. 2: Jointly learning a nonlinear 3DMM and its fitting algorithm from unconstrained 2D in-the-wild face image collection, in a weakly
supervised fashion. LS is a visualization of shading on a sphere with lighting parameters L.

the same subject. However, all works are still based on statistical
PCA bases. Duong et al. [25] address the problem of linearity
in face modeling by using Deep Boltzmann Machines. However,
they only work with 2D face and sparse landmarks; and hence
cannot handle faces with large-pose variations or occlusion well.
Concurrent to our work, Tewari et al. [26] learn a (potentially non-
linear) corrective model on top of a linear model. The final model
is a summation of the base linear model and the learned corrective
model, which contrasts to our unified model. Furthermore, our
model has an advantage of using 2D representation of both shape
and albedo, which maintains spatial relations between vertices
and leverages CNN power for image synthesis. Finally, thanks
for our novel rendering layer, we are able to employ perceptual,
adversarial loss to improve the reconstruction quality.

2D Face Alignment. 2D Face Alignment [27], [28] can be cast as
a regression problem where 2D landmark locations are regressed
directly [29]. For large-pose or occluded faces, strong priors of
3DMM face shape have been shown to be beneficial [30]. Hence,
there is increasing attention in conducting face alignment by fitting
a 3D face model to a single 2D image [31]–[36]. Among the
prior works, iterative approaches with cascade of regressors tend
to be preferred. At each cascade, there is a single [30], [37] or
even two regressors [38] used to improve its prediction. Recently,
Jourabloo and Liu [35] propose a CNN architecture that enables
the end-to-end training ability of their network cascade. Contrasted
to aforementioned works that use a fixed 3DMM model, our
model and model fitting are learned jointly. This results in a
more powerful model: a single-pass encoder, which is learned
jointly with the model, achieves state-of-the-art face alignment
performance on AFLW2000 [32] benchmark dataset (see Tab. 5)

3D Face Reconstruction. Face reconstruction creates a 3D
face model from an image collection [39], [40] or even with a
single image [41], [42]. This long-standing problem draws a lot of
interest because of its wide applications. 3DMM also demonstrates
its strength in face reconstruction, especially in the monocular
case. This problem is a highly under-constrained, as with a
single image, present information about the surface is limited.
Hence, 3D face reconstruction must rely on prior knowledge

like 3DMM [43]. Statistical PCA linear 3DMM is the most
commonly used approach. Besides 3DMM fitting methods [44]–
[49], recently, Richardson et al. [50] design a refinement network
that adds facial details on top of the 3DMM-based geometry.
However, this approach can only learn 2.5D depth map, which
loses the correspondence property of 3DMM. The follow up
work by Sela et al. [42] try to overcome this weakness by
learning a correspondence map. Despite having some impressive
reconstruction results, both these methods are limited by training
data synthesized from the linear 3DMM model. Hence, they fail
to handle out-of-subspace variations, e.g., facial hair.

Unsupervised learning in 3DMM. Collecting large-scale 3D
scans with detailed labels for learning 3DMM is not an easy
task. A few work try to use large-scale synthetic data as in [41],
[51], but they don’t generalize well as there still be a domain
gap with real images. Tewari et al. [48] is among the first
work attempting to learn 3DMM fitting from unlabeled images.
They use an unsupervised loss which compares projected textured
face mesh with the original image itself. The sparse landmark
alignment is also used as an auxiliary loss. Genova et al. [52]
further improve this approach by comparing reconstructed images
and original input using higher-level features from a pretrained
face recognition network. Compared to these work, our work has
a different objective of learning a nonlinear 3DMM.

3 THE PROPOSED NONLINEAR 3DMM
In this section, we start by introducing the traditional linear
3DMM and then present our novel nonlinear 3DMM model.

3.1 Conventional Linear 3DMM

The 3D Morphable Model (3DMM) [1] and its 2D counterpart,
Active Appearance Model [53]–[55], provide parametric models
for synthesizing faces, where faces are modeled using two compo-
nents: shape and albedo (skin reflectant). In [1], Blanz et al. pro-
pose to describe the 3D face space with PCA:

S = S̄ + Gα, (1)
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Fig. 3: Three albedo representations. (a) Albedo value per vertex, (b)
Albedo as a 2D frontal face, (c) UV space 2D unwarped albedo.

where S ∈ R3Q is a 3D face mesh with Q vertices, S̄ ∈ R3Q is
the mean shape, α ∈ RlS is the shape parameter corresponding
to a 3D shape bases G. The shape bases can be further split
into G = [Gid,Gexp], where Gid is trained from 3D scans
with neutral expression, and Gexp is from the offsets between
expression and neutral scans.

The albedo of the face A ∈ R3Q is defined within the mean
shape S̄, which describes the R, G, B colors of Q corresponding
vertices. A is also formulated as a linear combination of basis
functions:

A = Ā + Rβ, (2)

where Ā is the mean albedo, R is the albedo bases, and β ∈ RlT

is the albedo parameter.
The 3DMM can be used to synthesize novel views of the face.

Firstly, a 3D face is projected onto the image plane with the weak
perspective projection model:

V = R ∗ S, (3)

g(S,m) = V2D = f ∗Pr ∗V + t2d = M(m) ∗
[
S
1

]
, (4)

where g(S,m) is the projection function leading to the 2D
positions V2D of 3D rotated vertices V, f is the scale factor,

Pr =

[
1 0 0
0 1 0

]
is the orthographic projection matrix, R is the

rotation matrix constructed from three rotation angles (pitch, yaw,
roll), and t2d is the translation vector. While the project matrix
M is of the size of 2 × 4, it has six degrees of freedom, which
is parameterized by a 6-dim vector m. Then, the 2D image is
rendered using texture and an illumination model such as Phong
reflection model [56] or Spherical Harmonics [57].

3.2 Nonlinear 3DMM
As mentioned in Sec. 1, the linear 3DMM has the problems such
as requiring 3D face scans for supervised learning, unable to
leverage massive in-the-wild face images for learning, and the
limited representation power due to the linear bases. We propose
to learn a nonlinear 3DMM model using only large-scale in-the-
wild 2D face images.

3.2.1 Problem Formulation
In linear 3DMM, the factorization of each of components (shape,
albedo) can be seen as a matrix multiplication between coefficients
and bases. From a neural network’s perspective, this can be
viewed as a shallow network with only one fully connected layer
and no activation function. Naturally, to increase the model’s
representation power, the shallow network can be extended to a
deep architecture. In this work, we design a novel learning scheme
to joint learn a deep 3DMM model and its inference (or fitting)
algorithm.

Fig. 4: UV space shape representation. From left to right: individual
channels for x, y and z spatial dimension and final combined shape
image.

Specifically, as shown in Fig. 2, we use two deep networks to
decode the shape, albedo parameters into the 3D facial shape and
albedo respectively. To make the framework end-to-end trainable,
these parameters are estimated by an encoder network, which
is essentially the fitting algorithm of our 3DMM. Three deep
networks join forces for the ultimate goal of reconstructing the
input face image, with the assistant of a physically-based rendering
layer. Fig. 2 visualizes the architecture of the proposed framework.
Each component will be present in following sections.

Formally, given a set of K 2D face images {Ii}Ki=1, we
aim to learn an encoder E: I→m,L, fS , fA that estimates the
projection m, lighting parameter L, shape parameters fS ∈ RlS ,
and albedo parameter fA ∈ RlA , a 3D shape decoder DS : fS→S
that decodes the shape parameter to a 3D shape S ∈ R3Q, and an
albedo decoder DA: fA→A that decodes the albedo parameter to
a realistic albedo A ∈ R3Q, with the objective that the rendered
image with m, L, S, and A can well approximate the original
image. Mathematically, the objective function is:

arg min
E,DS ,DA

K∑
i=1

∥∥∥Îi − Ii

∥∥∥
1
, (5)

Î = R (Em(I), EL(I), DS(ES(I)), DA(EA(I))) ,

where R(m,L,S,A) is the rendering layer (Sec. 3.2.3).

3.2.2 Albedo & Shape Representation
Fig. 3 illustrates three possible albedo representations. In tra-
ditional 3DMM, albedo is defined per vertex (Fig. 3(a)). This
representation is also adopted in recent work such as [26], [48].
There is an albedo intensity value corresponding to each vertex
in the face mesh. Despite widely used, this representation has
its limitations. Since 3D vertices are not defined on a 2D grid,
this representation is mostly parameterized as a vector, which not
only loses the spatial relation of its vertices, but also prevents it
to leverage the convenience of deploying CNN on 2D albedo.
In contrast, given the rapid progress in image synthesis, it is
desirable to choose a 2D image, e.g., a frontal-view face image
in Fig. 3(b), as an albedo representation. However, frontal faces
contain little information of two sides, which would lose many
albedo information for side-view faces.

In light of these consideration, we use an unwrapped 2D
texture as our texture representation (Fig. 3(c)). Specifically, each
3D vertex v is projected onto the UV space using cylindrical
unwarp. Assuming that the face mesh has the top pointing up
the y axis, the projection of v = (x, y, z) onto the UV space
vuv = (u, v) is computed as:

v → α1.arctan
(x
z

)
+ β1, u→ α2.y + β2, (6)

where α1, α2, β1, β2 are constant scale and translation scalars to
place the unwrapped face into the image boundaries. Here, per-
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Fig. 5: Forward and backward pass of the rendering layer.

vertex albedo A ∈ R3Q could be easily computed by sampling
from its UV space counterpart Auv ∈ RU×V :

A(v) = Auv(vuv). (7)

Usually, it involves sub-pixel sampling via bilinear interpolation:

A(v) =
∑

u′∈{buc,due}
v′∈{bvc,dve}

Auv(u′, v′)(1−|u−u′|)(1−|v−v′|), (8)

where vuv = (u, v) is the UV space projection of v via Eqn. 6.
Albedo information is naturally expressed in the UV space but

spatial data can be embedded in the same space as well. Here,
a 3D facial mesh can be represented as a 2D image with three
channels, one for each spatial dimension x, y and z. Fig 4 gives
an example of this UV space shape representation Suv ∈ RU×V .

Representing 3D face shape in UV space allow us to use
a CNN for shape decoder DS instead of using a multi-layer
perceptron (MLP) as in our preliminary version [16]. Avoiding
using wide fully-connected layers allow us to use deeper network
for DS , potentially model more complex shape variations. This
results in better fitting results as being demonstrated in our
experiment (Sec. 4.1.2).

Also, it is worth to note that different from our preliminary
version [16] where the reference UV space, for texture, is build
upon projection of the mean shape with neutral expression; in this
version, the reference shape used has the mouth open. This change
helps the network to avoid learning a large gradient near the two
lips’ borders in the vertical direction when the mouth is open.

To regress these 2D representation of shape and albedo, we can
employ CNNs as shape and albedo networks respectively. Specif-
ically, DS , DA are CNN constructed by multiple fractionally-
strided convolution layers. After each convolution is batchnorm
and eLU activation, except the last convolution layers of encoder
and decoders. The output layer has a tanh activation to constraint
the output to be in the range of [−1, 1]. The detailed network
architecture is presented in Tab. 1.

3.2.3 In-Network Physically-Based Face Rendering
To reconstruct a face image from the albedo A, shape S, lighting
parameter L, and projection parameter m, we define a rendering
layer R(m,L,S,A) to render a face image from the above
parameters. This is accomplished in three steps, as shown in Fig. 5.
Firstly, the facial texture is computed using the albedo A and the
surface normal map of the rotated shape N(V) = N(m,S).
Here, following [58], we assume distant illumination and a purely

Lambertian surface reflectance. Hence the incoming radiance can
be approximated using spherical harmonics (SH) basis functions
Hb : R3 → R, and controlled by coefficients L. Specifically, the
texture in UV space Tuv ∈ RU×V is composed of albedo Auv

and shading Cuv:

Tuv = Auv �Cuv = Auv �
B2∑
b=1

LbHb(N(m,Suv)), (9)

where B is the number of spherical harmonics bands. We use
B = 3, which leads to B2 = 9 coefficients in L for each of three
color channels. Secondly, the 3D shape/mesh S is projected to the
image plane via Eqn. 4. Finally, the 3D mesh is then rendered
using a Z-buffer renderer, where each pixel is associated with a
single triangle of the mesh,

Î(m,n) = R(m,L,Suv,Auv)m,n

= Tuv(
∑

vi∈Φuv(g,m,n)

λivi), (10)

where Φ(g,m, n) = {v1,v2,v3} is an operation returning three
vertices of the triangle that encloses the pixel (m,n) after projec-
tion g; Φuv(g,m, n) is the same operation with resultant vertices
mapped into the referenced UV space using Eqn. 6. In order to
handle occlusions, when a single pixel resides in more than one
triangle, the triangle that is closest to the image plane is selected.
The final location of each pixel is determined by interpolating the
location of three vertices via barycentric coordinates {λi}3i=1.

There are alternative designs to our rendering layer. If the
texture representation is defined per vertex, as in Fig. 3(a), one
may warp the input image Ii onto the vertex space of the 3D shape
S, whose distance to the per-vertex texture representation can form
a reconstruction loss. This design is adopted by the recent work
of [26], [48]. In comparison, our rendered image is defined on
a 2D grid while the alternative is on top of the 3D mesh. As a
result, our rendered image can enjoy the convenience of applying
the perceptual loss or adversarial loss, which is shown to be critical
in improving the quality of synthetic texture. Another design for
rendering layer is image warping based on the spline interpolation,
as in [59]. However, this warping is continuous: every pixel in the
input will map to the output. Hence this warping operation fails
in the occluded region. As a result, Cole et al. [59] limit their
scope to only synthesizing frontal-view faces by warping from
normalized faces.

The CUDA implementation of our rendering layer is publicly
available at https://github.com/tranluan/Nonlinear Face 3DMM.
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TABLE 1: The architectures of E, DA and DS networks.

E DA/DS

Layer Filter/Stride Output Size Layer Filter/Stride Output Size

FC 6×7×320
Conv11 7×7/2 112×112×32 FConv52 3×3/2 12×14×160
Conv12 3×3/1 112×112×64 FConv51 3×3/1 12×14×256

Conv21 3×3/2 56×56×64 FConv43 3×3/2 24×28×256
Conv22 3×3/1 56×56×64 FConv42 3×3/1 24×28×128
Conv23 3×3/1 56×56×128 FConv41 3×3/1 24×28×192

Conv31 3×3/2 28×28×128 FConv33 3×3/2 48×56×192
Conv32 3×3/1 28×28×96 FConv32 3×3/1 48×56×96
Conv33 3×3/1 28×28×192 FConv31 3×3/1 48×56×128

Conv41 3×3/2 14×14×192 FConv23 3×3/2 96×112×128
Conv42 3×3/1 14×14×128 FConv22 3×3/1 96×112×64
Conv43 3×3/1 14×14×256 FConv21 3×3/1 96×112×64

Conv51 3×3/2 7×7×256 FConv13 3×3/2 192×224×64
Conv52 3×3/1 7×7×160 FConv12 3×3/1 192×224×32
Conv53 3×3/1 7×7×(lS+lA+64) FConv11 3×3/1 192×224×3

AvgPool 7×7/1 1×1×(lS+lA+64)

FCm 64×6 6

FCL 64×27 27

Fig. 6: Rendering with segmentation masks. Left to right: seg-
mentation results, naive rendered images, occulusion-aware rendered
images.

3.2.4 Occlusion-aware Rendering
Very often, in-the-wild faces are occluded by glasses, hair, hands,
etc. Trying to reconstruct abnormal occluded regions could make
the model learning more difficult or result in an model with exter-
nal occlusion baked in. Hence, we propose to use a segmentation
mask to exclude occluded regions in the rendering pipeline:

Î← Î�M + I� (1−M). (11)

As a result, these occluded regions won’t affect our opti-
mization process. The foreground mask M is estimated using
the segmentation method given by Nirkinet al. [60]. Examples of
segmentation masks and rendering results can be found in Fig. 6.

3.2.5 Model Learning
The entire network is end-to-end trained to reconstruct the input
images, with the loss function:

L = Lrec + λLLL + λregLreg, (12)

where the reconstruction loss Lrec enforces the rendered image Î to
be similar to the input I, the landmark loss LL enforces geometry
constraint, and the regularization loss Lreg encourages plausible
solutions.
Reconstruction Loss. The main objective of the network is to
reconstruct the original face via disentangle representation. Hence,

we enforce the reconstructed image to be similar to the original
input image:

Li
rec =

1

|V|
∑
q∈V
||̂I(q)− I(q)||2 (13)

where V is the set of all pixels in the images covered by the
estimated face mesh. There are different norms can be used to
measure the closeness. To better handle outliers, we adopt the
robust l2,1, where the distance in the 3D RGB color space is based
on l2 and the summation over all pixels enforces sparsity based on
l1-norm [7], [61].

To improve from blurry reconstruction results of lp losses,
in our preliminary work [16], thanks for our rendering layer, we
employ adversarial loss to enhance the image realism. However,
adversarial objective only encourage the reconstruction to be close
to the real image distribution but not necessary the input image.
Also, it’s known to be not stable to optimize. Here, we propose
to use a perceptual loss to enforce the closeness between images
Î and I, which overcomes both of adversarial loss’s weaknesses.
Besides encouraging the pixels of the output image Î to exactly
match the pixels of the input I, we encourage them to have similar
feature representations as computed by the loss network ϕ.

Lf
rec =

1

|C|
∑
j∈C

1

WjHjCj
||ϕj (̂I)− ϕj(I)||22. (14)

We choose VGG-Face [62] as our ϕ to leverage its face-related
features and also because of simplicity. The loss is summed over
C, a subset of layers of ϕ. Here ϕj(I) is the activations of the j-th
layer of ϕ when processing the image I with dimension Wj ×
Hj × Cj . This feature reconstruction loss is one of perceptual
losses widely used in different image processing tasks [63].

The final reconstruction loss is a weighted sum of two terms:

Lrec = Li
rec + λfL

f
rec. (15)

Sparse Landmark Alignment. To help achieving better model
fitting, which in turn helps to improve the model learning itself,
we employ the landmark alignment loss, measuring Euclidean
distance between estimated and groundtruth landmarks, as an
auxiliary task,

LL =

∥∥∥∥M(m) ∗
[
S(:,d)

1

]
−U

∥∥∥∥2

2

, (16)

where U ∈ R2×68 is the manually labeled 2D landmark locations,
d is a constant 68-dim vector storing the indexes of 68 3D ver-
tices corresponding to the labeled 2D landmarks. Different from
traditional face alignment work where the shape bases are fixed,
our work jointly learns the bases functions (i.e., the shape decoder
DS) as well. Minimizing the landmark loss while updating DS

only moves a tiny subsets of vertices. If the shape S is represented
as a vector and DS is a MLP consisting of fully connected layers,
vertices are independent. Hence LL only adjusts 68 vertices. In
case S is represented in the UV space and DS is a CNN, local
neighbor region could also be modified. In both cases, updating
DS based on LL only moves a subsets of vertices, which could
lead to implausible shapes. Hence, when optimizing the landmark
loss, we fix the decoder DS and only update the encoder.

Also, it is worth noting that different from some related
work [64], our network only requires ground truth landmarks
during training. It is able to predict landmarks via m and S during
the test time.
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Regularizations. To ensure plausible reconstruction, we add a
few regularization terms:

Albedo Symmetry As the face is symmetry, we enforce the
albedo symmetry constraint,

Lsym = ‖Auv − flip(Auv)‖1 . (17)

Employing on 2D albedo, this constraint can be easily imple-
mented via a horizontal image flip operation flip().

Albedo Constancy Using symmetry constraint can help to
correct the global shading. However, symmetrical details, i.e.,
dimples, can still be embedded in the albedo channel.

To further remove shading from the albedo channel, following
Retinex theory [22] which assumes albedo to be piecewise con-
stant, we enforce sparsity in two directions of its gradient, similar
to [65], [66]:

Lconst =
∑

vuv
j ∈Ni

ω(vuv
i ,v

uv
j )
∥∥Auv(vuv

i )−Auv(vuv
j )
∥∥p

2
, (18)

whereNi denotes a set of 4-pixel neighborhood of pixel vuv
i . With

the assumption that pixels with the same chromaticity (i.e., c(x) =
I(x)/|I(x)|) are more likely to have the same albedo, we set the
constant weight ω(vuv

i ,v
uv
j ) = exp

(
−α

∥∥∥c(vuv
i )− c(vuv

j )
∥∥∥),

where the color is referenced from the input image using the
current estimated projection. Following [65], we set α = 15 and
p = 0.8 in our experiment.

Shape Smoothness For shape component, we impose the
smoothness by adding the Laplacian regularization on the vertex
locations for the set of all vertices.

Lsmooth =
∑

vuv
i ∈Suv

∥∥∥∥∥∥Suv(vuv
i )− 1

|Ni|
∑

vuv
j ∈Ni

Suv(vuv
j )

∥∥∥∥∥∥
2

. (19)

Intermediate Semi-Supervised Training. Fully unsupervised
training using only the reconstruction and adversarial loss on the
rendered images could lead to a degenerate solution, since the
initial estimation is far from ideal to render meaningful images.
Therefore, we introduce intermediate loss functions to guide the
training in the early iterations.

With the face profiling technique, Zhu et al. [32] expand the
300W dataset [67] into 122, 450 images with fitted 3DMM shapes
S̃ and projection parameters m̃. Given S̃ and m̃, we create the
pseudo groundtruth texture T̃ by referring every pixel in the UV
space back to the input image, i.e., the backward of our rendering
layer. With m̃, S̃, T̃, we define our intermediate loss by:

L0 = LS + λTLT + λmLm + λLLL + λregLreg, (20)

where:

LS =
∥∥∥S− S̃

∥∥∥2

2
, (21)

LT =
∥∥∥T− T̃

∥∥∥
1
, (22)

Lm = ‖m− m̃‖22 . (23)

It’s also possible to provide pseudo groundtruth to the SH
coefficients L and followed by albedo A using least square
optimization with a constant albedo assumption, as has been done
in [58], [66]. However, this estimation is not reliable for in-
the-wild images with occlusion regions. Also empirically, with
proposed regularizations, the model is able to explore plausible
solutions for these components by itself. Hence, we decide to
refrain from supervising L and A to simplify our pipeline.

Sym Const Input Overlay Albedo Shading Texture

X

X X

Fig. 7: Effect of albedo regularizations: albedo symmetry (sym) and
albedo constancy (const). When there is no regularization being used,
shading is mostly baked into the albedo. Using the symmetry property
helps to resolve the global lighting. Using constancy constraint futher
removes shading from the albedo channel, which results in a better
3D shape.

Due to the pseudo groundtruth, using L0 may run into the
risk that our solution learns to mimic the linear model. Thus,
we switch to the loss of Eqn. 12 after L0 converges. Note that
the estimated groundtruth of m̃, S̃, T̃ and the landmarks are the
only supervision used in our training, for which our learning is
considered as weakly supervised.

4 EXPERIMENTAL RESULTS

The experiments study three aspects of the proposed nonlinear
3DMM, in terms of its expressiveness, representation power,
and applications to facial analysis. Using facial mesh triangle
definition by Basel Face Model (BFM) [11], we train our 3DMM
using 300W-LP dataset [32], which contains 122, 450 in-the-wild
face images, in a wide pose range from −90◦ to 90◦. Images are
loosely square croped around the face and scale to 256 × 256.
During training, images of size 224× 224 are randomly cropped
from these images to introduce translation variations.

The model is optimized using Adam optimizer with a learning
rate of 0.001 in both training stages. We set the following
parameters: Q = 53, 215, U = 192, V = 224, lS = lT = 160.
λ values are set to make losses to have similar magnitudes.

4.1 Ablation Study
4.1.1 Effect of Regularization

Albedo Regularization. In this work, to regularize albedo learn-
ing, we employ two constraints to efficiently remove shading from
albedo namely albedo symmetry and constancy. To demonstrate
the effect of these regularization terms, we compare our full model
with its partial variants: one without any albedo reqularization
and one with the symmetry constraint only. Fig. 7 shows visual
comparison of these models. Learning without any constraints
results in the lighting is totally explained by the albedo, meanwhile
is the shading is almost constant (Fig. 7(a)). Using symmetry
help to correct the global lighting. However, symmetric geometry
details are still baked into the albedo (Fig. 7(b)). Enforcing albedo
constancy helps to further remove shading from it (Fig. 7(c)).
Combining these two regularizations helps to learn plausible
albedo and lighting, which improves the shape estimation.
Shape Smoothness Regularization. We also evaluate the need
in shape regularization. Fig. 8 shows visual comparisons between
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Input Overlay Shape Overlay Shape

With smoothness Without smoothness

Fig. 8: Effect of shape smoothness regularization.

TABLE 2: Face alignment performance on ALFW2000.

Method Lighting UV shape NME

Our [16] 4.70
Our X 4.30
Our X X 4.12

our model and its variant without the shape smoothness constraint.
Without the smoothness term the learned shape becomes noisy
especially on two sides of the face. The reason is that, the hair
region is not completely excluded during training because of
imprecise segmentation estimation.

4.1.2 Modeling Lighting and Shape Representation

In this work, we make two major algorithmic differences with our
preliminary work [16]: incorporating lighting into the model and
changing the shape representation.

Our previous work [16] models the texture directly, while
this work disentangles the shading from the albedo. As argued,
modeling the lighting should have a positive impact on shape
learning. Hence we compare our models with results from [16]
in face alignment task.

Also, in our preliminary work [16], as well as in traditional
3DMM, shape is represented as a vector, where vertices are
independent. Despite this shortage, this approach has been widely
adopted due to its simplicity and sampling efficiency. In this work,
we explore an alternative to this representation: represent the 3D
shape as a position map in the 2D UV space. This represen-
tation has three channels: one for each spatial dimension. This
representation maintains the spatial relation among facial mesh’s
vertices. Also, we can use CNN as the shape decoder replacing an
expensive MLP. Here we also evaluate the performance gain by
switching to this representation.

Tab. 2 reports the performance on the face alignment task of
different variants. As a result, modeling lighting helps to reduce
the error from 4.70 to 4.30. Using the 2D representation, with the
convenience of using CNN, the error is further reduced to 4.12.

4.1.3 Comparison to Autoencoders

We compare our model-based approach with a convolutional au-
toencoder in Fig. 9. The autoencoder network has a similar depth
and model size as ours. It gives blurry reconstruction results as
the dataset contain large variations on face appearance, pose angle
and even diversity background. Our model-based approach obtains
sharper reconstruction results and provides semantic parameters

Input Our AE Input Our AE

Fig. 9: Comparison to convolutional autoencoders (AE). Our ap-
proach produces results of higher quality. Also it provides access to
the 3D facial shape, albedo, lighting, and projection matrix.

Fig. 10: Each column shows shape changes when varying one element
of fS , by 10 times standard deviations, in opposite directions. Ordered
by the magnitude of shape changes.

Fig. 11: Each column shows albedo changes when varying one
element of fA in opposite directions.

allowing access to different components including 3D shape,
albedo, lighting and projection matrix.

4.2 Expressiveness

Exploring feature space. We feed the entire CelebA dataset [68]
with ∼200k images to our network to obtain the empirical
distribution of our shape and texture parameters. By varying the
mean parameter along each dimension proportional to its standard
deviation, we can get a sense how each element contribute to the
final shape and texture. We sort elements in the shape parameter
fS based on their differences to the mean 3D shape. Fig. 10 shows
four examples of shape changes, whose differences rank No.1,
40, 80, and 120 among 160 elements. Most of top changes are
expression related. Similarly, in Fig. 11, we visualize different
texture changes by adjusting only one element of fA off the mean
parameter f̄A. The elements with the same 4 ranks as the shape
counterpart are selected.
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Male Mustache Bags Under Eyes Old

Female Rosy Cheeks Bushy Eyebrows Smiling

Fig. 12: Nonlinear 3DMM generates shape and albedo embedded
with different attributes.

TABLE 3: Quantitative comparison of texture representation power
(Average reconstruction error on non-occluded face portion.)

Method Linear Nonlinear w. Grad De. Nonlinear w. Network

L1 0.097 0.053 0.057

Attribute Embedding. To better understand different shape
and albedo instances embedded in our two decoders, we dig
into their attribute meaning. For a given attribute, e.g., male,
we feed images with that attribute {Ii}ni=1 into our encoder E
to obtain two sets of parameters {f iS}ni=1 and {f iA}ni=1. These
sets represent corresponding empirical distributions of the data
in the low dimensional spaces. Computing the mean parameters
f̄S , f̄A and feed into their respective decoders, also using the mean
lighting parameter, we can reconstruct the mean shape and texture
with that attribute. Fig. 12 visualizes the reconstructed textured
3D mesh related to some attributes. Differences among attributes
present in both shape and texture. Here we can observe the power
of our nonlinear 3DMM to model small details such as “bag under
eyes”, or “rosy cheeks”, etc.

4.3 Representation Power

We compare the representation power of the proposed nonlinear
3DMM vs. traditional linear 3DMM.

Albedo. Given a face image, assuming we know the groundtruth
shape and projection parameters, we can unwarp the texture into
the UV space, as we generate “pseudo groundtruth” texture in the
weakly supervision step. With the groundtruth texture, by using
gradient descent, we can jointly estimate, a lighting parameter L
and an albedo parameter fA whose decoded texture matches with
the groundtruth. Alternatively, we can minimize the reconstruction
error in the image space, through the rendering layer with the
groundtruth S and m. Empirically, two methods give similar
performances but we choose the first option as it involves only
one warping step, instead of doing rendering in every optimization
iteration. For the linear model, we use the fitting results of Basel
texture and Phong illumination model [56] given by [32]. As in
Fig. 13, our nonlinear texture is closer to the groundtruth than the

Input Linear Nonlinear
Grad desc Network

Fig. 13: Texture representation power comparison. Our nonlinear
model can better reconstruct the facial texture.

3D Scan Nonlinear Linear
lS = 40 lS = 80 lS = 160 lS = 160

Fig. 14: Shape representation power comparison.

TABLE 4: 3D scan reconstruction comparison (NME).

lS 40 80 160

Linear 0.0321 0.0279 0.0241
Nonlinear [16] 0.0277 0.0236 0.0196
Nonlinear 0.0268 0.0214 0.0146

linear model. This is expected since the linear model is trained
with controlled images. Quantitatively, our nonlinear model has
significantly lower averagedL1 reconstruction error than the linear
model (0.053 vs. 0.097, as in Tab. 3).

3D Shape. We also compare the power of nonlinear and linear
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Input Overlay Albedo Shape Shading Input Overlay Albedo Shape Shading

Fig. 15: 3DMM fits to faces with diverse skin color, pose, expression, lighting, facial hair, and faithfully recovers these cues. Left half shows
results from AFLW2000 dataset, right half shows results from CelebA.

3DMMs in representing real-world 3D scans. We compare with
BFM [11], the most commonly used 3DMM at present. We use
ten 3D face scans provided by [11], which are not included in the
training set of BFM. As these face meshes are already registered
using the same triangle definition with BFM, no registration is nec-
essary. Given the groundtruth shape, by using gradient descent, we
can estimate a shape parameter whose decoded shape matches the
groundtruth. We define matching criterion on both vertex distances
and surface normal direction. This empirically improves fidelity of
final results compared to only optimizing vertex distances. Also, to
emphasize the compactness of nonlinear models, we train different
models with different latent space sizes. Fig. 14 shows the visual
quality of two models’ reconstruction. Our reconstructions closely
match the face shapes details.

To quantify the difference, we use NME, averaged per-vertex
errors between the recovered and groundtruth shapes, normalized
by inter-ocular distances. Our nonlinear model has a signifi-
cantly smaller reconstruction error than the linear model, 0.0146
vs. 0.0241 (Tab. 4). Also, the nonlinear models are more compact.
They can achieve similar performances as linear models whose
latent spaces sizes doubled.

4.4 Applications
Having shown the capability of our nonlinear 3DMM (i.e., two
decoders), now we demonstrate the applications of our entire
network, which has the additional encoder. Many applications
of 3DMM are centered on its ability to fit to 2D face images.
Similar to linear 3DMM, our nonlinear 3DMM can be utilized

TABLE 5: Face alignment performance on ALFW2000.

Method Linear SDM [69] 3DDFA [32] DeFA [70] Our

NME 5.61 6.12 5.42 4.50 4.12

for model fitting, which decomposes a 2D face into its shape,
albedo and lighting. Fig. 15 visualizes our 3DMM fitting results
on AFLW2000 and CelebA dataset. Our encoder estimates the
shape S, albedo A as well as lighting L and projection parameter
m. We can recover personal facial characteristic in both shape and
albedo. Our albedo can present facial hair, which is normally hard
to be recovered by linear 3DMM.

4.4.1 2D Face Alignment
Face alignment is a critical step for many facial analysis tasks
such as face recognition [71], [72]. With enhancement in the
modeling, we hope to improve this task (Fig. 16). We compare face
alignment performance with state-of-the-art methods, SDM [69],
3DDFA [32] and DeFA [70], on AFLW2000 dataset. The accuracy
is evaluated by the Normalized Mean Error (NME), the average of
visible landmark error normalized by the bounding box size [31].

Here, current state-of-the-art DeFA [70] is trained in a corpus
consisting of five datasets including our training set of 300W-LP
and employs multiple constrains namely landmark, contour, SIFT
features. 3DDFA [32] is a cascade of CNNs that iteratively refines
its estimation in multiple steps, meanwhile ours is a single-pass of
E and DS . Comparing to our method, DeFA has an advantages
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Fig. 16: Our 2D face alignment results. Invisible landmarks are marked as red. We can well handle extreme pose, lighting and expression.

Input Our Sela17

Fig. 17: 3D reconstruction results comparison to Sela et al. [50]. Besides showing the shape, we also show their estimated depth and
correspondence map. Facial hair or occlusion can cause serious problems in their output maps.

on training set, 3DDFA has an edge on the network architecture.
However, by jointly learning model fitting with 3DMM, our
network can significantly surpass their performance, as in Tab. 5.
Another perspective is that in conventional 3DMM fitting [32],
the texture is used as the input to regress the shape parameter,
while ours adopts an analysis-by-synthesis scheme and texture is
the output of the synthesis. Further, for a more fair comparison
of nonlinear vs. linear models, we train an encoder with the same
architecture as our E, whose output parameter will multiple with
the linear shape bases G, and train with the landmark loss function
(Eqn. 16). Again we observe the higher error from the linear
model-based fitting.

4.4.2 3D Face Reconstruction
We compare our approach to three recent representative face re-
construction work: 3DMM fitting networks learned in supervised
(Sela et al. [42]) or unsupervised fashion (Tewari et al. [48]) and
also a non-3DMM approach (Jackson et al. [73]).

The high-quality 3D reconstruction work by Richardson et al.
[41], [50], Sela et al. [42] obtains impressive results on adding
fine-level details to the face shape when images are within the
span of the used synthetic training corpus or the employed 3DMM
model. However, their performance significantly degrades when
dealing with variations not in its training data span, e.g., facial
hair. Our approach is not only robust to facial hair and make-up,
but also automatically learns to reconstruct such variations based
on the jointly learned model. We provide comparisons with them
in Fig. 17, using the code provided by the author.

The current state-of-art 3D monocular face reconstruction
method by Sela et al. [42] consisting of three steps: an image-
to-image network estimating a depth map and a correspondence
map, non-rigid registration and a fine detail reconstruction. Their
image-to-image network is trained on synthetic data generated by

Input Our Tewari17

Fig. 18: 3D reconstruction results comparison to Tewari et al. [48] on
300VW dataset [74] (first row) and CelebA [68] (second row). Their
reconstructed shapes suffer from the surface shrinkage when dealing
with challenging texture, i.e., facial hair. Meanwhile, our nonlinear
model is more robust to these variations.

the linear model. Besides domain gap between synthetic and real
images, this network faces a more serious problem of lacking
facial hair in the low-dimension texture subspace of the linear
model. This network’s output tends to ignore these unexplain-
able region (Fig. 17), which leads to failure in later steps. Our
network is more robust in handing these in-the-wild variations.
Furthermore, our approach is orthogonal to Sela et al. [42]’s fine
detail reconstruction module or Richardson et al. [50]’s finenet.
Employing these refinement on top of our fitting could lead to
promising further improvement.

MoFA, the monocular reconstruction work by
Tewari et al. [48], is relevant to us as they also learn to fit
3DMM in an unsupervised fashion. Even being trained on
in-the-wild images, their method is still limited to the linear bases.
Hence there reconstructions suffer the surface shrinkage when
dealing with challenging texture, i.e., facial hair (Fig. 18). Our
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Input Our VRN Input Our VRN

Fig. 19: 3D reconstruction results comparison to VRN by Jack-
son et al. [73] on CelebA dataset. Volumetric shape representation
results in non-smooth 3D shape and loses correspondence between
reconstructed shapes.

Fig. 20: Quantitative evaluation of 3D reconstruction. We obtain a
low error that is comparable to optimization-based methods.

network faithfully models these in-the-wild texture, which leads
to better 3D shape reconstruction.

We also compare our approach with a non-3DMM apporach
VRN by Jackson et al. [73]. To avoid using low-dimension
subspace of the linear 3DMM, it directly regresses a 3D shape
volumetric representation via an encoder-decoder network with
skip connection. This potentially helps the network to explore a
larger solution space than the linear model, however with a cost
of losing correspondence between facial meshes. Fig. 19 shows
3D reconstruction visual comparison between VRN and ours.
In general, VRN robustly handles in-the-wild texture variations.
However, because of the volumetric shape representation, the sur-
face is not smooth and is partially limited to present medium-level
details as ours. Also, our model further provides projection matrix,
lighting and albedo, which is applicable for more applications.

Following the same setting in [48], we also quantitatively com-
pare our method with prior works on 9 subjects of FaceWarehouse
database [12]. Visual and quantitative comparisons are shown in
Fig. 20. We achieve on-par results with Garrido et al. [64], an
offline optimization method, while surpass all other regression
methods [24], [48], [50].

4.4.3 Face editing
Decomposing face image into individual components give us
ability to edit the face by manipulating any component. Here we
show two examples of face editing using our model.

Relighting. First we show an application to replacing the lighting
of a target face image using lighting from a source face (Fig. 21).
After estimating the lighting parameters Lsource of the source
image, we render the transfer shading using the target shape Starget

and the source lighting Lsource. This transfer shading can be used to

Fig. 21: Lighting transfer results. We transfer the lighting of source
images (first row) to target images (first column). We have similar
performance compare to the state-of-the-art method of Shu et al. [75]
despite being orders of magnitude faster (150 ms vs. 3 min per image).

replace the original source shading. Alternatively, value of Lsource

can be arbitrarily chosen based on the SH lighting model, without
the need of source images. Also, here we use the original texture
instead of the output of our decoder to maintain image details.

Attribute Manipulation. Given faces fitted by 3DMM model,
we can edit images by naive modifying one or more elements
in the albedo or shape representation. More interestingly, we can
even manipulate the semantic attribute, such as growing beard,
smiling, etc. The approach is similar to learning attribute embed-
ding in Sec. 4.2. Assuming, we would like to edit appearance
only. For a given attribute, e.g., beard, we feed two sets of
images with and without that attribute {Ipi }ni=1 and {Ini }ni=1

into our encoder to obtain two average parameters fpA and fnA.
Their difference ∆fA = fpA − fnA is the direction to move from
the distribution of negative images to positive ones. By adding
∆fA with different magnitudes, we can generate modified images
with different degree of changes. To achieve high-quality editing
with identity-preserved, the final editing result is obtained by
adding the residual, the different between the modified image and
our reconstruction, to the original input image. This is a critical
difference to Shu et al. [66] to improve results quality (Fig. 22).

4.5 Runtime
In this section, we compare running time for multiple 3D re-
construction approaches. Since different methods implemented
in different frameworks/languages; this comparison aims to only
provide relative comparisons between them. Sela et al. [42] and
VRN [73] both use an encoder-decoder network with skip con-



13

Fig. 22: Growing mustache editing results. The first collumn shows
original images, the following collumns show edited images with
increasing magnitudes. Comparing to Shu et al. [66] results (last row),
our edited images are more realistic and identity preserved.

TABLE 6: Running time of various 3D face reconstruction methods.

Method Encoder Decoder Post-processing Rendering

Sela et al. [42] ∼ 10 ms ∼ 180s -
VRN [73] ∼ 10 ms - -
MoFA [48] ∼ 4ms Neglectable - -

Our 2.7ms 5.5 ms - 140 ms

nections with similar runtime. However, Sela et al. [42] requires
an expensive nonrigid registration step as well as an refinement
module. We get a comparable encoder running time with 3DMM
regression network of MoFA [48]. However, since they directly
use liner bases, the decoding step is trivial as a single multiplica-
tion; our model requires decoding features via two CNNs for shape
and texture, respectively. We also note that the running time for
the rendering layer is significantly higher than other components.
Luckily, rendering to reconstruct input has no value and it is not
required during testing.

5 CONCLUSIONS

Since its debut in 1999, 3DMM has became a cornerstone of facial
analysis research with applications to many problems. Despite its
impact, it has drawbacks in requiring training data of 3D scans,
learning from controlled 2D images, and limited representation
power due to linear bases for both shape and texture. These draw-
backs could be formidable when fitting 3DMM to unconstrained
faces, or learning 3DMM for generic objects such as shoes. This

paper demonstrates that there exists an alternative approach to
3DMM learning, where a nonlinear 3DMM can be learned from
a large set of in-the-wild face images without collecting 3D face
scans. Further, the model fitting algorithm can be learnt jointly
with 3DMM, in an end-to-end fashion.

Our experiments cover a diverse aspects of our learnt model,
some of which might need the subjective judgment of the readers.
We hope that both the judgment and quantitative results could be
viewed under the context that, unlike linear 3DMM, no genuine
3D scans are used in our learning. Finally, we believe that unsuper-
visedly or weak-supervisedly learning 3D models from large-scale
in-the-wild 2D images is one promising research direction. This
work is one step along this direction.
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